例说代数式的考点、考题
- 格式:doc
- 大小:139.50 KB
- 文档页数:2
第06讲代数式相关概念(8大考点)考点考向一.代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.例如:ax+2b,﹣13,2b23,a+2等.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|﹣2.25|等.二.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.三.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.四.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.五.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.六.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“﹣”将单项式连起来的就是多项式,不含“+”或“﹣”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.七.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.八.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式考点精讲一.代数式(共2小题)1.(2021秋•海安市期中)下列各式中,符合代数式书写要求的是()A.x•5B .﹣ab C.1x D.4m×n 2.(2021秋•高淳区期中)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义.二.列代数式(共6小题)3.(2021秋•惠山区期末)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为(用含m的代数式表示).4.(2021秋•溧水区期末)用代数式表示图中阴影部分的面积.5.(2021秋•宝应县期末)甲超市在中秋节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖,x(单位:kg)表示购买苹果的质量.(1)中秋节这天,小明购买3kg苹果需付款元;购买5kg苹果需付款元;(2)中秋节这天,小明需购买苹果xkg,则小明需付款元;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,小明如果要购买多少kg苹果时,随便在哪家购买都一样?6.(2021秋•溧阳市期末)为“美丽乡村”建设,某市对市属国道两旁绿化区域进行绿化升级,“阳光”工程队承包了该路段绿化升级工程,原计划每天绿化升级0.5公里,施工开始时,工程队改变计划,实际施工绿化升级是原计划的1.6倍,已知该市需要绿化升级的总长为a公里,完成这项工程的实际时间比原计划时间少用天(用含a的代数式表示).7.(2021秋•南京期末)小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m(m>10)张,一列(20﹣m)张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了张.(结果用含有m的代数式表示)8.(2021秋•如东县期末)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数为.三.代数式求值(共7小题)9.(2021秋•广陵区期末)已知a﹣2b2=3,则2022﹣2a+4b2的值是()A.2016B.2028C.2019D.2025 10.(2021秋•江都区期末)已知﹣2x+y=2,则(2x﹣y)2+2x﹣y﹣3=.11.(2021秋•溧阳市期末)若2x﹣y=﹣3,则6﹣4x+2y=.12.(2021秋•仪征市期末)如图是一个数值运算的程序,若输入的x值为5,则输出的y值为.13.(2021秋•徐州期末)若a﹣2b+1=0,则代数式3a﹣6b的值为.14.(2021秋•高新区期末)已知关于x的代数式2x2﹣bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,则a+b=.15.(2021秋•宝应县期末)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为.四.规律型:数字的变化类(共6小题)16.(2021秋•徐州期末)下列一组数:1,2,3,4,3,2,1,2,3,4,3,2,1,2,…其中第2022个数是()A.1B.2C.3D.417.(2021秋•广陵区期末)【阅读】计算1+3+32+...+3100的值时,令S=1+3+32+ (3100)则3S=3+32+33+…+3100+3101,因此3S﹣S=3101﹣1,所以.仿照以上推理,计算:=.18.(2021秋•东台市期末)如图,“海春书局”把WIFI密码做成了数学题.小红在海春书局看书时,思索了一会儿,输入密码,顺利地连接到了“海春书局”的网络,那么她输入的密码是.19.(2021秋•连云港期末)观察下列两行数:3,5,7,9,11,13,15,17,19,….4,7,10,13,16,19,22,25,….探究发现:第1个相同的数是7,第2个相同的数是13,…,若第n个相同的数是1801,则n等于.20.(2021秋•高新区期末)王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、6、7、9、8.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组;……如此进行下去,那么如果当王老师数完2022后,C 组中的人数是.21.(2021秋•海门市校级月考)如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的式子表示:第n行的最后一个数是,第n行第一个数是,第n行共有数;(3)求第n行各数之和(只需要写出算式)五.规律型:图形的变化类(共6小题)22.(2021秋•建湖县期末)如图所示的图形是由正方形和相同大小的圆按照一定规律摆放而成,按此规律,若要得到604个圆,则为第()个图形.A.200B.201C.202D.30223.(2021秋•新吴区期末)由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.21624.(2021秋•宝应县期末)某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).25.(2021秋•淮安期末)用同样大小的两种不同颜色的正方形纸片,按如图方式拼成正方形.第90个比第89个多个小正方形纸片.26.(2021秋•秦淮区期末)在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化,如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积和周长分别为()A.16a2和2n+3a B.16a2和2n+4aC.32a2和2n+3a D.32a2和4n a27.(2021秋•泰州期末)在无限大的正方形网格中按规律涂成的阴影如图所示,第1、2、3个图中阴影部分小正方形的个数分别为6个、11个、18个,根据此规律,则第20个图中阴影部分小正方形的个数是.六.整式(共2小题)28.(2021秋•邗江区校级期中)下列代数式,其中整式有()A.1个B.2个C.3个D.4个29.(2021秋•高港区期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+中,整式有()A.3个B.4个C.6个D.7个七.单项式(共4小题)30.(2021秋•新吴区期末)单项式﹣23a2b3的系数和次数分别是()A.﹣2,8B.﹣2,5C.2,8D.﹣8,5 31.(2021秋•崇川区期末)关于单项式的说法,正确的是()A.系数为2,次数是2B.系数为,次数是3C.系数为,次数是2D.系数为,次数是332.(2021秋•射阳县校级期末)单项式﹣2πa2bc的次数为.33.(2021秋•建湖县期末)单项式﹣23xy3的次数是.八.多项式(共4小题)34.(2021秋•鼓楼区校级期末)多项式x3﹣4x2y3+26的次数是.35.(2021秋•启东市期末)若关于x、y的多项式2x2+3mxy﹣y2﹣xy﹣5是二次三项式,则m=.36.(2021秋•宝应县期末)多项式﹣a2b3+a3b+1的次数是.37.(2021秋•苏州期末)若3x|m|﹣(2+m)x+5是关于x的二次三项式,那么m的值为.巩固提升一、单选题1.(2021·扬州市广陵区教师发展中心七年级期末)用火柴棒按如图所示的方式摆大小不同的“3”,按此规律摆下去,第n 个“3”需要火柴棒的根数为( )A .2n +3B .3n +2C .3n +5D .4n +1 2.(2021·江苏)如果整式x n ﹣5x +4是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .63.(2020·江苏七年级期中)用代数式表示“2a 与3的差”为( )A .2a ﹣3B .3﹣2aC .2(a ﹣3)D .2(3﹣a )4.(2020·南通市新桥中学七年级期中)下列判断中正确的是( )A .9x 2 - y + 5xy 2是四次三项式B .a 是一次单项式C .单项式232x y π的系数是12 D .3322x y −是五次单项式 5.(2021·扬州市广陵区教师发展中心七年级期末)已知a 、b 互为相反数,c 、d 互为倒数,则代数式-2(a +b )+3cd 的值为( )A .3B .1C .0D .-26.(2021·江苏)已知:x +y =1,则代数式2x +2y ﹣1的值是( )A .﹣1B .0C .1D .27.(2021·江苏徐州·)单项式﹣2x 3y 的次数为( )A .1B .2C .3D .48.(2020·江苏七年级期中)下列说法正确的是( )①6−和2mn 都是单项式;②1x −的项是x 和1;③22a x +和33332a b a b +都是多项式. A .①② B .①③C .②③D .①②③ 9.(2021·江苏)若代数式2x 2+7kxy ﹣y 2中不含xy 项,则k 的值为( )A .0B .﹣17C .17D .110.(2021·盐城市初级中学)下列说法正确的是( )A .单项式x 的系数是0B .单项式-5的次数是1C .多项式22x x +的次数是2D .单项式22-3x y 的系数是-3,次数是5二、填空题11.(2019·盐城市大丰区三龙初级中学七年级期中)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.12.(2020·江苏省江阴市第一中学七年级月考)﹣3的相反数是 ___;2325ab c −的系数是 ___.13.(2021·常州市同济中学)单项式9x 3y 2的次数为___.14.(2021·扬州市广陵区教师发展中心七年级期末)已知235a b −=,则代数式246a b +−的值为_____.15.(2021·常州市同济中学)已知x ﹣y =﹣1,则3x ﹣3y =___.16.(2021·江苏七年级期中)若221m m +=,则多项式2241m m +−的值为______.17.(2020·扬州市梅岭中学)单项式223a b −的系数是________. 18.(2021·江苏南京·七年级期末)﹣223ab 的系数是_____,2x+3xy 2﹣1的次数是_____. 19.(2021·扬州市广陵区教师发展中心七年级期末)一组“数值转换机”按照下面的程序计算,如果开始输入的x 为正整数,最后输出的结果为1339,则满足条件的x 的不同值最多有____________个.20.(2021·扬州市广陵区教师发展中心七年级期末)已知某商场一款服装的进价为a 元,商家将价格在进价的基础上提高40%后以7折出售,则该款服装现在的售价为____________元.21.(2020·扬州市梅岭中学)用代数式表示“x 的4倍与3的差”,结果为_______.22.(2021·江苏西安交大苏州附中七年级开学考试)写出一个次数是3,且含有,x y 的二项式:_______.23.(2018·江苏)一件衣服原来标价x 元,现在打九折销售,现在的价格为_____元.24.(2019·沭阳县修远中学七年级月考)如图,一串有黑有白,按一定规律排列的珠子,被盒子遮住了一部分,则这串珠子被盒子遮住的部分有________颗。
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
初中代数式务必掌握的20个考点考点1: 代数式的定义及书写(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或 一个字母也是代数式.(2)代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘 号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在 那个字母前加上“-”号.例题1: (1)在下列各式中(1)3a ,(2)4+8=12,(3)2a ﹣5b >0,(4)0,(5)s =πr 2,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,其中代数式的个数是( )A .3个B .4个C .5个D .6个 (2)下列各式:①114x ;②2•3;③20%x ;④a ﹣b ÷c ;⑤m−n 3;⑥x ﹣5千克:其中符合代数式书写要求的有( )A .5个B .4个C .3个D .2个【分析】(1)根据代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.依此作答即可.(2)根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解析】(1)由题,属于代数式有:(1)3a ,(4)0,(6)a 2﹣b 2,(7)1+2,(8)x +2y ,共5个,选C(2)①114x 中分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x ,书写正确; ④a ﹣b ÷c ,除号应用分数线,所以书写错误;⑤m−n 3书写正确;⑥x ﹣5应该加括号,所以书写错误;符合代数式书写要求的有③⑤共2个.选:D . 【小结】(1)代数式是由运算符号把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.(2)注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.变式1: 在以下各式中属于代数式的是( )①S =12ah ②a +b =b +a ③a ④1a ⑤0 ⑥a +b ⑦a+b ab A .①②③④⑤⑥⑦ B .②③④⑤⑥ C .③④⑤⑥⑦ D .①②【分析】根据代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式进行分析即可.【解析】③a ,④1a ,⑤0,⑥a +b ,⑦a+b ab 是代数式,选:C .【小结】此题主要考查了代数式,关键是掌握代数式的定义.变式2: 在式子0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有( ) A .1个 B .2个 C .3个 D .4个【分析】直接利用代数式的定义,代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式,进而判断即可.【解析】0.5xy ﹣2,3÷a ,12(a +b ),a •5,﹣314abc 中,符合代数式书写要求的有0.5xy ﹣2,12(a +b )共2个.选:B .【小结】此题主要考查了代数式,正确把握定义是解题关键.变式3: 进入初中后学习数学,对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“•”或者省略不写”.其实还有一些书写规范,比如,在代数式中如果出现除号“÷”,通常用分数线“﹣”来取代;数字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式(ac ×4﹣b 2)÷4简写为 .【分析】根据代数式的写法表示即可.【解析】代数式(ac ×4﹣b 2)÷4简写为:4ac−b 24,故答案为:4ac−b 24.【小结】此题主要考查了代数式,关键是掌握代数式的表示要求.考点2: 列代数式(和差倍问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题2: 学校举行国庆画展,七(1)班交m 件作品,七(2)班交的作品比七(1)班的2倍少6件,则七(2)班交的作品是 件.【分析】根据“2倍”即乘以2,“少6件”即再减去6即可得.【解析】根据题意知七(2)班交的作品数量为(2m ﹣6)件,故答案为:2m ﹣6.【小结】本题主要考查列代数式,列代数式应该注意格式.变式4: 某校报数学兴趣小组的有m 人,报书法兴趣小组的人数比数学兴趣小组的人数的一半多3人,那么报书法兴趣小组的有 人.【分析】数学兴趣小组的人数的一半是:12m ,则根据“报书法兴趣小组的人比数学兴趣小组的人数的一半多3人”列出代数式.【解析】依题意知,美术兴趣小组的人数是:12m +3.故答案是:(12m +3). 【小结】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系.变式5: 某学校七年级有m 人,八年级人数比七年级人数的23多10人,九年级人数比八年级人数的2倍少50人,用含m 的式子表示七八九三个年级的总人数为( )A .3mB .113m ﹣40C .3m ﹣40D .3m ﹣20【分析】根据题意分别表示出各年级的人数,进而利用整式的加减运算法则得出答案.【解析】由题意可得,八年级的人数为:23m +10,九年级人数为:2(23m +10)﹣50, 故七八九三个年级的总人数为:m +23m +10+2(23m +10)﹣50=3m ﹣20.选:D . 【小结】此题主要考查了列代数式,正确表示出各年级人数是解题关键.变式6: 我校甲、乙、丙三位同学给希望工程捐款,已知甲同学捐款x 元,乙同学的捐款金额比甲同学捐款金额的3倍少8元,丙同学的捐款金额是甲、乙两同学捐款总金额的34,用含x 的代数式表示甲,乙、丙三位同学的捐款总金额.【分析】分别表示出乙、丙同学捐款总数进而得出答案.【解析】由题意可得,乙同学捐款(3x ﹣8)元,丙同学的捐款金额是:34(x +3x ﹣8)=3x ﹣6(元), 故甲,乙、丙三位同学的捐款总金额为:x +3x ﹣8+3x ﹣6=7x ﹣14(元).【小结】此题主要考查了列代数式,正确表示出乙、丙同学捐款总数是解题关键.考点3: 列代数式(数字问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题3: 一个两位数,十位上的数字为a ,个位上的数字比十位上的数字少2,则这个两位数为( )A .11a ﹣20B .11a +20C .11a ﹣2D .11a +2【分析】根据一个两位数,十位上的数字为a ,个位上的数字比十位上的数字少2,可知个位数字为a ﹣2,然后即可用含a 的代数式表示出这个两位数.【解析】由题意可得,这个两位数为:10a +(a ﹣2)=11a ﹣2,选:C .【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式7: 设a 是一个三位数,b 是一个两位数,如果将这两个数顺次排成一个五位数(a 在左,b 在右),则这个五位数可以表示为 .【分析】相当于把三位数扩大了100倍,两位数的大小不变,相加即可.【解析】∵三位数扩大了100倍,两位数的大小不变,∴这个五位数可以表示为100a +b .故答案是100a +b .【小结】考查列代数式,得到新数中的a ,b 与原数中的a ,b 的关系是解决本题的关键.变式8:一个三位数为x,一个两位数为y,把这个三位数放在两位数的左边得到一个五位数M,把这个两位数放在三位数的左边又可以得到一个五位数N,则M﹣N=(结果用含x,y的式子表示).【分析】由于一个两位数为y,一个三位数为x,若把这个三位数放在两位数的左边得到一个五位数M,由此得到M=100x+y,又把这个两位数放在三位数的左边又可以得到一个五位数N,由此得到N=1000y+x,然后就可以求出M﹣N的值.【解析】依题意得,M=100x+y,N=1000y+x,∴M﹣N=(100x+y)﹣(1000y+x)=99x﹣999y.【小结】此题主要考查了列代数式,解决此类题目的关键是首先正确理解题意,然后根据题意列出代数式,同时计算时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.变式9:用式子表示十位上的数是x,个位上的数是y的两位数,再把这个两位数的十位上的数与个位上的数交换位置.求后来所得的数与原来的数的差是多少?【分析】由十位上的数字乘10加上个位上的数字表示出两位数,再由个位与十位交换表示出新数,新数减去原来的数即可得到结果.【解析】依题意有(10y+x)﹣(10x+y)=10y+x﹣10x﹣y=9y﹣9x.【小结】本题主要考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系.考点4:列代数式(销售问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题4:一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x元,那么售价可表示为.【分析】直接利用成本与原价以及售价与打折的关系进而得出答案.【解析】由题意可得:(1+50%)x×0.8=1.2x(元).【小结】此题主要考查了列代数式,正确理解打折与售价的关系是解题关键.变式10: 某商店有一种商品每件成本a 元,按成本价增加20%定为售价,售出80件后,由于存积压降价,打八五折出售,又售出120件.(1)求该商品减价后每件的售价为多少元?(2)售完200件这种商品共盈利多少元?【分析】(1)根据一种商品每件成本a 元,按成本价增加20%定为售价,后来由于存积压降价,打八五折出售,可以用含a 的代数式表示出该商品减价后每件的售价为多少元;(2)根据题意和(1)中的结果,可以计算出售完200件这种商品共盈利多少元.【解析】(1)由题意可得,每件商品减价后的售价是:a (1+20%)×0.85=1.02a (元),(2)20%a ×80+(1.02a ﹣a )×(200﹣80)=16a +0.02a ×120=16a +2.4a =18.4a (元),【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式11: 小明经销一种服装,进货价为每件a 元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A .比进货价便宜了0.52a 元B .比进货价高了0.2a 元C .比进货价高了0.8a 元D .与进货价相同【分析】直接利用标价以及打折之间的关系得出关系式即可.【解析】由题意可得,这件服装的实际价格是:(1+200%)a ×40%=1.2a 元.则1.2a ﹣a =0.2a (元)比进货价高了0.2a 元.选:B .【小结】此题主要考查了列代数式,正确表示出标价是解题关键.变式12: 张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元 【分析】应该比较他的总进价和总售价.分别表示出总进价为:20a +30b ,总售价为a+b 2×(20+30)=25a +25b ,通过作差法比较总进价和总售价的大小,判断他是赔是赚.【解析】根据题意可知:总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b ,∵a >b ,∴5a ﹣5b >0,那么售价>进价,∴他赚了.选:C .【小结】此题考查列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.本题要注意应该比较他的总进价和总售价.考点5: 列代数式(增长率问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范. 例题5: 某校去年初一招收新生a 人,今年比去年增加x %,今年该校初一学生人数用式子表示为( )A .(a +x %)人B .ax %人C .a(1+x)100人D .a (1+x %)人 【分析】根据今年招收的新生人数=去年初一招收的新生人数+x %×去年初一招收新生人数,即可得出答案.【解析】∵去年初一招收新生a 人,∴今年该校初一学生人数为:a (1+x %)人.选:D .【小结】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加x %和今年是去年的x %的区别.变式13: 某校初一年级计划初中三年每年参加植树活动,2019年已经植树a 亩,如果以后每年比上一年植树面积增长20%,那么2021应植树的面积为( )A .a •(1+20%)B .a •(1+2×20%)C .a •(1+20%)2D .2a •(1+20%)【分析】根据题意,可以用含a 的代数式表示出2021年应植树的面积,本题得以解决.【解析】由题意可得,2021应植树的面积为:a (1+20%)2,选:C .【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式14: 某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则1月份和2月份的产值和是( )A .x +(1﹣10%)x 万元B .x +(1+10%)x 万元C .(1﹣10%)x 万元D .(1+10%)x 万元【分析】根据题意表示出2月份的产值,进而得出答案.【解析】∵今年1月份产值为x 万元,2月份的产值比1月份减少了10%,∴2月份的产量为:(1﹣10%)x ,故1月份和2月份的产值和是:[x +(1﹣10%)x ]万元.选:A .【小结】此题主要考查了列代数式,正确表示出2月份的产值是解题关键.变式15:裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元【分析】根据裕丰商店一月份的利润及二、三月份的利润平均增长率,即可用含m的代数式表示出二、三月份的利润,再将三个月的利润相加即可得出结论.【解析】∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.选:D.【小结】本题考查了列代数式,根据前三个月利润间的关系,用含m的代数式表示出二、三月份的利润是解题的关键.考点6:列代数式(分段计费问题)解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例题6:东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A.(10﹣0.7m)元B.(11.4+0.7m)元C.(8.6+0.7m)元D.(10+0.7m)元【分析】根据题意,可以用含m的代数式表示出需要付的车费,本题得以解决.【解析】由题意可得,车费是:10+(m﹣2)×0.7=(0.7m+8.6)元,选:C.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式16:为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示).【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据和题意,可以计算出小刚家一月份应交纳电费;(3)根据表格中的数据,可以用分类讨论的方法用相应的代数式表示出小刚家七月份应交纳的电费.【解析】(1)由表格可知,五月份用电量最多,实际用电量为:200+36=236(度),故答案为:五,236;(2)小刚家一月份用电:200+(﹣50)=150(度),小刚家一月份应交纳电费:0.5×50+(150﹣50)×0.6=25+60=85(元),故答案为:85;(3)当0<x≤50时,电费为0.5x元;当50<x≤200时,电费为0.5×50+(x﹣50)×0.6=25+0.6x﹣30=(0.6x﹣5)元;当x>200时,电费为0.5×50+0.6×150+(x﹣200)×0.8=25+90+0.8x﹣160=(0.8x﹣45)元.【小结】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.变式17:为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算,表示立方米)价目表每月用水量单价不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3请根据上表的内容解答下列问题:(1)填空:若该户居民2月份用水5m3,则应交水费元;3月份用水8m3,则应收水费元;(2)若该户居民4月份用水am3(其中a>10m3),则应交水费多少元(用含a的代数式表示,并化简)?(3)若该户居民5、6两个月共用水14m3(6月份用水量超过了5月份),设5月份用水xm3,直接写出该户居民5、6两个月共交水费多少元(用含x的代数式表示).【分析】(1)根据题意,可以计算出该居民二月份和三月份的水费;(2)根据题意,可以用a的代数式表示出4月份的水费;(3)根据题意,利用分类讨论的方法可以解答本题.【解析】(1)由表格可得,若该户居民2月份用水5m3,则应交水费:2×5=10(元),3月份用水8m3,则应收水费:2×6+4×(8﹣6)=12+4×2=12+8=20(元),故答案为:10,20;(2)由表格可得,该户居民4月份用水am3(其中a>10m3),则应交水费:2×6+4×(10﹣6)+8(a﹣10)=(8a﹣52)元,(3)由题意可得,x<14﹣x,得x<7,当6<x<7,该户居民5、6两个月共交水费:[2×6+(x﹣6)×4]+[2×6+(14﹣x﹣6)×4]=32(元),当4≤x≤6时,该户居民5、6两个月共交水费:2x+[2×6+(14﹣x)×4]=(﹣2x+68)(元),当0≤x<4时,该户居民5、6两个月共交水费:2x+[2×6+(10﹣6)×4+(14﹣x)×8]=(140﹣6x)(元).【小结】本题考查列代数式、有理数的混合运算,解答本题的关键是明确题意,列出相应的代数式、利用分类讨论的的方法解答.变式18:滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元;(用含a、b 的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?【分析】(1)根据滴滴快车计算得到得到所求即可;(2)根据a的值在10公里以内还是超过10公里,分别写出小明应付费即可;(3)根据题意计算出相差的车费即可.【解析】(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,1.8×9.5+0.45a﹣[1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)]=0,因此,小王和小张付费相同.【小结】此题考查了代数式求值,以及列代数式,弄清题意是解本题的关键.考点7: 代数式求值(整体代入法)例题7: 已知代数式x ﹣2y 的值是3,则代数式4y +1﹣2x 的值是( )A .﹣5B .﹣3C .﹣1D .0【分析】直接将原式变形进而把已知代入求出答案.【解析】∵x ﹣2y =3,∴4y +1﹣2x =﹣2(x +2y )+1=﹣6+1=﹣5.选:A .【小结】此题主要考查了代数式求值,正确将原式变形是解题关键.变式19: 当x =2时,代数式px 3+qx +1的值为﹣2019,求当x =﹣2时,代数式的px 3+qx +1值是() A .2018 B .2019 C .2020 D .2021【分析】根据整体思想将已知条件用含p 和q 的代数式表示,再整体代入即可求解.【解析】当x =2时,代数式px 3+qx +1的值为﹣2019,即8p +2q =﹣2020.当x =﹣2时,代数式的px 3+qx +1=﹣8p ﹣2q +1=﹣(8p +2q )+1=2020+1=2021.选:D .【小结】本题考查了代数式求值,解决本题的关键是利用整体思想.变式20: 已知1﹣a 2+2a =0,则14a 2−12a +54的值为( )A .32B .14C .1D .5【分析】1﹣a 2+2a =0经过整理得:a 2﹣2a =1,14a 2−12a +54=14(a 2﹣2a )+54,把a 2﹣2a =1代入代数式14(a 2﹣2a )+54,计算求值即可.【解析】∵1﹣a 2+2a =0,∴a 2﹣2a =1,∴14a 2−12a +54=14(a 2﹣2a )+54=14×1+54=32,选:A .【小结】本题考查了代数式求值,正确掌握代数式变形,代入法,有理数混合运算法则是解题的关键.变式21:(1)【探究】若a2+2a=1,则代数式2a2+4a+4=2()+4=2×()+4=.【类比】若x2﹣3x=2,则x2﹣3x﹣5的值为.(2)【应用】当x=1时,代数式px3+qx+1的值是5,求当x=﹣1时,px3+qx+1的值;(3)【推广】当x=2020时,代数式ax5+bx3+cx﹣5的值为m,当x=﹣2020时,ax5+bx3+cx﹣5的值为(含m的式子表示)【分析】(1)把代数式2a2+4a+4=2(a2+2a)+4,然后利用整体代入的方法计算;利用同样方法计算x2﹣3x﹣5的值;(2)先用已知条件得到p+q=4,而当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1,然后利用整体代入的方法计算;(3)利用当x=2020时,代数式ax5+bx3+cx﹣5的值为m得到20205a+20203b+2020c=m+5,而当x=﹣2020时,ax5+bx3+cx﹣5=﹣20205a﹣20203b﹣2020c﹣5,然后利用整体代入的方法计算.【解析】(1)∵a2+2a=1,∴2a2+4a+4=2(a2+2a)+4=2×(1)+4=6;【类比】若x2﹣3x=2,则x2﹣3x﹣5=2﹣5=﹣3;故答案为a2+2a,1,6;﹣3;、(2)∵当x=1时,代数式px3+qx+1的值是5,∴p+q+1=5,∴p+q=4,∴当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1=﹣4+1=﹣3;(3)∵当x=2020时,代数式ax5+bx3+cx﹣5的值为m,∴20205a+20203b+2020c﹣5=m,即20205a+20203b+2020c=m+5,当x=﹣2020时,ax5+bx3+cx﹣5=(﹣2020)5a+(﹣2020)3b+(﹣2020)c﹣5=﹣20205a﹣20203b﹣2020c﹣5=﹣(20205a+20203b+2020c)﹣5=﹣(m+5)﹣5=﹣m﹣5﹣5=﹣m﹣10.故答案为﹣m﹣10.【小结】本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.也考查了整体代入的方法.考点8:代数式求值(程序框图)例题8:根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5B.﹣16C.5D.16【分析】首先求出当x=﹣2时,9﹣x2的值是多少,然后把所得的结果和1比较大小,判断是否输出结果即可.【解析】当x=﹣2时,9﹣x2=9﹣(﹣2)2=9﹣4=5>1,当x=5时,9﹣x2=9﹣52=9﹣25=﹣16<1,∴当输入x=﹣2时,输出结果为﹣16.选:B.【小结】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简变式22:根据如图所示的计算程序,若输入x=﹣1,则输出结果为()A.4B.2C.1D.﹣1【分析】把x=﹣1代入程序中计算即可得到结论.【解析】当入x=﹣1时,﹣x2+3=﹣1+3=2>1,当x=2时,﹣x2+3=﹣4+3=﹣1<1,选:D.【小结】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.变式23:按如图所示的运算程序,能使运算输出的结果为6的是()A.x=5,y=﹣1B.x=2,y=2C.x=2,y=﹣1D.x=﹣2,y=3【分析】把x与y的值代入检验即可.【解析】A、当x=5,y=﹣1时,输出结果为5+1=6,符合题意;B、当x=2,y=2时,输出结果为2﹣4=﹣2,不符合题意;C、当x=2,y=﹣1时,输出结果为2+1=3,不符合题意;D、当x=﹣2,y=3时,输出结果为﹣2﹣9=﹣11,不符合题意,选:A.【小结】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.变式24:如图是一个运算程序,能使输出结果为﹣1的是()A.1,2B.﹣1,0C.﹣1,2D.0,﹣1【分析】根据筛选法将各个选项分别代入运算程序即可得结果.【解析】A.当a=1,b=2时,输出结果为3,不符合题意;B.当a=﹣1,b=0时,输出结果为1,不符合题意;C.当a=﹣1,b=2时,输出结果为﹣1,符合题意;根据筛选法C选项正确.选:C.【小结】本题考查了代数式求值、有理数的混合运算,解决本题的关键是理解运算程序.考点9: 单项式的系数与次数解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数例题9: 4πx 2y 4z 9的系数是 ,次数是 .【分析】直接利用单项式的系数与次数确定方法得出答案.【解析】4πx 2y 4z 9的系数是:4π9,次数是:7【小结】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.变式25: 单项式﹣3πx a +1y 2与−102x 2y 39的次数相同,则a 的值为 . 【分析】根据单项式的次数相等,得到关于a 的一元一次方程,求解即可.【解析】因为−102x 2y 39的次数是5,又因为单项式﹣3πx a +1+y 2与−102x 2y 39的次数相同 所以a +1+2=5解得a =2【小结】本题考查了单项式次数的定义及一元一次方程的解法.通过单项式的次数相等列出关于a 的方程是解决本题的关键.注意单项式的次数不包含数字和π的次数变式26: 若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可.【解析】根据题意得:m =﹣1,3+n +5=9,解得:m =﹣1,n =1,则m +n =﹣1+1=0【小结】本题主要考查的是单项式的定义,掌握单项式的系数和次数的概念是概念是解题的关键.变式27: 已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= .【分析】直接利用单项式的次数确定方法分析得出答案.【解析】∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,∴3+|m |+1=7且m ﹣3≠0,解得:m =﹣3, ∴m 2﹣2m +2=9+6+2=17【小结】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.考点10: 多项式的项与次数解题关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.例题10: 关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( )A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【分析】根据多项式的项、次数的定义逐个判断即可.【解析】A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意;选:B .【小结】本题考查了多项式的有关概念,能熟记多项式的次数和项的定义是解此题的关键.变式28: 多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解析】由题意可得,此多项式可以为:﹣5x 3+34x 2﹣2x +4.【小结】此题主要考查了多项式,正确把握相关定义是解题关键.变式29: 已知关于x 的整式(|k |﹣3)x 3+(k ﹣3)x 2﹣k . (1)若整式是单项式,求k 的值;(2)若整式是二次多项式,求k 的值;(3)若整式是二项式,求k 的值【分析】(1)由整式为单项式,根据定义得到|k |﹣3=0且k ﹣3=0,求出k 的值;(2)由整式为二次式,根据定义得到|k |﹣3=0且k ﹣3≠0,求出k 的值;(3)由整式为二项式,得到①|k |﹣3=0且k ﹣3≠0;②k =0;依此即可求解.【解析】(1)∵关于x 的整式是单项式,∴|k |﹣3=0且k ﹣3=0,解得k =3,∴k 的值是3;(2)∵关于x 的整式是二次多项式,∴|k |﹣3=0且k ﹣3≠0,解得k =﹣3,∴k 的值是﹣3;(3)∵关于x 的整式是二项式,∴①|k |﹣3=0且k ﹣3≠0,解得k =﹣3;②k =0.∴k 的值是﹣3或0.【小结】此题考查了单项式和多项式,解题的关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.。
代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。
①单项式:由 或 的相乘组成的代数式称为单项式。
单独一个数或一个字母也是单项式,如,5a 。
·单项式的系数:单式项中的 叫做单项式的系数。
·单项式的次数:单项式中 叫做单项式的次数。
·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
例: 232a b -的系数是________,次数是_______。
②多项式:几个 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫做 。
·多项式的次数:多项式里 的次数,叫做多项式的次数。
·多项式的幂:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:42321n n -+是一个四次三项式。
·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a -++是_______次________项式。
3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即x b a bxax )(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。
判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
代数式一、选择题(共20小题)1、下列四个叙述,哪一个是正确的()A、3x表示3+xB、x2表示x+xC、3x2表示3x•3xD、3x+5表示x+x+x+52、用语言叙述代数式a2﹣b2,正确的是()A、a,b两数的平方差B、a与b差的平方C、a与b的平方的差D、b,a两数的平方差3、代数式的意义是()A、a除以b加1B、b加1除aC、b与1的和除以aD、a除以b与1的和所得的商4、下列各式符合代数式书写规范的是()A、B、a×3C、3x﹣1个D、5、下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A、5B、4C、3D、26、代数式2(y﹣2)的正确含义是()A、2乘以y减2B、2与y的积减去2C、y与2的差的2倍D、y的2倍减去27、代数式a2﹣的正确解释是()A、a与b的倒数是差的平方B、a与b的差是平方的倒数C、a的平方与b的差的倒数D、a的平方与b的倒数的差8、﹣a(a是有理数)表示的数是()A、正数B、负数C、正数或负数D、任意有理数9、以下是代数式的是()A、m=abB、(a+b)(a﹣b)=a2﹣b2C、a+1D、S=πR210、代数式2(a﹣3)2的意义是()A、a与3的差的平方的2倍B、2乘以a减去3的平方C、a与3的平方差的2倍D、a减去3的平方的2倍11、甲数比乙数小1,设甲数为x,则乙数为()A、x﹣1B、x+1C、(x﹣1)D、(x+1)12、某商品八折出售,“八折”表示的含义是()A、比原价少80%B、是原价的80%C、比原价少80~100元D、比原价少80%元13、以下代数式书写规范的是()A、(a+b)×2B、C、D、x+y厘米14、代数式x+的正确解释是()A、某数与它的倒数的和B、x与y的和的倒数C、一个数与另一个数的倒数的和D、x的倒数与y的倒数的和15、若原产量为n吨,增产30%后的产量为()A、30%n吨B、(1﹣30%)n吨C、(1+30%)n吨D、(n+30%)吨16、下列说法正确的是()A、﹣a是负数B、|a|一定是非负数C、不论a为什么数,D、一定是分数17、下面判断语句中正确的是()A、2+5不是代数式B、(a+b)2的意义是a的平方与b的平方的和C、a与b的平方差是(a﹣b)2D、a,b两数的倒数和为18、下列各式中不是代数式的是()A、B、C、π÷3.14D、π≈3.1419、下列代数式,书写规范的是()A、a3B、﹣x2C、1 bD、4÷x20、表示“a与b的两数和的平方”的代数式是()A、a2+b2B、a+b2C、a2+bD、(a+b)2二、填空题(共5小题)21、代数式6﹣(a+b)2的最大值是_________,这时a与b的关系为_________.22、体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为_________.23、代数式m2﹣n2(m>n>0)的三个实际意义是:_________.24、实验中学初三年级12个班中共有团员a人,则表示的实际意义是_________.25、代数式4a的实际意义可解释为_________.三、解答题(共5小题)26、说出下列代数式的意义:(1)2(a+3);(2)a2+b2;(3).27、下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y28、王刚同学拟了一张招领启事:“今天拾到钱包一个,内有人民币8.5元,请失主到一(1)班认领”.你认为这个启事合理吗?如果不合理,问题在哪里?请你改正过来.29、用字母表示图中阴影部分的面积.30、请按代数式lOx+30y编写一道与实际生活相关的应用题.。
重难点01代数式求值与代数式规律题考点一:代数式求值代数式核心考点:1、整式中:同类项与合并同类项、同底数幂的乘除法计算公式、乘法公式、整式的混合运算等;2、分式中:分式的意义、分式的基本性质、分式的化简求值;题型01整式及其运算易错点01:幂的各公式记背⎪⎩⎪⎨⎧∙===∙∙+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m nm n m b a ab a a a a a )()(易错点02:乘法公式的记背与区别完全平方公式:()2222222)(2bab a b a b ab a b a +-=-++=+;首先,需注意公式中ab 乘积项的符号与两数和或差的一致性;其次,公式也是等式,从右往左也可以应用,故应用时要注意两平方项符号的一致性,如:();2222y x y xy x --=-+-特别注意:当完全平方公式未知项为“中间项”时,答案一般会有两种情况,即正负皆可。
平方差公式:();22)(b a b a b a -=-+平方差公式从左往右应用,只要一项系数相同,一项系数互为相反数即可,不需要都和公式长的一模一样,而结果特征为符号相同项的平方-符号相反项的平方;如:();22)(x y y x y x -=---【中考真题练】1.(2023•黑龙江)下列运算正确的是()A.2x+3y=5xy B.(a+b)2=a2+b2C.(xy2)3=x3y6D.(a5)2÷a7=a【分析】根据合并同类项的法则、完全平方公式、幂的乘方和积的乘方及同底数幂的除法进行计算即可作答.【解答】解:A.不能合并同类项,故本选项不符合题意;B.原式=a2+b2+2ab,故本选项不符合题意;C.原式=x3y6,故本选项符合题意;D.原式=a3,故本选项不符合题意;故选:C.2.(2023•南充)关于x,y的方程组的解满足x+y=1,则4m÷2n的值是()A.1B.2C.4D.8【分析】根据方程组①﹣②得,2x+2y=2m﹣n﹣1,即x+y=,再根据x+y=1,得2m﹣n=3,所以4m÷2n=22m÷2n=22m﹣n=23=8.【解答】解:∵方程组,∴①﹣②得,2x+2y=2m﹣n﹣1,∴x+y=,∵x+y=1,∴=1,∴2m﹣n=3,∴4m÷2n=22m÷2n=22m﹣n=23=8.故选:D.3.(2023•江西)化简:(a+1)2﹣a2=2a+1.【分析】根据完全平方公式将原式展开后合并同类项即可.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+1.4.(2023•凉山州)已知y2﹣my+1是完全平方式,则m的值是±2.【分析】利用完全平方式的意义解答即可.【解答】解:∵y2﹣my+1是完全平方式,y2﹣2y+1=(y﹣1)2,y2﹣(﹣2)y+1=(y+1)2,∴﹣m=﹣2或﹣m=2,∴m=±2.故答案为:±2.5.(2023•宿迁)若实数m满足(m﹣2023)2+(2024﹣m)2=2025,则(m﹣2023)(2024﹣m)=﹣1012.【分析】根据a2+b2=(a+b)2﹣2ab即可得答案.【解答】解:(m﹣2023)2+(2024﹣m)2=2025,[(m﹣2023)+(2024﹣m)]2﹣2(m﹣2023)(2024﹣m)=2025,1﹣2(m﹣2023)(2024﹣m)=2025,1﹣2025=2(m﹣2023)(2024﹣m),(m﹣2023)(2024﹣m)=﹣1012,故答案为:﹣1012.6.(2023•丽水)如图,分别以a,b,m,n为边长作正方形,已知m>n且满足am﹣bn=2,an+bm=4.(1)若a=3,b=4,则图1阴影部分的面积是25;(2)若图1阴影部分的面积为3,图2四边形ABCD的面积为5,则图2阴影部分的面积是.【分析】(1)根据正方形的面积公式列得代数式,然后代入数值计算即可;(2)结合已知条件可得a2+b2=3,利用梯形面积公式可得(m+n)2=10,然后将题干中的两个等式分别平方再相加并整理可得(a2+b2)(m2+n2)=20,继而求得m2+n2=,再结合(m+n)2=10可求得mn=,根据正方形性质可得图2中阴影部分是一个直角三角形,利用勾股定理求得其两直角边长,再根据三角形面积公式可得其面积为mn=.【解答】解:(1)由题意可得图1阴影部分面积为:a2+b2,∵a=3,b=4,∴a2+b2=32+42=25,故答案为:25;(2)由题意可得a2+b2=3,图2中四边形ABCD是直角梯形,∵AB=m,CD=n,它的高为:(m+n),∴(m+n)(m+n)=5,∴(m+n)2=10,∵am﹣bn=2,an+bm=4,∴将两式分别平方并整理可得:a2m2﹣2abmn+b2n2=4①,a2n2+2abmn+b2m2=16②,①+②整理得:(a2+b2)(m2+n2)=20,∵a2+b2=3,∴m2+n2=,∵(m+n)2=10,∴(m+n)2﹣(m2+n2)=10﹣,整理得:2mn=,即mn=,∵图2中阴影部分的三角形的其中两边是两正方形的对角线,∴这两边构成的角为:45°+45°=90°,那么阴影部分的三角形为直角三角形,其两直角边的长分别为:=m,=n,故阴影部分的面积为:×m×n=mn=,故答案为:.7.(2023•西宁)计算:(2a﹣3)2﹣(a+5)(a﹣5).【分析】利用完全平方公式和平方差公式解答即可.【解答】解:(2a﹣3)2﹣(a+5)(a﹣5)=(4a2﹣12a+9)﹣(a2﹣25)=4a2﹣12a+9﹣a2+25=3a2﹣12a+34.8.(2023•河北)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.【分析】(1)根据图形,利用长方形的面积公式计算即可;(2)利用作差法比较即可.【解答】解:(1)由图可知S1=(a+2)(a+1)=a2+3a+2,S2=(5a+1)×1=5a+1,当a=2时,S1+S2=4+6+2+10+1=23;(2)S1>S2,理由:∵S1﹣S2=a2+3a+2﹣5a﹣1=a2﹣2a+1=(a﹣1)2,又∵a>1,∴(a﹣1)2>0,∴S1>S2.【中考模拟练】1.(2024•天河区校级一模)下列计算,正确的是()A.a2⋅a3=a6B.a2+a2=2a4C.(﹣a2)3=﹣a6D.(a﹣1)2=a2﹣1【分析】根据同底数幂相乘,合并同类项,幂的乘方,完全平方公式,逐项判断即可求解.【解答】解:A、a2⋅a3=a5,故本选项错误,不符合题意;B、a2+a2=2a2,故本选项错误,不符合题意;C、(﹣a2)3=﹣a6,故本选项正确,符合题意;D、(a﹣1)2=a2﹣2a+1,故本选项错误,不符合题意;故选:C.2.(2024•惠州模拟)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.3.(2023秋•凉山州期末)已知x+y﹣3=0,则2y•2x的值是()A.6B.﹣6C.D.8【分析】根据同底数幂的乘法求解即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2y•2x=2x+y=23=8,故选:D.4.(2024•邗江区校级一模)已知a﹣2b=8,则代数式a2﹣4ab+4b2的值为64.【分析】将代数式a2﹣4ab+4b2因式分解,然后根据a﹣2b=8,即可解答本题.【解答】解:∵a﹣2b=8,∴a2﹣4ab+4b2=(a﹣2b)2=82=64,故答案为:64.5.(2024•长安区一模)规定一种新运算:a☆b=ab+a﹣b,如2☆3=2×3+2﹣3=5.(1)计算:(3a)☆5=18a﹣5;(2)如果2☆(2x﹣3)=3x2﹣2,则x的值为1或.【分析】(1)按照定义的新运算进行计算,即可解答;(2)按照定义的新运算可得:2(2x﹣3)+2﹣(2x﹣3)=3x2﹣2,从而整理得:3x2﹣2x﹣1=0,然后按照解一元二次方程﹣因式分解法进行计算即可解答.【解答】解:(1)由题意得:(3a)☆5=3a•5+3a﹣5=15a+3a﹣5=18a﹣5,故答案为:18a﹣5;(2)∵2☆(2x﹣3)=3x2﹣2,∴2(2x﹣3)+2﹣(2x﹣3)=3x2﹣2,整理得:3x2﹣2x﹣1=0,(x﹣1)(3x+1)=0,x﹣1=0或3x+1=0,x=1或x=﹣,故答案为:1或﹣.6.(2024•南岗区校级一模)阅读材料:若x满足(6﹣x)(x﹣4)=﹣3,求(6﹣x)2+(x﹣4)2的值.解:设(6﹣x)=a,(x﹣4)=b,则(6﹣x)(x﹣4)=ab=﹣3,a+b=(6﹣x)+(x﹣4)=2.所以(6﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.带仿照上例解决下面问题:若x满足(20﹣x)(x﹣10)=﹣5,则(20﹣x)2+(x﹣10)2的值是110.【分析】仿照阅读材料,设20﹣x=a,x﹣10=b,则a+b=20﹣x+x﹣10=10,ab=﹣5,可得(20﹣x)2+(x﹣10)2=(a+b)2﹣2ab,代入可得答案.【解答】解:设20﹣x=a,x﹣10=b,则a+b=20﹣x+x﹣10=10,ab=﹣5,∴(20﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣5)=100+10=110;故答案为:110.7.(2024•南京模拟)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.【分析】设AC=m,CF=n,可得m+n=9,m2+n2=51,求出mn即可.【解答】解:设AC=m,CF=n,∵AB=9,∴m+n=9,又∵S1+S2=51,∴m2+n2=51,由完全平方公式可得,(m+n)2=m2+2mn+n2,∴92=51+2mn,∴mn=15,=mn=,∴S阴影部分即:阴影部分的面积为.故答案为:.8.(2024•重庆模拟)要使(x2﹣ax+6)(2x2﹣x+b)展开式中不含x2项和x3项,则a﹣b=11.【分析】利用多项式乘多项式法则先计算(x2﹣ax+6)(2x2﹣x+b),再根据积的展开式中不含x2项和x3项求出a、b的值,最后计算a﹣b.【解答】解:(x2﹣ax+6)(2x2﹣x+b)=2x4﹣x3+bx2﹣2ax3+ax2﹣abx+12x2﹣6x+6b=2x4﹣(2a+1)x3+(a+b+12)x2﹣(ab+6)x+6b.∵(x2﹣ax+6)(2x2﹣x+b)展开式中不含x2项和x3项,∴﹣(2a+1)=0,且a+b+12=0.∴a=﹣,b=﹣.∴a﹣b=﹣﹣(﹣)=﹣+=11.故答案为:11.9.(2024•郸城县二模)(1)计算:;(2)化简:(2x﹣y)(2x+y)﹣(2x﹣y)2.【分析】(1)根据二次根式的性质、绝对值的性质和负整数指数幂的性质,先算乘方、开方和去掉绝对值符号,再算加减即可;(2)根据平方差公式和完全平方公式计算乘方和乘法,最后合并同类项即可.【解答】解:(1)原式===;(2)原式=4x2﹣y2﹣4x2+4xy﹣y2=4x2﹣4x2+4xy﹣y2﹣y2=4xy﹣2y2.10.(2024•文水县一模)请阅读下面材料,并完成相应的任务,妙用平方差公式解决问题学完平方差公式后,王老师展示了以下例题:例计算+观察算式发现:如果将乘这时可以连续运用平方差公式进行计算,为使等式恒成立,需将式子整体再乘2.解:原式======2﹣+=2.以上计算的关键是将原式进行适当的变形后,运用平方差公式解决问题.计算符合算理,过程简洁.这种变形来源于认真观察(发现特点)、大胆猜想(运用公式)、严格推理(恒等变形).学习数学要重视观察、实验、猜测、计算、推理、验证等活动过程.任务:(1)请仿照上述方法计算:2(3+1)(32+1)(34+1)(38+1)+1;(2)请认真观察,计算:.【分析】(1)仿照题中给出的方法计算即可;(2)根据平方差公式分别计算,再根据有理数的乘法法则计算即可.【解答】解:(1)2(3+1)(32+1)(34+1)(38+1)+1=(3﹣1)(3+1)(32+1)(34+1)(38+1)+1=(32﹣1)(32+1)(34+1)(38+1)+1=(34﹣1)(34+1)(38+1)+1=(38﹣1)(38+1)+1=316﹣1+1=316;(2)====.题型02分式及其化简计算易错点01:分式的判断只需要确定分母中含有未知数即可,不需要看化简后的结果;易错点02:分式的值为0时,必须同步保证分母是有意义的,也就是分母不等于0,否则分式无意义;解题大招01:若0>B A ,则A、B 同号;若0<BA,则A、B 异号;解题大招02:分式的化简求值问题中,加减通分,乘除约分,结果最简,喜欢的数既要方便计算,又尽可能大点;【中考真题练】1.(2023•赤峰)化简+x ﹣2的结果是()A .1B .C .D .【分析】利用分式的加法法则进行计算即可.【解答】解:原式=+==,故选:D .2.(2023•河北)化简的结果是()A .xy 6B .xy 5C .x 2y 5D .x 2y 6【分析】先根据分式的乘方法则计算,再根据分式的乘法法则计算.【解答】解:x 3()2=x 3•=xy 6,故选:A .3.(2023•凉山州)分式的值为0,则x 的值是()A .0B .﹣1C .1D .0或1【分析】根据分式值为零的条件是分子等于零且分母不等于零列式计算.【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.4.(2023•北京)若代数式有意义,则实数x的取值范围是x≠2.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.5.(2023•宁夏)计算:+=.【分析】利用同分母分式的加法法则运算即可.【解答】解:原式==.故答案为:.6.(2023•福建)已知+=1,且a≠﹣b,则的值为1.【分析】根据+=1,可得ab=2a+b,再代入即可求出答案.【解答】解:∵+=1,∴+==1,∴ab=2a+b,∴===1.故答案为:1.7.(2023•大庆)若x满足(x﹣2)x+1=1,则整数x的值为﹣1或3或1.【分析】根据零指数幂可得x+1=0,根据有理数的乘方可得x﹣2=1;x﹣2=﹣1,x+1为偶数,再解即可.【解答】解:由题意得:①x+1=0,解得:x=﹣1;②x﹣2=1,解得:x=3;③x﹣2=﹣1,x+1为偶数,解得:x=1,故答案为:﹣1或3或1.8.(2023•大连)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后进行计算即可解答.【解答】解:原式=[+]•=•=.9.(2023•丹东)先化简,再求值:,其中.【分析】先算括号内的,把除化为乘,化简后将x的值代入计算即可.【解答】解:原式=[﹣]×=(﹣)×=×=;∵x=()﹣1+(﹣3)0=2+1=3,∴原式==1.10.(2023•宜昌)先化简,再求值:+3,其中a=﹣3.【分析】根据分式的除法法则把原式化简,把a的值代入计算即可.【解答】解:原式=•+3=•+3=a+3,当a=﹣3时,原式=﹣3+3=.11.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定a的值,代入计算即可.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.【中考模拟练】1.(2024•珠海校级一模)下列计算正确的是()A.B.C.D.【分析】根据分式的加减法运算法则进行计算即可求解.【解答】解:,故A错误,不符合题意;,故B错误,不符合题意;,故C错误,不符合题意;,故D正确,符合题意;故选:D.2.(2024•绵阳模拟)如果a=﹣3﹣2,b=,c=,那么a,b,c三数的大小为()A.a<c<b B.c<b<a C.c<a<b D.b<c<a【分析】利用负整式指数幂的性质、零次幂的性质分别进行计算即可.【解答】解:a=﹣3﹣2=﹣,b==9;c==1,∵﹣<1<9,∴a<c<b,故选:A.3.(2024•运城模拟)化简的结果是()A.B.C.D.1【分析】根据分式的加减法运算法则和顺序计算即可.【解答】解:原式=﹣===1,故选:D.4.(2024•兰山区校级模拟)若x﹣y=3xy,则的值是()A.﹣3B.3C.D.【分析】先利用异分母分式加减法法则化简要求值代数式,再整体代入得结论.【解答】解:∵﹣=﹣==﹣.当x﹣y=3xy时,原式=﹣=﹣3.故选:A.5.(2024•湖州一模)若分式有意义,则实数x的取值范围是x≠5.【分析】根据分式有意义的条件,分母不等于零即可求解.【解答】解:由题意得:x﹣5≠0,解得:x≠5.故答案为:x≠5.6.(2024•西城区校级一模)如果分式的值为0,则x的值是0.【分析】根据分式值为零的条件列式计算即可.【解答】解:由题意得,x(x﹣2)=0,x﹣2≠0,解得,x=0,故答案为:0.7.(2024•新疆模拟)当a=﹣2时,代数式的值为0.【分析】先根据分式的加减法把原式进行化简,再把a=﹣2代入求值即可.【解答】解:原式===﹣a﹣2,当a=﹣2时,原式=2﹣2=0.故答案为:0.8.(2024•凤翔区一模)化简:.【分析】先通分算括号内的,把除化为乘,再约分即可.【解答】解:原式===2a﹣4.9.(2024•绵阳模拟)(1)计算:;(2)先化简,再求值:,其中.【分析】(1)先化简,然后计算加减法即可;(2)先通分括号内的式子,再算括号外的除法,然后将m的值代入化简后的式子计算即可.【解答】解:(1)=2﹣1﹣++1﹣=2;(2)=÷=•==,当时,原式==+1.10.(2024•天河区校级一模)先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的代入进行计算即可.【解答】解:原式=(﹣)÷=•=•=•=﹣,∵x+1≠0,x﹣2≠0,∴x≠﹣1,x≠2,∴当x=0时,原式=﹣=1.11.(2024•兴庆区校级一模)在数学课上,老师出了一道题,让甲、乙、丙、丁四位同学进行“接力游戏”规则如下:每位同学可以完成化简分式的一步变形,即前一位同学完成一步后,后一个同学接着前一个同学的步骤进行下一步化简变形,直至将该分式化简完毕.请根据如表的“接力游戏”回答问题:接力游戏老师:化简:甲同学:原式=乙同学:=丙同学:=丁同学:=.任务一:①在“接力游戏”中,丁同学是依据C进行变形的.A.等式的基本性质B.不等式的基本性质C.分式的基本性质D.乘法分配律②在“接力游戏”中,从乙同学开始出现错误,错误的原因是去括号时,括号前面是负号,没有将括号内的每一项都变号.任务二:请你写出该分式化简的正确结果﹣.【分析】①利用分式的相应的运算法则进行分析即可;②利用分式的运算法则进行分析即可.【解答】解:①丁同学是依据是分式的基本性质进行变形的.故选:C;故答案为:C;②从乙同学开始出现错误,错误的原因是:去括号时,括号前面是负号,没有将括号内的每一项都变号;故答案为:乙;去括号时,括号前面是负号,没有将括号内的每一项都变号;任务二:原式==•=•=﹣.故答案为:﹣.题型03利用整体思想解决代数式求值问题代数式求值问题常用处理办法:①变形已知条件,使其符合待求式中含字母部分的最简组合形式②将待求式变形,使其成为含有上面最简组合式的表达式,③代入未知最简组合形式部分的值,求出最后结果;【中考真题练】1.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣13【分析】首先将已知条件转化为x2+3x=5,再利用提取公因式将2x2+6x﹣3转化为2(x2+3x)﹣3,然后整体代入即可得出答案.【解答】解:∵x2+3x﹣5=0,∴x2+3x=5,∴2x2+6x﹣3=2(x2+3x)﹣3=2×5﹣3=7.故选:B.2.(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为()A.24B.20C.18D.16【分析】由已知条件可得a2﹣4a=12,然后将2a2﹣8a﹣8变形后代入数值计算即可.【解答】解:∵a2﹣4a﹣12=0,∴a2﹣4a=12,∴2a2﹣8a﹣8=2(a2﹣4a)﹣8=2×12﹣8=24﹣8=16,故选:D.3.(2023•泰州)若2a﹣b+3=0,则2(2a+b)﹣4b的值为﹣6.【分析】直接利用整式的加减运算法则化简,进而把已知代入得出答案.【解答】解:2(2a+b)﹣4b=4a+2b﹣4b=4a﹣2b=2(2a﹣b),∵2a﹣b+3=0,∴2a﹣b=﹣3,∴原式=2×(﹣3)=﹣6.故答案为:﹣6.4.(2023•宁夏)如图是某种杆秤.在秤杆的点A处固定提纽,点B处挂秤盘,点C为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C,秤杆处于平衡.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为y毫米时秤杆处于平衡.测得x与y的几组对应数据如下表:x/克024610y/毫米1014182230由表中数据的规律可知,当x=20克时,y=50毫米.【分析】观察列表中数据可知当放入x克物品时,秤砣所挂位置与提纽的距离为(10+2x)毫米,把x=20代入求值即可.【解答】解:由题可得当放入0克物品时,秤砣所挂位置与提纽的距离为10毫米,当放入2克物品时,秤砣所挂位置与提纽的距离为10+2×2=14(毫米),当放入4克物品时,秤砣所挂位置与提纽的距离为10+2×4=18(毫米),当放入6克物品时,秤砣所挂位置与提纽的距离为10+2×6=22(毫米),当放入8克物品时,秤砣所挂位置与提纽的距离为10+2×8=26(毫米),当放入10克物品时,秤砣所挂位置与提纽的距离为10+2×10=22(毫米),……所以当放入x克物品时,秤砣所挂位置与提纽的距离为(10+2x)毫米,当放入x=20克物品时,秤砣所挂位置与提纽的距离为10+2×20=50(毫米),故答案为:50.5.(2023•赤峰)已知2a2﹣a﹣3=0,则(2a+3)(2a﹣3)+(2a﹣1)2的值是()A.6B.﹣5C.﹣3D.4【分析】分别利用平方差公式和完全平方公式将括号去掉,再合并同类项并利用已知条件即可解答.【解答】解:原式=(2a)2﹣32+(2a)2﹣4a+1=2×(2a)2﹣4a﹣32+1=8a2﹣4a﹣9+1=8a2﹣4a﹣8=4(2a2﹣a)﹣8.∵2a2﹣a﹣3=0,∴2a2﹣a=3,∴4(2a2﹣a)﹣8=4×3﹣8=4.故选:D.6.(2023•福建)已知+=1,且a≠﹣b,则的值为1.【分析】根据+=1,可得ab=2a+b,再代入即可求出答案.【解答】解:∵+=1,∴+==1,∴ab=2a+b,∴===1.故答案为:1.7.(2023•北京)已知x+2y﹣1=0,求代数式的值.【分析】根据已知可得x+2y=1,然后利用分式的基本性质化简分式,再把x+2y=1代入化简后的式子进行计算即可解答.【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.8.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,∴原式=.故答案为:.9.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.【分析】利用分式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:(+)÷===2(2x+y),∵2x+y﹣3=0,∴2x+y=3,∴原式=2×3=6.【中考模拟练】1.(2023•香洲区一模)已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b=﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.2.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣13【分析】首先将已知条件转化为x2+3x=5,再利用提取公因式将2x2+6x﹣3转化为2(x2+3x)﹣3,然后整体代入即可得出答案.【解答】解:∵x2+3x﹣5=0,∴x2+3x=5,∴2x2+6x﹣3=2(x2+3x)﹣3=2×5﹣3=7.故选:B.3.(2023•姑苏区校级二模)若a2﹣3a+2=0,则1+6a﹣2a2=()A.5B.﹣5C.3D.﹣3【分析】由题意知a2﹣3a=﹣2,根据1+6a﹣2a2=﹣2(a2﹣3a)+1,计算求解即可.【解答】解:由题意知a2﹣3a=﹣2,∴1+6a﹣2a2=﹣2(a2﹣3a)+1=﹣2×(﹣2)+1=5,故选:A.4.(2023•龙江县四模)代数式3x2﹣4x﹣5的值为7,则x2﹣x﹣5的值为()A.4B.﹣1C.﹣5D.7【分析】根据题意列出等式,变形后求出x2﹣x的值,代入原式计算即可得到结果.【解答】解:∵3x2﹣4x﹣5的值为7,3x2﹣4x=12,代入x2﹣x﹣5,得(3x2﹣4x)﹣5=4﹣5=﹣1.故选:B.5.(2024•兰山区校级模拟)若x﹣y=3xy,则的值是()A.﹣3B.3C.D.【分析】先利用异分母分式加减法法则化简要求值代数式,再整体代入得结论.【解答】解:∵﹣=﹣==﹣.当x﹣y=3xy时,原式=﹣=﹣3.故选:A.6.(2024•汉川市模拟)已知x2﹣x﹣6=0,则的值是()A.B.C.D.1【分析】先把已知条件变形为x2﹣x=6,再将分式变形为,整体代入计算即可.【解答】解:∵x2﹣x﹣6=0,∴x2﹣x=6,∴====,故选:B.7.(2024•潼南区一模)当x=1时,ax3+bx+3=5;则当x=﹣2时,则多项式ax2﹣2bx﹣2的值为6.【分析】根据x=1时,ax3+bx+3=5可得a+b=2,然后将x=﹣2代入ax2﹣2bx﹣2中,可得结果.【解答】解:∵x=1时,ax3+bx+3=5,即a+b=2,当x=﹣2时,ax2﹣2bx﹣2=4a+4b﹣2=4(a+b)﹣2=4×2﹣2=6,故答案为:6.8.(2024•咸安区模拟)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2021=2024.【分析】将已知条件利用完全平方公式整理得(x﹣1)2=3,将其代入(x﹣1)2+2021中计算即可.【解答】解:∵x2﹣2x﹣2=0,∴x2﹣2x+1﹣3=0,∴(x﹣1)2=3,∴(x﹣1)2+2021=3+2021=2024,故答案为:2024.9.(2024•安溪县模拟)已知,且x≠y,则的值为3.【分析】先将已知条件化为3y﹣2x=xy,再代入中化为,即可求值.【解答】解:∵,∴3y﹣2x=xy,∴======3,故答案为:3.10.(2024•武侯区校级一模)若2x2+2xy﹣5=0,则代数式的值为.【分析】根据分式的加法法则、除法法则把原式化简,整体代入计算即可.【解答】解:原代数式=(+)•=•=x(x+y)=x2+xy,∵2x2+2xy﹣5=0,∴2x2+2xy=5,∴x2+xy=,则原式=,故答案为:.11.(2024•东阿县模拟)已知:m+=5,则m2+=23.【分析】将m+=5代入m2+=(m+)2﹣2,计算可得.【解答】解:当m+=5时,m2+=(m+)2﹣2=52﹣2=25﹣2=23,故答案为:23.12.(2023•河源一模)已知m2﹣4m+1=0,则代数式值=14.【分析】由m2﹣4m+1=0得出m﹣4+=0,即m+=4,再两边平方,进一步求解即可.【解答】解:∵m2﹣4m+1=0,∴m﹣4+=0,则m+=4,∴(m+)2=16,∴m2+2+=16,∴m2+=14,故答案为:14.13.(2024•东城区校级模拟)已知a2+a﹣2=0,求代数式的值.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:====,∵a2+a﹣2=0,∴a2+a=2,∴原式=.考点二:代数式规律题题型01数字变化类规律题解题大招01:周期型规律题常见处理办法:①.找出第一周期的几个数,确定周期数②.算出题目中的总数和待求数③.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)④.最后余几,待求数就和每周期的第几个一样;解题大招02:推理型规律题常见处理办法:①依题意推出前3~4项规律的表达式;②类推第N项表达式【中考真题练】1.(2023•牡丹江)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是()A.92B.87C.83D.78【分析】观察第2行数可知第n个数为1+2+3+…+n,第一行数的第n个数为第2行第n个数的2倍减1,即可求出每行数的第7个数,从而得到答案.【解答】解:观察第2行数可知,第7个数为:1+2+3+4+5+6+7=28,第1行的第7个数为28×2﹣1=55,∵28+55=83,∴取每行数的第7个数,这两个数的和是83;故选:C.2.(2023•常德)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数若排在第a行b 列,则a﹣b的值为()A.2003B.2004C.2022D.2023【分析】观察数表得到a,b的值,即可求出答案.【解答】解:观察数表可得,同一行的分数,分子与分母的和不变,(m,n为正整数)在第(m+n ﹣1)行,第n列,∴在第2042行,第20列,∴a=2042,b=20,∴a﹣b=2042﹣20=2022,故选:C.3.(2023•临沂)观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…按照上述规律,(n﹣1)(n+1)+1=n2.【分析】根据数字的变化规律,写出第(n﹣1)个等式即可.【解答】解:观察下列式子:1×3+1=22;2×4+1=32;3×5+1=42;…;按照上述规律,(n﹣1)(n+1)+1=n2.故答案为:(n﹣1)(n+1)+1.4.(2023•内蒙古)观察下列各式:S1==1+,S2==1+,S3==1+…请利用你所发现的规律,计算:S1+S2+…+S50=50.【分析】由题干中的式子总结规律,然后利用裂项法进行计算即可.【解答】解:S1+S2+…+S50=1++1++1++ (1)=(1+1+1+...+1)+(+++...+)=1×50+(1﹣+﹣+﹣+...+﹣)=50+(1﹣)=50+=50,故答案为:50.5.(2023•恩施州)观察下列两行数,探究第②行数与第①行数的关系:﹣2,4,﹣8,16,﹣32,64,…①0,7,﹣4,21,﹣26,71,…②根据你的发现,完成填空:第①行数的第10个数为(﹣2)10;取每行数的第2023个数,则这两个数的和为﹣22024+2024.【分析】观察可得,第①行数的第n个数为(﹣2)n,第②行数的第n个数为(﹣2)n+(n+1),即可得到答案.【解答】解:观察数列可得,第①行数的第10个数为(﹣2)10,第①行数的第2023个数为(﹣2)2023,第②行数的第2023个数为(﹣2)2023+2024,∵(﹣2)2023+(﹣2)2023+2024=﹣22024+2024,∴取每行数的第2023个数,这两个数的和为﹣22024+2024.故答案为:(﹣2)10,﹣22024+2024.6.(2023•聊城)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:(3,5);(7,10);(13,17);(21,26);(31,37)…如果单独把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:(n2+n+1,n2+2n+2).【分析】根据题意把每一个数对中的第一个数字和第二个数字按顺序排列起来,可发现第n个数对的第一个数为n(n+1)+1,“第n个数对的第二个数为(n+1)2+1,于是得到结论.【解答】解:每个数对的第一个数分别为3,7,13,21,31,...,即1×2+1,2×3+1,3×4+1,4×5+1,5×6+1,...,则第n个数对的第一个数为n2+n+1,每个数对的第二个数分别为5,10,17,26,37,...,即22+1,32+1,42+1,52+1,...,则第n个数对的第二个数为(n+1)2+1=n2+2n+2,∴第n个数对为(n2+n+1,n2+2n+2).故答案为:(n2+n+1,n2+2n+2).7.(2023•浙江)观察下面的等式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4,…(1)写出192﹣172的结果;(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(3)请运用有关知识,推理说明这个结论是正确的.【分析】(1)根据题目中的例子,可以写出192﹣172的结果;(2)根据题目中给出的式子,可以得到(2n+1)2﹣(2n﹣1)2=8n;(3)将(2)中等号左边的式子利用平方差公式计算即可.【解答】解:(1)∵17=2×9﹣1,∴192﹣172=8×9=72;(2)由题意可得,(2n+1)2﹣(2n﹣1)2=8n;(3)∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n,∴(2n+1)2﹣(2n﹣1)2=8n正确.【中考模拟练】1.(2024•官渡区校级模拟)按一定规律排列的式子:a,2a3,4a5,8a7,16a9,…,则第2024个式子为()A.22023a2025B.(22024﹣1)a4047C.22023a4047D.22024a4049【分析】由题目可得式子的一般性规律:第n个式子为:2n﹣1•a2n﹣1,当n=2024时,第2024个式子为:22023•a4047,即可得出答案.【解答】解:式子的系数为1,2,4,8,16,⋯,则第n个式子的系数为:2n﹣1;式子的指数为1,3,5,7,9,⋯,则第n个式子的指数为:2n﹣1,∴第n个式子为:2n﹣1•a2n﹣1,当n=2024时,第2024个式子为:22023•a4047,故选:C.2.(2024•渝中区校级模拟)有一列数{﹣1,﹣2,﹣3,﹣4},将这列数中的每个数求其相反数得到{1,2,3,4},再分别求与1的和的倒数,得到,设为{a1,a2,a3,a4},称这为一次操作,第二次操作是将{a1,a2,a3,a4}再进行上述操作,得到{a5,a6,a7,a8};第三次将{a5,a6,a7,a8}重复上述操作,得到{a9,a10,a11,a12}…以此类推,得出下列说法中,正确的有()个.①a5=2,,,,②a10=﹣2,③a2015=3,④.A.0B.1C.2D.3【分析】根据所给的操作方式,求出前面的数,再分析得出规律,再进行分析即可.【解答】解:∵{a1,a2,a3,a4}对应为{,,,},∴a5=2,,,,故①说法正确;a9=﹣1,a10=﹣2,a11=﹣3,a12=﹣4,∴经过两次操作后,所给的数重复出现,即每12个数为一组,∵2015÷12=167……11,∴a2015=﹣3,故③说法错误;②说法正确;∵a1+a2+a3+…+a12=﹣,∴a1+a2+a3+…+a49+a50=4×(﹣)+=﹣=﹣,故④说法错误.故正确的说法有1个.故选:C.3.(2024•南岗区校级一模)小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入…12345…输出……那么,当输入数据为8时,输出的数据为()A.B.C.D.【分析】由表格中的数据可知,输入的数据与输入的数据的分子相同,分母是分子的平方加1,从而可以解答本题.【解答】解:∵由表格可知,输入的数据与输出的数据的分子相同,而输出数据的分母正好是分子的平方加1,∴当输入数据为8时,输出的数据为:=.故选项A错误,选项B错误,选项C正确,项D错误.故选:C.4.(2024•东兴区一模)对于每个正整数n,设f(n)表示n×(n+1)的末位数字.例如:f(1)=2(1×2末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字)…,则f(1)+f(2)+f(3)+…+f(2023)的值是()A.4020B.4030C.4040D.4050【分析】根据题意,可以写出前几个式子的值,然后即可发现式子的变化特点,从而可以求得所求式子的值.【解答】解:由题意可得,f(1)=2,f(1)+f(2)=2+6=8,f(1)+f(2)+f(3)=2+6+2=10,f(1)+f(2)+f(3)+f(4)=2+6+2+0=10,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10,f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=2+6+2+0+0+2=12,f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=2+6+2+0+0+2+6=18,f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=2+6+2+0+0+2+6+2=20,…,∵2023÷5=404…3,∴f(1)+f(2)+f(3)+…f(2023)=(2+6+2+0+0)+(2+6+2+0+0)+(2+6+2+0+0)+…+(2+6+2+0+0)+2+6+2=10×404+10=4040+10=4050,故选:D.5.(2024•沈阳模拟)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,(其中k是使F(n)为奇数的正整数)…两种运算交替进行,例如,取n=12,则有,按此规律继续计算,第2024次“F”运算的结果是()A.B.37C.1D.4【分析】根据题意,通过通过罗列计算可发现从第5次开始,结果就只是1,4两个数轮流出现,且当次数是是偶数次时,结果是4;当次数是是奇数次时,结果是1.据此解答即可.【解答】解:当n=12时,第1次结果是:=3,第2次结果是:3×3+1=10,第3次结果是:=5,第4次结果是:3×5+1=16,第5次结果是:=1,第6次结果是:3×1+1=4,第7次结果是:,第8次结果是:3×1+1=4,•••,可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数是是偶数次时,结果是4;当次数是是奇数次时,结果是1.∴第2024次“F”运算的结果是4.故选:D.6.(2024•兰山区校级模拟)如图的数字三角形被称为“杨辉三角”,图中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a2023﹣a2021=4045.【分析】通过归纳出第n个数a n的表达式为进行求解.【解答】解:由题意得,a1=1,a2=3=1+2=,a3=6=1+2+3=,a4=10=1+2+3+4=,……,∴第n个数记为a n=,∴a2023﹣a2021=﹣==4045,故答案为:4045.7.(2024•湖南模拟)观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为139.。
第12讲 代数式【知识要点】 1、 代数式代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。
如:3,),(2,,),1(),1(34a ts n m ab b a x x x x +++++-+等等。
代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; (4)带分数化成假分数。
2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。
【典型例题】【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么?【例2】(用字母表示图形面积)如下图,求阴影部分面积。
【例3】下列各式中哪些是代数式?哪些不是代数式?(1)123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)27;(6)5332>。
【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 2438-中,符合代数式书写要求的有 。
【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱?【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。
【课堂练习】 一、填空三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃;五、某长方形的长是宽的23倍,且长是a cm ,则该长方形的周长是 cm ;六、棱长是a cm 的正方体的体积是 cm 3 ; 七、产量由m kg 增长10%,就达到 kg ;八、学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,在捐给社区的图书为 册;九、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。
知识梳理用字母表示数:示出来。
代数式:1.用基本运算符号(+.-为代数式。
注:单独一个数或一个字母也是代数式。
Π是数字不是字母。
2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。
多项式:1.几个单项式的和叫做多项式。
计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。
解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。
【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。
(3)(2)(1)
例说代数式的考点、考题
一、考点
考点1:代数式的概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数与字母连结而成的式子叫做代数式。
注意:单个数字与单个字母也是代数式。
如,1、a 等。
考点2:列代数式:
(1)关键是找出问题中的数量关系及公式,如:路程=速度×时间等;另外还要抓住一些关键词语,如,大、小、多、少、增长、下降等;
(2)会通过对问题的分析列出代数式,并能对给出的代数式结合实际问题做出合理的情景解释。
考点3:会通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律。
考点4:求代数式的值:(1)用数值替换字母;(2)按照运算关系求出结果。
二、考题
1、根据文字叙述列代数式
例1“比a 的3
2大1的数”用代数式表示是( )
A. 32a +1
B. 23a +1
C. 52a
D. 3
2
a -1
解析:根据题意可知“a 的32”可以表示为a 2
3,大1,用加法,所以,“比a 的32大1的
数”用代数式表示是3
2
a +1,故选择A 。
2、根据图形列代数式
例2如图,阴影部分的面积是( A ) A.
112xy B.132
xy C.6xy
D.3xy
解:这是一个不规则的图形,要想解答此问题,首先把图形转化
为规则图形,一个长为x x x 25
213=-,宽为y 2的矩形,另一个是边长为x y 5.0和的矩形,
这两个畸形的面积之和就是所要求的阴影部分的面积,即
y x 22
5
⋅+x y 5.0⋅=5xy +xy 21=112xy ,故选择A 。
3、根据探索规律列代数式
例3.按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.
分析:观察图案发现每一堆最底下的一排三角形的个数是3、5、7……,中间竖着的一行三角形的个数是2、3、4……,则第(4)堆三角形的个数为14个,第(n)堆三角形的个数为(2n+1)+(n+1)=3n+2.
答案:14;3n+2.
3x
2y
y
0.5x
例2题图
点评:
4、求代数式的值
例4已知2
40x -=,求代数式22(1)()7x x x x x x +-+--的值.
分析:先把所求的代数式化简,然后整体代入就可以解决问题。
解:原式=7)12(232----++x x x x x x =722323----++x x x x x x =72-x
因为240x -=,所以,2x =4
所以,原式=4-7=﹣3
点评:对于一些计算求值等问题,我们不能孤立地看已知与未知,而应从整体的角度去分析其中的关系,然后采用相应的措施,如恒等变形、整体代入求值等。
三、挑战中考
1、观察下面的单项式:a ,2
2a -,3
4a ,4
8a -,.根据你发现的规律,第8个式
子是
.
2、一台电视机的原价为a 元,降价4%后的价格为_________________元.
3、一个长方形的面积是2
(9)x -平方米,其长为(3)x +米,用含有x 的整式表示它的宽为________米.
4、有一本书,每20页厚为1mm ,设从第1页到第x 页的厚度为y (mm ),则( ) A .1
20
y x =
B .20y x =
C .1
20
y x =
+ D .20y x =
5当3x =-时,代数式2
3
2x x
+
的值是 . 6、若20a a +=,则2007222++a a 的值为 . 7、当x=2,代数式21x -的值为___
8、观察规律并填空:1
11123248
,,,…,第5个数是 ,第n 个数是 .
9、小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示。
根据图
中的数据(单位:m ),用含x 、y 的代数式表示地面总面积;地面总面积为: . 参考答案:
1、8
128a -;2、(1–4%)a 元或0.96a 元 ;3、 3x -;4、A ;5、17;
6、2007;
7、3;
8、1
5
32
;9、1826++y x (m 2) y
x
25 题图
3
22
卫生间
厨房
卧室
客厅
6。