九年级数学 一元二次方程组的专项 培优练习题附答案
- 格式:doc
- 大小:845.50 KB
- 文档页数:12
2020-2021初三培优一元二次方程组辅导专题训练含答案一、一元二次方程1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m 2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.4.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=Q , 224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q ,4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.5.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣16. y 与x 的函数关系式为:y=1.7x (x≤m );或( x≥m) ;7.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.8.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.9.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.11.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)当k≤14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.试题解析:(1)∆= ()()2221420k k k +-+≥,解得14k ≤ (2)由2212120x x x x --≥得 2121230x x x x ()-+≥, 由根与系数的关系可得:2121221,2x x k x x k k +=+=+代入得:22364410k k k k +---≥,化简得:()210k -≤,得1k =.由于k 的取值范围为14k ≤, 故不存在k 使2212120x x x x --≥.12.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+Q 方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m Q ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.13.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根.(1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值.【答案】(1)k >–14;(2)7 【解析】【分析】(1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围;(2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可.【详解】(1)∵方程有两个不相等的实数根,∴>0∆,即()22214410k k k +-=+>,解得14k >-; (2)当2k =时,方程为2x 5x 40++=,∵125x x +=-,121=x x ,∴()222121212225817x x x x x x +=+-=-=. 【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.14.如图,一艘轮船以30km/h 的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h 的速度由东向西移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km ,此时台风中心与轮船既定航线的最近距离AB=300km .(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)15【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t ,AC′=400﹣30t ,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t )2+(400﹣30t )2=2002,整理得到:t 2﹣30t +210=0,解得t 15由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(1515h 就会进入台风影响区;(3)由(1)可知受到台风影响的时间为15151515h .【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x 的等式是解题关键.15.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解。
人教版初中九年级上册:第21章《一元二次方程》期末培优测验一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0D.ax2+bx+c=02.已知x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1+x2的值是()A.6B.﹣6C.5D.﹣53.若关于x的方程x2+mx﹣6=0有一个根为2.则另一个根为()A.﹣2B.2C.4D.﹣34.已知关于x的一元二次方程x2+2x﹣(m﹣3)=0有实数根,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤25.组织一次篮球联赛,每两队之间都赛一场,计划安排15场比赛,应邀请()个球队参加比赛.A.5B.6C.7D.96.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛.设参赛球队的支数为x,则根据题意所列的方程是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28×2D.x(x﹣1)=28×27.在宽为20m,长为32m的矩形田地修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小矩形田地,作为良种试验田,要使每小块试验田的面积为135m2,设道路的宽为x米,则可列方程为()A.(32﹣x)(20﹣x)=135B.4(32﹣x)(20﹣x)=135C.D.(32﹣x)(20﹣x)﹣x2=1358.关于方程85(x﹣2)2=95的两根,则下列叙述正确的是()A.一根小于1,另一根大于3B.一根小于﹣2,另一根大于2C.两根都小于0D.两根都大于29.为宣传“”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2﹣2x)(1﹣2x)=2×1D.(2+2x)(1+2x)=2×1×90% 10.若一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,则一次函数y=abx+a+b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共7小题)11.若关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,则a的值为.12.定义新运算:m,n是实数,m*n=m(2n﹣1),若m,n是方程2x2﹣x+k=0(k<0)的两根,则m*m﹣n*n=.13.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.14.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为.15.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为.16.一元二次方程(x+1)(x+3)=9的一般形式是,二次项系数为,常数项为17.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是.三.解答题(共7小题)18.解方程:(1)x2+4x﹣5=0.(2)x2﹣3x+1=0.19.已知关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根.(1)求m的取值范围;(2)试判断关于x的方程(m+5)x2﹣2(m+1)x+m=0的根的情况.20.某电脑销售商试销某一品牌电脑1月份的月销售额为400000,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.求1月份到3月份销售额的月平均增长率.21.列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若=﹣1,则m的值为多少?23.如图,矩形ABCD中,AB=6cm,BC=8cm,点P从点A沿边AB以1cm/s的速度向点B移动,同时点Q从点B沿边BC以2cm/s的速度向点C移动,当P、Q两点中有一个点到终点时,则另一个点也停止运动.当△DPQ的面积比△PBQ的面积大19.5cm2时,求点P运动的时间.24.已知关于x的方程x2﹣2mx+m2﹣4m﹣1=0(1)若这个方程有实数根,求m的取值范围;(2)若此方程有一个根是1,请求出m的值.参考答案一.选择题(共10小题)1.【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.【解答】解:∵x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,∴x1+x2=6,故选:A.3.【解答】解:设方程的另一个根为α,根据根与系数的关系,2α=﹣6,∴α=﹣3.故选:D.4.【解答】解:根据题意得:△=22+4(m﹣3)=4+4m﹣12=4m﹣8≥0,解得:m≥2,故选:C.5.【解答】解:设应邀请x个球队参加比赛,根据题意得:x(x﹣1)=15,解得:x1=6,x2=﹣5(不合题意,舍去).故选:B.6.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得:=28,即:x(x﹣1)=28×2,故选:D.7.【解答】解:设道路的宽为x米,则每块小矩形田地的长为(32﹣x)m,宽为(20﹣x)m,根据题意得:(32﹣x)×(20﹣x)=135,即(32﹣x)(20﹣x)=135.故选:C.8.【解答】解:(x﹣2)2=,x﹣2=±,所以x1=2﹣,x2=2+,而1<<2,所以x1<1,x2>3.故选:A.9.【解答】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.10.【解答】解:∵一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,∴a+b=4,ab=3,∴一次函数的解析式为y=3x+4.∵3>0,4>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限.故选:D.二.填空题(共7小题)11.【解答】解:∵关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,∴|a|=2,a+2≠0,解得,a=2.故答案为:2.12.【解答】解:∵m,n是方程2x2﹣x+k=0(k<0)的两根,∴2m2﹣m+k=0,2n2﹣n+k=0,即2m2﹣m=﹣k,2n2﹣n=﹣k,则m*m﹣n*n=m(2m﹣1)﹣n(2n﹣1)=2m2﹣m﹣(2n2﹣n)=﹣k﹣(﹣k)=﹣k+k=0,故答案为:0.13.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.14.【解答】解:∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=30,整理得x2﹣40x+400=0.故答案是:x2﹣40x+400=0.15.【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,因为3+3=6,所以等腰三角形的两腰为6、6,底边长为3,所以三角形周长=6+6+3=15.故答案为:15.16.【解答】解:由(x+1)(x+3)=9,得x2+4x+3﹣9=0,即x2+4x﹣6=0.其中二次项系数是1,一次项系数是4,常数项是﹣6.故答案是:x2+4x﹣6=0;1;﹣6.17.【解答】解:∵1,﹣3是已知方程x2+2x﹣3=0的解,由于另一个方程(2x+3)2+2(2x+3)﹣3=0与已知方程的形式完全相同∴2x+3=1或2x+3=﹣3解得x1=﹣1,x2=﹣3.故答案为:x1=﹣1,x2=﹣3.三.解答题(共7小题)18.【解答】解:(1)因式分解得,(x﹣1)(x+5)=0,x﹣1=0,x+5=0,∴x1=1,x2=﹣5;(2)a=1,b=﹣3,c=1,∴△=b2﹣4ac=9﹣4=5>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.19.【解答】解:(1)∵关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根,∴△=[﹣2(m+2)]2﹣4×1×(m2+5)=16m﹣4<0,解得:m;(2)∵m<,∴m+5≠0,∴原方程是一元二次方程,△=[﹣2(m+1)]2﹣4(m+5)m=4﹣12m,∵m<,∴4﹣12m>0,∴原方程有两个不相等的实数根.20.【解答】解:设1月份到3月份销售额的月平均增长率为x,根据题意得:400000(1+x)2=576000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:1月份到3月份销售额的月平均增长率为20%.21.【解答】解:(1)设每个月增长的利润率为x,根据题意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.22.【解答】解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵=﹣1,∴=﹣1,∴=﹣1,m2﹣2m﹣3=0(m﹣3)(m+1)=0m1=﹣1,m1=3,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为3.23.【解答】解:设当△DPQ的面积比△PBQ的面积大19.5cm2时,点P运动了x秒.根据题意得:×8×x+×2x(6﹣x)+×6(8﹣2x)+[×2x(6﹣x)+19.5]=6×8,化简得:2x2﹣10x+=0,解得:x1=,x2=.∵当x2=时,8﹣2x=﹣1<0,∴x2=舍去.答:当△DPQ的面积比△PBQ的面积大19.52时,点P经过了秒.24.【解答】解:(1)根据题意知△=(﹣2m)2﹣4(m2﹣4m﹣1)≥0,解得:m≥﹣;(2)将x=1代入方程得1﹣2m+m2﹣4m﹣1=0,整理,得:m2﹣6m=0,解得:m1=0,m2=6,∵m≥﹣,∴m=0和m=6均符合题意,故m=0或m=6.。
一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
第21章一元二次方程实际应用同步专项培优练习基础题训练(一):限时30分钟1.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.2.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?3.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?4.某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?5.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发秒时,△BPQ中有一个角与∠A相等.基础题训练(二):限时30分钟6.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?7.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低3元,平均每天可多售出6件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.9.3月国际风筝节在婺源县举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高0.1元,销售量就会减少1个,请回答下列问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.参考答案1.解:(1)设降价x 元,依题意,得:8000×0.9﹣x ﹣5000≥5000×20%,解得:x ≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m %)﹣40m ﹣5000]×8(1+m %)=50000,整理,得:m 2+275m ﹣16250=0,解得:m 1=50,m 2=﹣325(不合题意,舍去).答:m 的值为50元.2.解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元). 答:每周获得的利润为2210元;(2)由题意,y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x 2+1100x ﹣28000;(3)∵y =﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250,∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.3.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.4.解:(1)设2017年这种礼盒的进价是x 元/盒,则2019年这种礼盒的进价是(x ﹣11)元/盒,依题意,得:=, 解得:x =35,经检验,x =35是原方程的解,且符合题意.答:2017年这种礼盒的进价是35元/盒.(2)2017年及2019年购进这种礼盒的数量为3500÷35=100(盒).设该商店每年销售这种礼盒所获利润的年增长率为y,依题意,得:(60﹣35)×100(1+y)2=(60﹣35+11)×100,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店每年销售这种礼盒所获利润的年增长率为20%.5.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.6.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.7.解:(1)20+6÷3×6=32(件).故答案为:32.(2)设每件商品降价x元,则平均每天的销售数量为(20+)件,依题意,得:(40﹣x)(20+)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵40﹣x≥25,解得:x≤15,∴x=10.答:当每件商品降价10元时,该商店每天销售利润为1200元.8.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.9.解:(1)根据题意得:y =180﹣,整理得: y =300﹣10x (12≤x ≤30),(2)根据题意得:(x ﹣10)(300﹣10x )=840,整理得:x 2﹣40x +384=0,解得:x 1=16,x 2=24,为让利给顾客,售价应定16元,答:售价应定16元.10.解:(1)设甲种苹果的进价为a 元/千克,乙种苹果的进价为b 元/千克, 根据题意得:,解得:. 答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x )(100﹣10x )+(2+x )(140﹣10x )=960, 整理得:x 2﹣9x +14=0,解得:x 1=2,x 2=7,经检验,x 1=2,x 2=7均符合题意.答:x 的值为2或7.。
《一元二次方程》培优练习一.选择题1.下列方程中是一元二次方程的是()A.2x+1=0B.y2+x=1C.x2+1=0D.2.将方程3x2+1=6x化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A.3,﹣6,1B.3,6,1C.3,1,﹣6D.3,1,63.已知关于x的方程x2+kx﹣2=0的一个根是1,则它的另一个根是()A.﹣3B.3C.﹣2D.24.用配方法解方程x2﹣6x﹣4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣6)2=4D.(x﹣3)2=55.若实数x,y满足(x2+y2+3)(x2+y2﹣3)=0,则x2+y2的值为()A.3或﹣3B.3C.﹣3D.16.关于x的一元二次方程(2﹣a)x2+x+a2﹣4=0的一个根为0,则a的值为()A.2B.0C.2或﹣2D.﹣27.一元二次方程﹣x2+6x﹣10=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.某地区举办的篮球比赛共有x支球队参加,每两队之间都只进行一场比赛,共进行了45场比赛,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.8月23号到校前,小希将收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,小希给()个同学发了短信.A.10B.11C.12D.1310.已知m是方程3x2﹣2x﹣2=0的一个实数根,则代数式的值()A.2B.C.D.二.填空题11.若(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,则m =.12.若关于x的一元二次方程x2+x﹣m=0有两个实数根,则m的取值范围是.13.关于x的一元二次方程ax2+bx+c=0满足a﹣b+c=0,则方程一定有一个根是x=.14.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为.15.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个等腰三角形的周长为.16.已知方程2x2+kx﹣2k+1=0的两个实数根的平方和为,则k 的值为.三.解答题17.用适当的方法解下列方程:(1)2x2+1=3x(2)x2+6x+4=018.已知关于x的方程(a﹣1)x2+2x+a+1=0.(1)若该方程有一根为0,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个实数根?求出此时a的值.19.一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为a•b.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:①方程变形为x(x+1)=6;②画四个边长为x+1、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+1)2,又S ABCD=4x(x+1)+12.∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,∴(2x+1)2=25,∵x>0,∴x=2.参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m >0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)20.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.21.某批发城在冬天到来之际进了一批保暖衣,男生的保暖衣每件价格60元,女生的保暖衣每件价格40元,第一批共购买100件.(1)第一批购买的保暖衣的总费用不超过5400元,求女生保暖衣最少购买多少件?(2)第二批购买保暖衣,购买男、女生保暖衣的件数比为3:2,价格保持第一批的价格不变;第三批购买男生保暖衣的价格在第一批购买的价格上每件减少了元,女生保暖衣的价格比第一批购买的价格上每件增加了元,男生保暖衣的数量比第二批增加了m%,女生保暖衣的数量比第二批减少了m%,第二批与第三批购买保暖衣的总费用相同,求m的值.参考答案一.选择题1.解:A、未知数的最高次数是1,不是一元二次方程,故本选项错误;B、含有两个未知数,不是一元二次方程,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、分母中含有未知数,不是一元二次方程,故本选项错误;故选:C.2.解:方程整理得:3x2﹣6x+1=0,二次项系数为3;一次项系数为﹣6,常数项为1,故选:A.3.解:设方程的另一个根为t,根据题意得1•t=﹣2,解得t=﹣2.故选:C.4.解:方程x2﹣6x﹣4=0变形得:x2﹣6x=4,配方得:x2﹣6x+9=13,即(x﹣3)2=13,故选:A.5.解:设t=x2+y2(t≥0),则原方程转化为(t+3)(t﹣3)=0,所以t+3=0或t﹣3=0.所以t=﹣3(舍去)或t=3,即x2+y2的值为3.故选:B.6.解:∵(2﹣a)x2+x+a2﹣4=0是关于x的一元二次方程,∴2﹣a≠0,即a≠2①由一个根是0,代入(2﹣a)x2+x+a2﹣4=0,可得a2﹣4=0,解之得a=±2;②由①②得a=﹣2.故选:D.7.解:∵△=62﹣4×(﹣1)×(﹣10)=36﹣40=﹣4<0,∴方程没有实数根.故选:D.8.解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.9.解:设小希给x个同学发了短信,依题意,得:1+x+x2=157,解得:x1=﹣13,x2=12.故选:C.10.解:∵m是方程3x2﹣2x﹣2=0的一个实数根,∴3m2﹣2m=2,3m2﹣2=2m,∴3m﹣=2,∴原式==,故选:C.二.填空题(共6小题)11.解:由(m+1)x|m|+1+6mx﹣2=0是关于x的一元二次方程,得,解得m=1,故答案为:1.12.解:∵关于x的一元二次方程x2+x﹣m=0有两个实数根,∴△≥0,∴△=1﹣4(﹣m)≥0,即m≥﹣,故答案为:m≥﹣.13.解:将x=﹣1代入ax2+bx+c=0的左边得:a×(﹣1)2+b×(﹣1)+c=a﹣b+c,∵a﹣b+c=0,∴x=﹣1是方程ax2+bx+c=0的根.故答案为:﹣1.14.解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故答案为:36(1+x)2=48.15.解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,所以等腰三角形的底为3,腰为6,这个等腰三角形的周长为3+6+6=15.故答案为15.16.解:∵方程2x2+kx﹣2k+1=0有两个实数根,∴△=k2﹣4×2(﹣2k+1)≥0,解得k≥6﹣8或k<﹣6﹣8.设方程2x2+kx﹣2k+1=0两个实数根为x1、x2.则x1+x2=﹣,x1•x2=﹣k+,∴x12+x22=(x1+x2)2﹣2x1x2=+2k﹣1=,即k2+8k﹣33=0,解得k1=3,k2=﹣11(不合题意,舍去).故答案是:3.三.解答题(共5小题)17.解:(1)∵2x2+1=3x,∴(2x﹣1)(x﹣1)=0,∴x=或x=1;(2)∵x2+6x+4=0,∴a=1,b=6,c=4,∴△=36﹣16=20,∴x==﹣318.解:(1)将x=0代入方程(a﹣1)x2+2x+a+1=0得a+1=0,解得:a=﹣1.将a=﹣1代入原方程得﹣2x2+2x=0,解得:x1=0,x2=1.∴a=﹣1,方程的另一根为1.(2)当a=1时,方程为2x+2=0,解得:x=﹣1;故a的值为﹣1.19.解:①方程变形为x(x+m)=n;②画四个边长为x+m、x的矩形如图放置;③由面积关系求解方程.∵S ABCD=(x+x+m)2,又S ABCD=4x(x+m)+m2.∴(x+x+m)2=4x(x+m)+m2,又x(x+m)=n,∴(2x+m)2=4n+m2,∵x>0,∴x=(﹣m)(m>0,n>0).20.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x天天向上独家原创解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.21.解:(1)设女生保暖衣购买x件.40x+60(100﹣x)≤5400解之得x≥30答:女生保暖衣最少购30件;(2)设购买男、女生保暖衣的件数分别为3a、2a.根据题意,得设m%=t,则m=100t.3a×(1+t)×(60﹣20t)+2a×(1﹣t)×(40+30t)=3a×60+2a×406t2﹣5t=0解得:t1=0(舍去),∴m=100t=.答:m的值是.。
九年级数学一元二次方程组的专项培优练习题(含答案)及答案解析一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%.①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用3.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.4.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答.【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人,依题意得:7.5-x ≤2x ,解得x ≥2.5.即A 社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50答:m 的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.5.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
九年级数学一元二次方程专项练习(含参考答案)练习1用直接开平方法解一元二次方程162=x ;16)3(2=-x ;16)1(2=-x ;06)4(322=--x ;3)23(212=+x ;22)21(9)1(4x x -=+;042=-x ;942=x ;29)1(22=+x ;027)2(32=-+x ;22)1()12(-=+x x ;016)3(32=-+x .【参考答案】4,421-==x x /1,721-==x x /4,621-==x x /1,721==x x 362,36221--=+-=x x /45,8121==x x /2,221-==x x /23,2321-==x x 25,2121-==x x /5,121-==x x /2,021-==x x /3323,332321--=+-=x x0342=+-x x ;862=+x x ;16)8(=+x x ;024102=--x x ;2122=-x x ;04522=--x x ;342-=+x x ;0132=+-y y ;2432=-x x ;242=+x x ;032=+x x ;216121x x -=+.【参考答案】1,321==x x /173,17321--=+-=x x /244,24421--=+=x x 2,1221-==x x /261,26121-=+=x x /35,3521-=+=x x 3,121-=-=x x /253,25321-=+=y y /31032,3103221-=+=x x 62,6221--=+-=x x /3,021-==x x /4121==x x12312=+x ;0662=--x x ;2)4)(2(=+-x x ;03522=--x x ;0162=-+-x x ;0238322=-+y y ;0652=-+x x ;622=-x x ;20)8(=+x x ;16)8(=-x x ;04212=--x x ;01422=--x x .【参考答案】22123,2212321--=+-=x x /153,15321-=+=x x 11111121--=+-=x x /21,321-==x x /361,36121-=+=x x 727221--=+-=y y /6,121-==x x /71,7121-=+=x x 10,221-==x x /244,24421+=-=x x /2,421-==x x /261,26121-=+=x x1.用公式法解下列方程:03232=--x x ;8922-=x x ;0372=+-x x ;042522=+-x x ;0242=--x x ;2)1(3)1(2+=+-y y y .2.已知关于x 的一元二次方程)0(022)23(2>=+++-m m x m mx (1)求证:方程有两个不相等的实数根且其中一根为定值。
人教版九年级数学上第21章一元二次方程单元培优试题(含答案)一.选择题1.一元二次方程(x -5)2=x -5的解是( )A .x =5B .x =6C .x =0D .x 1=5,x 2=62.已知3是关于x 的方程x 2-2a+1=0的一个解,则2a 的值是( ) (A)11 (B)12 (C)13 (D)143.若关于x 的一元二次方程(x+1)(x ﹣3)=m 有两个不相等的实数根,则m 的最小整数值为( )A .﹣4B .﹣3C .﹣2D .34.用配方法解方程0142=++x x ,配方后的方程是( )A . ()322=+xB . ()322=-xC. ()522=-xD . ()522=+x5.若|x 2-4x+4|与互为相反数,则x+y 的值为( ) (A)3 (B)4 (C)6 (D)96.已知关于x 的方程kx 2+(2k+1)x+(k ﹣1)=0有实数根,则k 的取值范围为( )A .k ≥﹣B .k >﹣C .k ≥﹣且k ≠0D .k <﹣7.将一块正方形铁皮的四角各剪去一个边长为3 cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm 3,则原铁皮的边长为( ) A .10 cm B .13 cmC .14 cmD .16 cm8.下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x=a;②方程2x(x-1)-x+1=0的解是x=1; ③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19.其中答案完全正确的题目个数是( ) (A)0 (B)1 (C)2 (D)3二.填空题9.某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率 .10.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为________________.11设m,n 分别为一元二次方程x 2+2x-2 020=0的两个实数根,则m 2+3m+n= . 12.已知实数s ,t 满足s+t 2=1,则代数式﹣s 2+t 2+5s ﹣1的最大值等于 .13.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.14.如果(a 2+b 2+1)(a 2+b 2-1)=63,那么a 2+b 2的值为 . 三.解答题15.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率; (2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值. 16.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.17. 阅读下面的例题:解方程:x 2-|x|-2=0.18. 某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月成本不超过1万元的情况下,使得月销售利润达到8 000元,销售单价应定为多少?答案一.选择题 1. D 2. C. 3. B . 4. D 5. A. 6. A . 7. D 8. A.二.填空题 9. 20%.10. 2x 2-3x -5=0 11 2 018 12. 3. 13. 18 14. 8三.解答题 15. 解:(1)设每次下降的百分率为a ,根据题意,得: 50(1﹣a )2=32,解得:a=1.8(不合题意,舍去)或a=0.2. 答:每次下降的百分率为20%;(2)设一次下降的百分率为b ,根据题意,得: 50(1﹣b )﹣2.5≥40, 解得 b ≤0.15.答:一次下降的百分率的最大值为15%.16. ∵a 是方程x 2-2013x+1=0的一个根,∴a 2-2013a+1=0, ∴a 2=2013a-1,∴原式=2013a-1-2012a+1120132013+-a=a+ a 1-1= a a 12+-1=aa 112013+--1=2013-1=2012. 17.解:(1)当x ≥0时,原方程化为x 2-x-2=0,解得x 1=2,x 2=-1(不合题意,舍去).(2)当x<0时,原方程化为x 2+x-2=0,解得x 1=1(不合题意,舍去),x 2=-2, 所以原方程的根是x 1=2,x 2=-2.请参照例题解方程x2-|x-3|-3=0.解:(1)当x≥3时,原方程化为x2-(x-3)-3=0,即x2-x=0,解得x1=0(不合题意,舍去),x2=1(不合题意,舍去).(2)当x<3时,原方程化为x2+x-3-3=0,即x2+x-6=0,解得x1=-3,x2=2.所以原方程的根是x1=-3,x2=2.18.解:设每件需涨价x元,则销售价为(50+x)元.月销售利润为y元.则y=(50+x-40)×(500-10x),令y=8 000,解得x1=10,x2=30.当x1=10时,销售价为60元,月销售量为400千克,则成本价为40×400=16 000(元),超过了10 000元,不合题意,舍去;当x2=30时,销售价为80元,月销售量为200千克,则成本价为40×200=8 000(元),低于10 000元,符合题意.答:销售单价应定为80元.人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C. D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C. D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
初三数学一元二次方程组的专项培优易错难题练习题附答案解析一、一元二次方程1,已知关于x的方程x2- (2k+1) x+k2+i = 0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k> 3 ;(2) A.【解析】【分析】(1)根据关于x的方程x2—(2k+1)x+k2 + 1=0有两个不相等的实数根,得出 ^〉。
,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n, 利用根与系数的关系得出m+n=5, mn=5,则矩形的对角线长为J m2n2,利用完全平方公式进行变形即可求得答案 . 【详解】(1) •••方程x2—(2k+1)x+ k2+1 = 0有两个不相等的实数根,A= [-(2k+1)]2-4X 1 x(史1)=4k-3>0, ,3. . k > 一,4(2)当k=2时,原方程为x2- 5x+ 5 = 0, 设方程的两个根为m, n,• - m + n= 5, mn= 5,矩形的对角线长为:Vm2~n2 jm n 2mn J15 .【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1) ^〉。
时,方程有两个不相等的实数根;( 2) 4=0时,方程有两个相等的实数根;(3) 4〈0时,方程没有实数根.2.父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过大众点评”或美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程5中,大众点评网上的购买价格比原有价格上涨一m%,购买数量和原计划一样:美团”网29上的购头价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20【答案】(1) 120; (2) 20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为 x 元,列不等式为 0.8x?80W7680解出即可;解法二:根据单价=总价一数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花 店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在 大众点评120a (1-25%) (1+3m%),在 美团”网上的购买实际消费总额:a[120 (1 - 25%) - -9-m] (1+15m%);根据 在两个网站的实际消费总额比原计划20的预算总额增加了 一 m%'列方程解出即可.2试题解析:(1)解:解法一:设标价为 x 元,列不等式为 0.8x?80W7680 x<120解法二:7680+ 80+0.8=96 + 0.8=12兆), 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120X0由(1 — 25%) (1 + 5m%) +a[120 X 0.81 — 25%) - -m] (1+15m%) =120 x 0282 20(1 — 25%) X2 (1+ — m%)),即 72a (1+ — m%) +a (72 — — m) ( 1+15m%) =144a 2 220(1+ 15m%),整理得:0, 0675m 2-1.35m=0, m 2- 20m=0,解得:m 1=0 (舍)2m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出 大众点评”或 美团”实际消费总额是解题关键.3.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、 五两月的水费分别是按哪种方案计算的?并求出 而的值.两个网站的实际消费总额比原计划的预算总额增加了一 m%,求出m 的值.2网上的购买实际消费总额:【答案】4. .. 1.7 X 35=59.5 1.7 X 80=136 151,这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按F =1一■工-丽来计算的)w则有151=1.7X80+(80—m) X--100即m2-80m+1500=0解得m〔二30, m2=50.又..•四月份用水量为35吨,m1=30<35,「51=30舍去.m=50【解析】5.观察下列一组方程:①x2 x 0;②x2 3x 2 0;③x2 5x 6 0;④x2 7x 12 0;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为连根一元二次方程1若x2kx 56 0也是连根一元二次方程”,写出k的值,并解这个一元二次方程;2请写出第n个方程和它的根.【答案】(1) x1 = 7, x2= 8. (2) x1=n—1, x2= n.【解析】【分析】(1)根据十字相乘的方法和连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k=— 15,则原方程为x2—15x+56=0,则(x—7)(x—8)=0,解得x1=7, x2=8.(2)第n 个方程为x2-(2n- 1)x+ n(n -1)=0, (x- n)(x— n + 1)=0,解得x1 = n_1, x2= n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.2 _ k6.关于x的万程kx k 2 x — 0有两个不相等的实数根.41求实数k的取值范围;2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.【答案】(1) k 1且k 0; (2)不存在符合条件的实数k,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】1由于方程有两个不相等的实数根,所以它的判别式V 0,由此可以得到关于k的不等式,解不等式即可求出k的取值范围.2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k的等式,解出k值,然后判断k值是否在1中的取值范围内.【详解】解:1依题意得V (k 2)2 4k k 0,k 1 ,又Q k 0,k的取值范围是k 1且k 0;2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,2 k理由是:设万程kx k 2 x - 0的两根分别为x1,X2,4k 2x1 x2由根与系数的关系有:k ,1x1 x24又因为方程的两个实数根之和等于两实数根之积的算术平方根,由1知,k 1,且k 0,4 “人什一k —不符合题意,3因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
九年级数学一元二次方程组的专项培优练习题附答案一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)=3【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x1=0,x2=﹣4当x2+4x=﹣4时,x2+4x+4=0(x+2)2=0解得:x3=x4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.3.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:4.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.【答案】5.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.6.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.7.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,2x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.8.关于x 的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m 的最小值. 【答案】(1)证明见解析;(2)-1. 【解析】 【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗 的最小值. 【详解】(1)证明:依题意,得.,∴ .∴方程总有两个实数根.由.可化为:得 ,∵ 方程的两个实数根都是正整数,∴ . ∴.∴ 的最小值为. 【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.9.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.11.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=32或2.【点睛】本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.12.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.13.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【答案】(1)证明见解析;(2)x 1=﹣,x 2=﹣1或 【解析】试题分析:(1)根据一元二次方程的判别式△=b 2﹣4ac 的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x214.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x2+x=y,则原方程变形为y2+y﹣6=0,解得y1=﹣3,y2=2.①当y=2时,x2+x=2,即x2+x﹣2=0,解得x1=﹣2,x2=1;②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x1=﹣2,x2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.15.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。