高中数学灵活运用训练
- 格式:doc
- 大小:395.92 KB
- 文档页数:6
高中数学拓展公式在解题中的巧用★角平分线定理如下图所示,若为中的内(外)角平分线与的交点,则。
【示例1】已知、分别为双曲线:的左、右焦点,点,点的坐标为,为的平分线,则。
【简答】:依据题意可得,,因为为的平分线,且点的坐标为,所以由角平分线定理得,即。
由双曲线的定义知,故可得。
【示例2】已知是的内心,,,,若,则的值为()(A )(B )(C )(D )【简答】:如上图所示,因为是的内心,即平分,平分,所以由角平分P ABC ∆A ∠BC PCBPAC AB =1F 2F C 127922=-y x C A ∈M )02(,AM 21AF F ∠=2AF )0,6(1-F )0,6(2F AM 21AF F ∠M )02(,2482121===MF M F AF AF 212AF AF =6221==-a AF AF 62=AF I ABC ∆2=AC 3=BC 4=AB AC y AB x AI +=y x +31329495I ABC ∆AD BAC ∠BI ABC ∠线定理得,从而得 ,(评注:目的是为了确定的位置)所以,故选B 。
【示例3】已知双曲线:的右焦点为,过点向双曲线的一条渐近线引垂线,垂足为,交另一条渐近线于。
若,则双曲线的离心率。
【简答】:如上图所示,因为,所以依据题意可得,,。
注意到,轴为的平分线,所以由角平分线定理可得到,所以进而在直角三角形中,由勾股定理可得,即所以★广义托勒密定理(不等式)设为任意凸四边形,则,当且仅当四点共圆时取等号。
224===DC BD AC AB 232==BC BD 224===ID AI BD AB AD AI 32=I D ,(32)(32AB BD AB AI +=+===AB AC )(94=-=329492=+=+y x C 12222=-by a x F F M N FN MF =2=e )(222b a c c OF +==b MF =a OM =b FN 2=x MON ∠21==FN MF ON OM a ON 2=OMN 222)2()2(a b b a =++3122=a b 332311122=+=+=a b e ABCD BD AC AD BC CD AB ⋅≥⋅+⋅D C B A ,,,【示例1】在平面四边形中,,,,,则的最小值为。
高考数学数列题如何灵活运用数列知识解决问题数列是高中数学中的一个重要概念,广泛应用于各种数学问题的解决中。
在高考数学中,数列题目占据了相当大的比重,掌握数列知识的运用技巧对于高考数学的取得好成绩至关重要。
本文将介绍如何在解决高考数学数列题时灵活运用数列知识,帮助考生更好地解决数列相关的问题。
一、确定数列的性质在解决数列题目时,首先要明确数列的性质,即确定数列是等差数列、等比数列还是其他类型的数列。
这一步骤非常关键,因为不同类型的数列具有不同的性质和运算规律。
例如,如果题目给出的数列满足递推式an = an-1 + 3,那么我们可以判断这是一个等差数列,而公差为3。
如果题目给出的数列满足递推式an = 2^n,那么我们可以判断这是一个等比数列,而公比为2。
二、寻找数列的规律在确定了数列的性质后,接下来需要寻找数列的规律。
这一步骤需要考生观察数列中的数字之间的关系,并总结出数列中数字的变化规律。
例如,如果题目给出的数列是一个等差数列,我们可以通过观察数列中相邻两项的差值来寻找规律。
如果题目给出的数列是一个等比数列,我们可以通过观察数列中相邻两项的比值来寻找规律。
掌握了数列的规律,就可以根据问题的要求进行计算和推导。
三、利用数列性质解决问题在解决数列题目时,可以利用数列的性质和规律进行计算和推导,从而得出问题的答案。
例如,如果题目给出的数列是一个等差数列,我们可以利用等差数列的求和公式来计算数列的和。
如果题目给出的数列是一个等比数列,我们可以利用等比数列的前n项和公式来计算数列的和。
另外,利用数列的性质还可以解决一些特殊的问题。
例如,对于一些复杂的数列题目,我们可以通过构造辅助数列或者利用数列的性质进行推导,从而解决问题。
四、巧用数列的性质解决实际问题除了在数列题目中灵活运用数列的性质和规律外,数列的应用还可以延伸到解决实际问题中。
例如,在时间、距离、速度等方面的问题中,我们可以通过构造数列模型,将实际问题转化为数列问题,进而运用数列知识解决问题。
情境数学思维训练教案高中
教学内容:高中数学(选择一个单元)
教学目标:
1. 培养学生灵活运用数学知识解决实际问题的能力;
2. 提高学生的数学思维和解决问题的能力;
3. 培养学生的团队合作意识和交流能力。
教学过程:
1. 情境引入(5分钟):
教师向学生介绍一个实际生活中的问题或情境,引导学生思考问题的解决办法,并提出数
学思维训练的目标和重要性。
2. 分组讨论(10分钟):
学生分成若干小组,每组从实际问题中选取一个解决问题的方案,并用数学方法加以解决。
鼓励学生积极发言,互相讨论,共同找出最佳解决方案。
3. 数学思维训练(20分钟):
让学生根据所选方案进行数学计算和推理,解决实际问题。
教师可以适时给予学生指导和
辅导,帮助他们解决困难。
4. 结果展示(10分钟):
每个小组对他们的解决方案进行汇报,说明他们的思路和解题过程。
其他小组可以提出问
题和建议,学生之间互相学习,共同提高。
5. 总结反思(5分钟):
教师对学生的解题过程和表现进行总结,指出优点和不足,并提出改进的建议。
同时鼓励
学生在以后的学习中继续加强数学思维训练。
教学评估:
通过学生的讨论和解答过程,教师能够全面了解学生的数学思维水平和解决问题的能力,
进而对教学效果进行评估和调整。
教学反馈:
教师可以针对学生在讨论和解答过程中存在的问题和困难进行详细分析和反馈,帮助学生改进和提高数学思维,使其在以后的学习中取得更好的成绩。
点到直线距离公式的八种推导方法注:由于特殊形式的直线方程求距离比较简单,因此中,直线的方程为,A ,B 均不为0。
设斜率为,点P 的坐标为(x 0,y 0),点P 到l 的距离为d 。
推导一(面积法):如上图所示,设R(x R ,y 0),S(x 0,y s ),由R ,S 在直线l 上,得到:,0:=++C by Ax l l k .0A 0A 00=++=++C By x C By x s R A A 001C By x x ++=-AA PS 0020C By x y y ++=-=By x AB B A PS PR ++⋅+=+002222A所以从三角形面积公式知:从而有:推导二(三角函数斜率法):推导三(求点法):d -联立,推导四(造圆切线法):0A =++C By x如上图所示,以点P 为圆心,作圆与直线l 相切,则此圆的方程为:, 联立直线方程消去y 得:由相切的条件知:,即:推导五(函数极值法):22020)(d y y x x =-+-)(0A =++C By x 0=∆如上图所示,该问题可以转化为求直线l 上一动点Q ,使得PQ 的距离最短,当然我们已经知道d 是最短的,这样,问题就变为了一个二元函数的条件极值问题,函数为:,d 就是函数,条件就是,求最小值,由于距离始终大于0,我们考虑根号里面的二元二次函数极值问题,我们采用拉格朗日乘数法。
令所以, 解得:。
推导六(对称求点法):0A =++CBy x如上图所示,设是关于直线l 的对称点,于是有: 解得:所以:推导七(求高法):于是三角形ROS 的面积为:, )(y x '',P )(00,P y x所以:,所以:。
推导八(相似三角形法):如图所示,由直线分线段比公式(三横先生:定比分点公式及定理)可得:,而,所以。
高中数学学习中的应用题解题技巧与方法高中数学中的应用题是学习的重点和难点之一。
通过应用题,我们可以将数学知识应用于实际问题中,培养分析和解决问题的能力。
本文将介绍一些解决高中数学应用题的技巧和方法。
一、理清问题在解决应用题之前,首先要仔细阅读题目,理解题目所给出的背景、条件和要求。
我们可以逐段解读题目,将关键信息提取出来,形成问题的具体描述。
在理清问题的同时,要注意辨别问题的主次,确定主要目标以及次要条件,避免陷入问题边边角角的细枝末节。
二、建立数学模型应用题中的实际问题需要用数学的语言来表达和解决。
建立数学模型就是将实际问题抽象为数学符号和方程式。
在建立数学模型时,首先要确定所需求解的未知量和已知量。
然后,根据已知条件,分析问题的特点,选择合适的数学关系和方程,将实际问题转化为数学问题。
三、利用图形和图表在解决应用题时,可以通过绘制图形或绘制图表来辅助分析和解题。
图形可以直观地表示问题的情况,通过观察图形可以得到一些直观的结论。
图表可以将数据有序地展示,帮助我们在计算过程中更好地理解和分析问题。
因此,在解决应用题时,可以适当地绘制图形和图表,并结合图形和图表进行分析和推理。
四、灵活运用数学方法在解决应用题时,可以根据题目的特点和求解的要求选择合适的数学方法。
例如,某些问题可以通过代数方法解决,而另一些问题则适合使用几何方法解决。
此外,还可以结合不同的数学概念和知识,如函数、概率、统计等,来解决问题。
需要注意的是,选择数学方法时要考虑方法的适用性和效率,避免使用过于复杂或冗长的方法。
五、实际验证和合理估计在解决应用题时,解答问题不仅要给出具体的答案,还需要对结果进行实际验证和合理估计。
通过实际验证,我们可以检验计算结果的正确性。
如果可能,可以使用实验数据或实际测量值进行验证。
在实际验证中,要注意比较理论值与实际值的偏差,并分析偏差的原因。
另外,合理估计也是解决应用题的一种重要方法。
通过合理估计,可以在没有精确计算的条件下,得到一个接近或估计值,从而判断问题的合理性和可行性。
数形结合思想是解答高中数学问题常用的一种数学思想.在解答不等式问题时,灵活运用数形结合思想,根据不等式的几何意义画出几何图形,通过图形和数量关系之间的转化,可以使解题的过程变得更加简单,有利于提升解题的效率.一、求参数的取值范围在运用数形结合思想解答含参不等式问题时,可先根据不等式的结构特征,将参数与变量分离,使参数在不等式的一侧;再将不等式另一侧的式子构造成函数,判断出函数的单调性,画出函数的图象,或根据另一侧式子的几何意义画出几何图形,即可通过研究图形的变化趋势,确定不等式另一侧式子的最值,进而求得参数的取值范围.例1.已知集合A ={}|()x ,y m 2≤()x -22+y 2≤m 2,x ,y ∈R ,B ={}|()x ,y 2m ≤x +y ≤2m +1,x ,y ∈R ,若A ⋂B ≠∅,则实数m 的取值范围为_____.解:由A ⋂B ≠∅可知A ≠∅,故m 2≤m 2,可得m ≤0或m ≥12,①当m ≤0时,集合A 表示以()2,0为圆心、以||m 为半径的圆,集合B 表示两平行线y =2m 和y =2m +1之间的区域,而点()2,0到直线y =2m 的距离d 1=||2-2m 2=2-2m >-m ,点()2,0到直线到y =2m +1的距离d 2=||2-2m -12=-2m >-m ,可知集合A 与集合B 无交集,所以不等式无解.②当m ≥12时,集合A 表示以()2,0为圆心、和||m 为半径的圆环,如图1所示.图1则圆心A 到直线y =2m 的距离d 1=||2-2m 2=2-2m ≤m ,解得12≤m ≤2+2,故实数m 的取值范围为éëêùûú12,2+2.解答本题,需将集合A 中的元素看作以()2,0为圆心,||m 为半径的圆环上的点,集合B 中的元素看作两平行线y =2m 和y =2m +1之间的点,通过研究圆与直线之间的位置关系,建立满足题意的关系式,进而求得参数的取值范围.运用数形结合思想解答此类问题,要仔细挖掘代数式的几何意义,并画出相应的几何图形,借助几何图形来分析问题.例2.已知f ()x =x ||x ,若对任意x ∈éëêùûút -2,1t ,不等式f ()x +t ≥4f ()x 恒成立,则实数t 的取值范围为_____.解:由题意可知f ()x =x ||x =ìíîx 2,x ≥0,-x 2,x <0,由图2可知f ()x 在R 上单调递增.图2因为4f ()x =4x ||x =2x ||2x =f ()2x ,所以f ()x +t ≥4f ()x ⇔f ()x +t ≥f ()2x ,即x +t ≥2x ⇔t ≥x 在x ∈éëêùûút -2,1t 上恒成立.图3解题宝典39由图3可知,ìíîïïïït ≥1t,t -2≤1t ,①当t >0时,ìíîïïïït ≥1t,t -2≤1t ,⇔ìíît 2-1≥0,t 2-2t -1≤0,解得1≤t ≤1+2,②当t <0时,ìíîïïïït ≥1t,t -2≤1t ,⇔ìíît 2-1≤0,t 2-2t -1≥0,解得-1≤t ≤1-2,综上可知,实数t 的取值范围为[]-1,1-2⋃[]1,1+2.解答本题,需先根据函数f ()x =x ||x 的解析式画出图象,以根据其图象和单调性去掉f ()x +t ≥4f ()x 的符号“f ”,将不等式转化为常规不等式;然后借助数轴来讨论满足不等式的t 的取值范围.在解不等式时,要学会将问题转化为函数图象、数轴上的点的集合的问题,运用数形结合思想来解题,这样能有效地提升解题的效率.二、求不等式的解集含参不等式问题往往较为复杂,运用数形结合思想来辅助解题,能有效地提升解题的效率.在解题时,要先将不等式变形,构造出合适的函数模型.可构造一个函数模型,将不等式化为f ()x >0、f ()x <0的形式;也可以构造两个函数模型,将不等式化为f ()x >g ()x 、f ()x <g ()x 的形式.再画出函数的图象,研究函数图象与x 轴、图象之间的位置关系,找到使不等式成立的情形,从而建立新不等式.通过解新不等式,求得不等式的解集.例3.解关于x 的不等式:a 2-2x 2>x +a .解:设y 1=x +a ,y 2=a 2-2x 2,则y 1=x +a 表示的是一条直线,y 2=a 2-2x 2表示的是半个椭圆,如图4所示.图4由a 2-2x 2=x +a ,可得x =0或x =-2a 3,移动直线,由图4可知,当-2a3<x <0时,直线始终在椭圆的下方,故不等式的解集为{}|x -2a3<x <0.先将不等式两侧的式子分别构造成函数y 1=x +a ,y 2=a 2-2x 2,并画出两个函数的图象;然后移动直线的位置,即可发现要使不等式恒成立,需使直线始终在椭圆的下方;再求得两个函数的交点,就能发现当-2a3<x <0时,直线始终在椭圆的下方.运用数形结合思想解不等式,关键要根据题意找出临界的情形,并求出相应的值.例4.已知f ()x 是R 上的偶函数,且在[)0,+∞上单调递减,若f ()a =0()a >0,则不等式xf ()x <0的解集为_____.解:由题意可画出f ()x 的图象,如图5所示.图5由xf ()x <0,可知x 与f ()x 异号.由图5可知,当x ∈()-a ,0⋃()a ,+∞时,x 与f ()x 异号,故不等式的解集为{}|x -a <x <0或x >a .若采用常规方法解答本题,则需进行分类讨论,解题的过程较为复杂.我们运用数形结合思想,根据函数的解析式画出图象,讨论满足不等式的情形,即可确定x 的取值范围.运用数形结合思想解不等式,需通过研究图象,找出满足题意的一段曲线,并求出与之对应的x 的取值范围.运用数形结合思想,将不等式问题转化为几何图形问题或函数图象问题,即可通过研究图形或图象的位置关系,快速获解.这样不仅能使题目中的条件变得直观,还能使解题的思路更加明朗,有助于提升解题的效率.(作者单位:新疆巴楚县第一中学)解题宝典40。
如何进行高中数学思维训练高中数学思维训练是培养学生综合运用数学知识、思维能力和解决实际问题的能力。
以下是一些建议,帮助高中学生进行数学思维训练。
1.培养数学兴趣:首先,学生应该对数学产生兴趣。
学习数学需要一种好奇心和主动学习的态度。
教师和家长可以提供有趣的数学问题、游戏等,激发学生对数学的兴趣。
2.清晰理解数学概念:学生需要清晰理解数学概念和原理。
可以通过阅读教科书、参考书籍、数学网站等途径,了解数学知识的本质和应用。
3.运用数学知识解决问题:学生应将数学知识应用到实际生活中的问题中。
例如,通过解决数学建模问题、数学竞赛问题等来加深对数学的理解和运用。
4.学习数学思维方法:学生应学习和掌握不同的数学思维方法,如归纳法、逆向思维、假设法、归约法、分析法等。
通过练习和训练,逐渐培养出灵活的数学思维。
5.解决多种类型的问题:学生应解决多种类型的数学问题,包括代数、几何、概率、统计等。
通过多样化的问题训练,能够培养出学生的综合运用数学知识的能力。
6.创造性思维:学生应培养创造性思维,即在解题中灵活运用数学知识,发现问题的独特解决方法。
可以通过讨论、团队合作等方式培养学生的创造性思维。
7.心理调适:数学思维训练会涉及到复杂的问题和困难的挑战,学生需要具备耐心和坚持的态度。
可以通过适当调整学习时间、参加数学俱乐部等方式,缓解压力,保持积极的学习心态。
8.学习反思:学生在解决数学问题后,应进行学习反思,总结经验教训。
让学生了解自己在解题过程中的不足之处,并提出改进方案。
通过不断的反思和调整,提高自己的数学思维能力。
9.练习与竞赛:学生应进行大量的题目练习,通过解题训练来提高数学思维能力。
同时,可以参加数学竞赛,与他人进行比拼,锻炼自己的技巧和思维能力。
10.辅导和指导:学生可以寻求老师、同学和家长的辅导和指导,获得更多反馈和建议。
老师和家长应给予学生积极的鼓励和支持,帮助他们克服困难,培养良好的数学思维能力。
压轴题型09 数列通项、求和及综合灵活运用命题预测数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.高频考法(1)数列通项、求和问题(2)数列性质的综合问题(3)实际应用中的数列问题(4)以数列为载体的情境题(5)数列放缩01 数列通项、求和问题1、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n qq a p a p p +⎛⎫+=+ ⎪−−⎝⎭,则1nq a p ⎧⎫+⎨⎬−⎩⎭是以11qa p +−为首项,以p 为公比的等比数列,由此可以求出n a ; (2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n nn na a p q q q ++=⋅+,设2024届高考数学专项练习n n na b q =,从而变成1n b +=1n p b q +,从而将问题转化为第(1)个问题; (3)形如11n n n n qa pa a a ++−=,可以考虑两边同时除以1n n a a +,转化为11n n q p a a +−=的形式,设1n nb a =,则有11n n qb pb +−=,从而将问题转化为第(1)个问题.2、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.3、用裂项相消法求和时,要对通项进行变换,如:()11n k n kn n k=+−++,1111()n n k k n n k ⎛⎫=− ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式: (1)111(1)1n n n n =−++; (2)1111(21)(21)22121n n n n ⎛⎫=− ⎪−+−+⎝⎭;(3)1111(2)22n n n n ⎛⎫=− ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=−⎢⎥+++++⎣⎦; (5)(1)(2)(1)(1)(1)3n n n n n n n n ++−−++=.4、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS −”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和; (2)通项公式为,,n n n b n a c n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题. 【典例1-1】(2024·河北沧州·一模)在数列{}n a 中,已知321212222nn a a a a n −++++=. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a +成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).【解析】(1)当1n =时,12a =; 当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a −−−−⎛⎫⎛⎫=++++−++++⎪ ⎪⎝⎭⎝⎭()2212n n =−−=, 所以122nn a −=⇒2n n a =,2n ≥. 当1n =时,上式亦成立, 所以:2n n a =. (2)由()123155n n ⎡⎤+++++−=⎣⎦⇒10n =.所以新数列{}n b 前55项中包含数列{}n a 的前10项,还包含,11x ,21x ,22x ,31x ,32x ,,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=, ()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+.设123935719T a a a a =++++1239325272192=⨯+⨯+⨯++⨯则234102325272192T =⨯+⨯+⨯++⨯,所以()1239102322222192T T T −=−=⨯+⨯+++−⨯101722=−⨯−.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【典例1-2】(2024·高三·河南濮阳·开学考试)已知等比数列{}n a 的首项为2,公比q 为整数,且1243424a a a a ++=.(1)求{}n a 的通项公式;(2)设数列21n n n a ⎧⎫⋅的前n 项和为nS ,比较nS 与4的大小关系,并说明理由.【解析】(1)由已知可得12n n a q −=⨯,因为1243424a a a a ++=,所以324222242q q q ⨯+⨯+⨯=⨯,即324240q q q −++=,则()()22220q q q −−−=,解得2q或13所以2q,()1*222n n n a n −=⋅=∈N .(2)由(121212nnn n n a n =⋅⋅1122222n n n nn n n n −−=−=⋅⋅ 令12n n nb −=,设{}n b 前n 项和为n C ,则01211232222n n nC −=++++, 所以123112322222n n n C =++++,两式相减得1211111122222nn n n C −=++++−1122212212n n n n n −+=−=−−, 所以42442n nnC +=−<, 令12n n x n −=⋅0n x >, 设{}n x 前n 项和为n T ,则0n T >, 所以4n n n S C T =−<.【变式1-1】(2024·四川泸州·三模)已知n S 是数列{}n a 的前n 项和,11a =,()12n n na n S +=+,则n a = . 【答案】()212n n −+⋅【解析】当2n ≥时,()()111n n n a n S −−=+,即12n n n S a n +=+,111n n n S a n −−=+, 则11121n n n n n n n S S a a a n n −+−−=−=++,即()1221n n n a a n ++=+,则有()121nn n a a n −+=,1221n n a n a n −−=−,,21232a a ⨯=, 则()212112112n n n n n n a a a a a n a a a −−−−=⨯⨯⨯⨯=+⋅,当1n =时,11a =,符合上式,故()212n n a n −=+⋅.故答案为:()212n n −+⋅.【变式1-2】(2024·青海西宁·二模)已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++= .【答案】33−【解析】设数列{}n a 的公比为(0)q q >,则333221a a a q q ++=,即21112121qq ⎛⎫++= ⎪⎝⎭, 化简得23440q q −−=,解得2q(负值舍去),所以331312232n n n n a a q −−−=⋅=⨯=⨯.于是111333,4,12a a b a b =+=+=, 所以等差数列{}n n a b +的公差为()()3311431a b a b +−+=−,所以()14414,4432n n n n n a b n n b n a n −+=+−==−=−⨯,所以()()23412345412345312222b b b b b ++++=⨯++++−⨯++++()56032133=−⨯−=−.故答案为:33−02 数列性质的综合问题1、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=. 在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.2、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S . ①n S ,2n n S S −,32n n S S −,…也成等差数列,公差为2n d . ②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+− ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd −=奇偶,1k kS a S a +=偶奇. 若项数为奇数21k +,则1 k S S a +−=奇偶,1S k S k+=奇偶. (2)设等比数列{}n a 的公比为q ,前n 项和为.n S①当1q ≠−时,n S ,2n n S S −,32n n S S −,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =. ③若项数为偶数2k ,则()21 11k a q S S q−−=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质. 3、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}n a λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a 也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.【典例2-1】(2024·山西晋城·二模)已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a 的取值范围是( )A .67,78⎛⎫ ⎪⎝⎭B .613,715⎛⎫⎪⎝⎭C .67,,78⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭D .613,,715⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可得:()158168915080S a S a a =>⎧⎨=+<⎩,即88900a a a >⎧⎨+<⎩,可知90a <,设等差数列{}n a 的公差为d ,则980d a a =−<, 可得等差数列{}n a 为递减数列,则10a >,由88900a a a >⎧⎨+<⎩可得11702150a d a d +>⎧⎨+<⎩,则112715d a −<<−,所以211116131,715a a d d a a a +⎛⎫==+∈ ⎪⎝⎭. 故选:B.【典例2-2】(2024·北京顺义·二模)设1a ,2a ,3a ,…,7a 是1,2,3,…,7的一个排列.且满足122367a a a a a a −≥−≥≥−,则122367a a a a a a −+−++−的最大值是( )A .23B .21C .20D .18【答案】B【解析】122367a a a a a a −+−++−即为相邻两项之差的绝对值之和,则在数轴上重复的路径越多越好,又122367a a a a a a −≥−≥≥−,比如1726354→→→→→→,其对应的一个排列为1,7,2,63,5,4,则122367a a a a a a −+−++−的最大值是6+5+4+3+2+1=21故选:B【变式2-1】(2024·浙江宁波·二模)已知数列{}n a 满足2n a n n λ=−,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是( )A .11,148⎡⎤⎢⎥⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦【答案】C【解析】因为对任意{}1,2,3n ∈都有1n n a a +>, 所以数列{}n a 在[]1,3上是递减数列, 因为对任意{}7,N n n n n ∈≥∈都有1n n a a +<, 所以数列{}n a 在[)7,+∞上是递增数列,所以0172211522λλλ⎧⎪>⎪⎪>⎨⎪⎪<⎪⎩,解得11157λ<<, 所以实数λ的取值范围是11,157⎛⎫⎪⎝⎭.故选:C.【变式2-2】(多选题)(2024·浙江绍兴·二模)已知等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,且*n ∀∈N ,101na q q<−,则( ) A .数列{}n a 是递增数列B .数列{}n a 是递减数列C .若数列{}n S 是递增数列,则1q >D .若数列{}n T 是递增数列,则1q >【答案】ACD【解析】由题意可知()()()()111211111,1n n n n n n n a q S T a a q a q a qq−−−===−,且*n ∀∈N ,101na q q<−, 故有101a q <−且0q >(否则若0q <,则11na q q −的符号会正负交替,这与*n ∀∈N ,101n a q q<−,矛盾), 也就是有101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩,无论如何,数列{}n a 是递增数列,故A 正确,B 错误;对于C ,若数列{}n S 是递增数列,即110n n n S S a ++−=>,由以上分析可知只能101a q >⎧⎨>⎩,故C 正确;对于D ,若数列{}n T 是递增数列,显然不可能是1001a q <⎧⎨<<⎩,(否则()121n n n n T a q −=的符号会正负交替,这与数列{}n T 是递增数列,矛盾),从而只能是101a q >⎧⎨>⎩,且这时有111n n n T a T ++=>,故D 正确. 故选:ACD.03 实际应用中的数列问题(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; ②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点 ①根据题意,正确确定数列模型; ②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.【典例3-1】(2024·北京房山·一模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第三天走的路程为( ) A .12里 B .24里 C .48里 D .96里【答案】C【解析】由题意可得,此人6天中每天走的路程是公比为12的等比数列, 设这个数列为{}n a ,前n 项和为n S ,则16611163237813212a S a ⎛⎫− ⎪⎝⎭===−,解得1192a =, 所以321192482a =⨯=, 即该人第三天走的路程为48里. 故选:C.【典例3-2】(2024·北京海淀·一模)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为( )A .6B .7C .8D .9【答案】C【解析】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:3131134,2,248,则31353842155724+++=>+=, 黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和, 即1311432164316841+28114228231144++⎛⎫⎛⎫+++⨯+++≈+⨯=<= ⎪⎪⎝⎭⎝⎭−−, 综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm , 故选:C【变式3-1】(2024·四川·模拟预测)分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )A .2022312−B .2023332−C .202231−D .202333−【答案】A【解析】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得1113,2,2n n n n n n n n n a b a a b b b a −+++==+=+,且有111,0a b ==,故有()11113,,n n n n n n n n a b a b a b a b ++++⎧+=+⎨−=−⎩,所以{}n n a b +是以111a b 为首项,3为公比的等比数列,{}n n a b −为常数数列,且111a b −=,所以{}n n a b −是以111a b −=为首项,1为公比的等比数列,故13,1,n n n n n a b a b −⎧+=⎨−=⎩故1131,231,2n n n na b −−⎧+=⎪⎪⎨−⎪=⎪⎩所以20222023312b −=. 故选:A.【变式3-2】(2024·江西九江·二模)第14届国际数学教育大会(ICME -International Congreas of Mathematics Education )在我国上海华东师范大学举行.如图是本次大会的会标,会标中“ICME -14”的下方展示的是八卦中的四卦——3、7、4、4,这是中国古代八进制计数符号,换算成现代十进制是3210387848482020⨯+⨯+⨯+⨯=,正是会议计划召开的年份,那么八进制107777⋅⋅⋅个换算成十进制数,则换算后这个数的末位数字是( )A .1B .3C .5D .7【答案】B【解析】由进位制的换算方法可知,八进制107777⋅⋅⋅个换算成十进制得:1098110187878787878118−⨯+⨯+⋅⋅⋅+⨯+⨯=⨯=−−,()101001019919101010101010811021C 10C 102C 102C 21−=−−=+⨯+⋅⋅⋅+⨯+−因为01019919101010C 10C 102C 102+⨯+⋅⋅⋅+⨯是10的倍数,所以,换算后这个数的末位数字即为101010C 21−的末尾数字,由101010C 211023−=可得,末尾数字为3.故选:B04 以数列为载体的情境题解决数列与数学文化相交汇问题的关键【典例4-1】(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【解析】对于命题①,对于数列{}n a ,令21,12,2n n n a n −=⎧=⎨≥⎩,则11,12,2n n n S n −=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列, 当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S −=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项, 故命题①正确;对于命题②,等差数列{}n a ,令1a d =−,则()()112n a a n d n d =+−=−, 则()()()123222n n n d n d n a a n n S d ⎡⎤−+−+−⎣⎦===, 因为21n −≥−且2Z n −∈, ()2313912228n n n −⎛⎫=−−≥− ⎪⎝⎭,且()3N*,Z 2n n n −∈∈, 所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”, 故命题②正确; 故选:A.【典例4-2】(2024·广东梅州·二模)已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =−(1,2,3,n =⋅⋅⋅),并将数列{}n p 称为{}n a 的“生成数列”. (1)若3n n a =,求其生成数列{}n p 的前n 项和; (2)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =;(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +,⋅⋅⋅是等差数列.【解析】(1)因为3nn a =关于n 单调递增,所以{}12max ,,,3nn n n M a a a a =⋅⋅⋅==,{}121min ,,,3n n m a a a a =⋅⋅⋅==,于是33nn n n p M m =−=−,{}n p 的前n 项和()()()()()1231333333333313132n n nn P n n −=−+−++−=−=−−−.(2)由题意可知1n n M M +≥,1n n m m +≤, 所以11n n n n M m M m ++−≥−,因此1n n p p +≥,即{}n p 是单调递增数列,且1110p M m ==-, 由“生成数列”的定义可得n n q p =.(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,12n n n a a a ++⋯,,,是等差数列. 当{}n p 是一个常数列,则其公差d 必等于0,10n p p ==, 则n n M m =,因此{}n a 是常数列,也即为等差数列;当{}n p 是一个非常数的等差数列,则其公差d 必大于0,1n n p p +>, 所以要么11n n n M a M ++>=,要么11n n n m a m ++=<,又因为{}n a 是由正整数组成的数列,所以{}n a 不可能一直递减, 记2min ,{}n n a a a a =,,,,则当0n n >时,有n n M m =, 于是当0n n >时,0n n n n n p M m a a =−=−, 故当0n n >时,0n n n a p a =+,…,因此存在正整数0n ,当0n n ≥时,12n n n a a a ++,,,…是等差数列. 综上,命题得证.【变式4-1】(2024·全国·模拟预测)“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为由图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1220111a a a ++⋅⋅⋅+的值为 .【答案】4021【解析】设第n 个数为n a ,则11a =,212a a −=,323a a −=,434a a −=,…,1n n a a n −−=, 叠加可得()11232n n n a n +=+++⋅⋅⋅+=, ∴122011122212232021a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯ 111114021223202121⎛⎫=⨯−+−+⋅⋅⋅+−= ⎪⎝⎭.故答案为:4021. 【变式4-2】(2024·内蒙古呼伦贝尔·一模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等.对这类高阶等差数列的研究·杨辉之后一般被称为“垛积术”.现有高阶等差数列前几项分别为1,4,8,14,23,36,54,则该数列的第21项为 . (注:()()22221211236n n n n +++++⋅⋅⋅+=)【答案】1391【解析】设题设高阶等差数列为{}n a ,令1n n n b a a +=−,设数列{}n b 的前n 项和为n B ,则数列{}n b 的前几项分别为3,4,6,9,13,18,1111n n n B a a a ++=−=−,令1+=−n n n c b b ,设数列{}n c 的前n 项和为n C ,则数列{}n c 的前几项分别为1,2,3,4,5,1113n n n C b b b ++=−=−,易得2,2n n n n c n C +==,所以21332n n n n b C ++=+=+,故()21133222n n n n b n −=+=−+,则()()()()()1211111632626n n n n n n n n n B n n ⎡⎤++++−=−+=+⎢⎥⎣⎦, 所以11n n a B +=+,所以211391a =.故答案为:139105 数列放缩在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.【典例5-1】(2024·天津滨海新·二模)已知数列{}n a 满足112,1,2n n n n a t qa n a −−=⎧⎪=⎨+≥⎪⎩,其中220,0,0,N q t q t n ≥≥+≠∈.(1)若0qt =,求数列{}n a 的前n 项的和; (2)若0=t ,2q且数列{}n d 满足:11n nn n n a a d a a =++−,证明:121ni i d n =<+∑. (3)当12q =,1t =时,令)22,2n n b n n a =≥∈−N ,判断对任意2n ≥,N n ∈,n b 是否为正整数,请说明理由.【解析】(1)因为0qt =,220q t +≠,所以当0q =时,0t ≠,2n ≥时,1n n t a a −=,即n 为奇数时,2n a =;n 为偶数时,2n ta =. 记数列{}n a 的前n 项的和为n S ,当n 为偶数时,222n n t S ⎛⎫=+ ⎪⎝⎭,当n 为奇数时,112221224n n n t tn tS S n −−−⎛⎫=+=++=++ ⎪⎝⎭, 综上2,2221,214n n t n k S tn t n n k ⎧⎛⎫+= ⎪⎪⎪⎝⎭=⎨−⎪++=+⎪⎩,其中N k ∈.当0=t 时,0q ≠,2n ≥时,1n n a qa −=,此时{}n a 是等比数列, 当1q =时,2n S n =;当1q ≠时,()211nn q S q−=−,故()2,121,11nn n q S q q q=⎧⎪=−⎨≠⎪−⎩. (2)由(1)知,0=t ,2q时,2n n a =,22112121n n n n n n n n n a a d a a =+=++−+−1122121n n =+−−+,112211111112212121212121nin n i dn =⎛⎫⎛⎫⎛⎫=+−+−++− ⎪ ⎪ ⎪−+−+−+⎝⎭⎝⎭⎝⎭∑ 1212121n n n ≤+−<++(3)对任意2n ≥,N n ∈,n b 是正整数.理由如下: 当12q =,1t =时,21111322a a a =+=,此时24b =; 2321117212a a a =+=,此时324b =;由202n n b a =>−,平方可得2242n n a b =+,212142n n a b ++=+, 又222121111124n n n n n a a a a a +⎛⎫=+=++ ⎪⎝⎭,所以22221414221442n n n n b b b b +⎛⎫+=+++ ⎪+⎝⎭, 整理可得()222142n n n b b b +=+,当3n ≥时,()2221142n n n b b b −−=+,所以()()222222111424242n n n n n n b b b b b b +−−⎡⎤=+=++⎣⎦ ()()22242211141241n n n n n b b b b b −−−=++=+,所以()21121n n n b b b +−=+,由23N,N b b ∈∈,所以4N b ∈,以此类推,可知对任意2n ≥,N n ∈,n b 是正整数.【典例5-2】(2024·全国·模拟预测)已知数列{}n a 的各项均为正数,11a =,221n n n a a a ++≥.(1)若23a =,证明:13n n a −≥;(2)若10512a =,证明:当4a 取得最大值时,121112na a a +++<. 【解析】(1)由题意知,211n n n n a a a a +++≥,设1n n na q a +=,12n q q q ∴≤≤≤,23a =,11a =,13q ∴=,当2n ≥时,113211121111213n n nn n n a a a a a a q q q a q a a a −−−−=⋅⋅=⋅⋅≥⋅=.当1n =时,11a =满足13n n a −≥,综上,13n n a −≥.(2)()31011291231512a a q q q q q q a =⋅⋅=≥⋅⋅⋅,1238q q q ∴⋅⋅≤,4a ∴的最大值为8,当且仅当123456789q q q q q q q q q ⋅⋅=⋅⋅=⋅⋅时取等号.而12n q q q ≤≤≤,1292q q q ∴====,而10n ≥时,192n n q q q −≥≥≥=,1112n n n a a q −−≥∴⋅=,2112111111111121()()2121222212nn n n a a a −⎛⎫⋅− ⎪⎛⎫⎝⎭∴+++≤++++==−< ⎪⎝⎭−. 【变式5-1】(2024·浙江杭州·二模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d .由4224,21n nS S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+−=+−+⎩, 解得:1a 1,d2,所以()()12121n a n n n *=+−=−∈N .(2)由(1)知,()()12123n n n b n b +−=+, 即12123n n b n b n +−=+,12321n n b n b n −−=+,122521n n b n b n −−−=−,……,322151,75b b b b ==, 利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n −−−−−=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅+− ()()()99112212122121n n n n n ⎛⎫==−≥ ⎪−+−+⎝⎭,13b =也符合上式,12311nkn n k bb b b b b −==+++++∑9111111112335572121n n ⎡⎤⎛⎫=−+−+−++− ⎪⎢⎥−+⎝⎭⎣⎦911221n ⎛⎫=−⎪+⎝⎭所以191912212nk k b n =⎛⎫=−< ⎪+⎝⎭∑.【变式5-2】(2024·广西·二模)在等差数列{}n a 中,26a =,且等差数列{}1n n a a ++的公差为4. (1)求10a ; (2)若2111n n n n b a a a −+=+,数列{}n b 的前n 项和为n S ,证明:21228n S n n <++. 【解析】(1)设{}n a 的公差为d ,则1212()()24n n n n n n a a a a a a d +++++−+=−==,2d =, 又26a =,所以1624a =−=, 所以42(1)22n a n n =+−=+,1022a =. (2)由(1)得11114()44(1)(2)412n b n n n n n n =+=−+++++,所以2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=−+⨯=++−<++++.1.在公差不为0的等差数列{}n a 中,3a ,7a ,m a 是公比为2的等比数列,则m =( ) A .11 B .13C .15D .17【答案】C【解析】设等差数列的公差为d ,则0d ≠, 因为3a ,7a ,m a 是公比为2的等比数列,所以()1111162,226a m d a d a d a d +−+==++,由前者得到12a d =,代入后者可得128m +=, 故15m =, 故选:C.2.记数列{}n a 的前n 项积为n T ,设甲:{}n a 为等比数列,乙:2n n T ⎧⎫⎨⎬⎩⎭为等比数列,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件 【答案】D【解析】若{}n a 为等比数列,设其公比为q ,则11n n a a q −=,(1)12(1)211n n n n n n T a q a q−+++−==,于是(1)12()22n n n n n T a q −=,(1)111211(1)12()222()22n n n n n n n n n n nT a qa q T a q ++++−==⋅,当1q ≠时,12n a q ⋅不是常数, 此时数列2n n T ⎧⎫⎨⎬⎩⎭不是等比数列,则甲不是乙的充分条件;若2n nT ⎧⎫⎨⎬⎩⎭为等比数列,令首项为1b ,公比为p ,则112n n n T b p −=,112(2)n n T b p −=⋅, 于是当2n ≥时,112112(2)22(2)n n n n n T b p a p T b p −−−⋅===⋅,而1112a T b ==, 当1b p ≠时,{}n a 不是等比数列,即甲不是乙的必要条件, 所以甲是乙的既不充分也不必要条件. 故选:D3.已知数列{}n a 为等比数列,且11a =,916a =,设等差数列{}n b 的前n 项和为n S ,若55b a =,则9S =( ) A .-36或36 B .-36C .36D .18【答案】C【解析】数列{}n a 为等比数列,设公比为q ,且11a =,916a =, 则89116a q a ==,则44q =, 则45514b a a q ===,则()199599362b b S b+⨯===,故选:C.4.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n −=≥∈N ,20n S =,则n 的值为( )A .16B .12C .10D .8【答案】B【解析】由36S =,得1236a a a ++=①,因为()*3164,n S n n −=≥∈N ,20n S =,所以34n n S S −−=,即124n n n a a a −−++=②,①②两式相加,得1213210n n n a a a a a a −−+++++=,即()1310n a a +=, 所以1103n a a +=,所以()152023n n n a a n S +===,解得12n =. 故选:B.5.在等比数列{}n a 中,00n a >.则“001n n a a +>”是“0013n n a a ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】设等比数列{}n a 的公比为0q ≠,当001n n a a +>时,即有00n n a q a >⋅,又00n a >,故1q <且0q ≠,当1q <−时,有0002311n n n a q a a +++=>,故不能得到0013n n a a ++>,即“001n n a a +>”不是“0013n n a a ++>”的充分条件;当0013n n a a ++>时,即有0002311n n n a q a a +++=<,即21q <且0q ≠,则001n n a q a +=⋅,当()1,0q ∈−时,由00n a >,故010n a +<,故001n n a a +>, 当()0,1q ∈时,0001n n n a q a a +=⋅<,亦可得001n n a a +>, 故“001n n a a +>”是“0013n n a a ++>”的必要条件;综上所述,“001n n a a +>”是“0013n n a a ++>”的必要不充分条件. 故选:B.6.已知正项数列{}n a 的前n 项和为n S ,且22n n nS a a =+,数列{}n b 的前n 项积为n T 且2n n T S =,下列说法错误的是( )A .2n S nB .{}n b 为递减数列C .202420242023b = D .2(1)n a n n =−【答案】B【解析】当1n =时,11122a a a =+,解得12a = 当2n ≥时,1122n n n n n S S S S S −−=−−+,即2212n n S S −−=,且212S =,所以数列}{2n S 是首项为2,公差为2的等差数列,所以()22212n S n n =+⋅−=,又0n a >,所以2n S n =,故A 正确; 当2n ≥时,有()22121n a n n n n =−=−,取1n =时,121112a =−=1a ,故数列}{n a 的通项公式为21n a n n =−,故D 正确;因为数列{}n b 的前n 项积为n T 且2n n T S =,所以21232n n n T b b b b S n =⋅⋅==,当1n =时,12b =, 当2n ≥时,()12111121111n n n T n n n b T n n n n −−+=====+−−−−, 显然1n =不适用,故数列{}n b 的通项公式为2,111,21n n b n n =⎧⎪=⎨+≥⎪−⎩, 显然122b b ==,所以数列{}n b 不是递减数列,故B 错误, 由当2n ≥时,1n n b n =−,得202420242024202412023b ==−,故C 正确,故选:B.7.(多选题)数列{}n a 满足:()111,32n n a S a n −==≥,则下列结论中正确的是( )A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n −−⎛⎫=≥ ⎪⎝⎭【答案】AC【解析】由13(2)n n S a n −=≥, 当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n −+−=−≥,所以133(2)n n n a a a n +=−≥, 即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确; 因22112311413341,24313n n n n Sa a a a n −−−−⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭−,故D 错误. 故选:AC.8.(多选题)设{}n a 是等差数列,n S 是其前n 项的和.且56S S <,678S S S =>,则下面结论正确的是( )A .0d ≤B .70a =C .6S 与7S 均为n S 的最大值D .满足0n S <的n 的最小值为14【答案】BCD【解析】A :因为678S S S =>,所以7678780,0S S a S S a −==−=<, 所以870d a a =−<,故A 错误; B :由A 的解析可得B 正确;C :因为56S S <,678S S S =>,所以6S 与7S 均为n S 的最大值,故C 正确;D :因为71132a a a =+,由()113131302a a S +==,()()114147814702a a S a a +==+<,故D 正确; 故选:BCD.9.(多选题)已知数列{}n a 满足:212n n n a a a λ+=++*()N n ∈,其中R λ∈,下列说法正确的有( )A .当152,4a λ==时,1n a n ≥+ B .当1,4λ∞⎡⎫∈+⎪⎢⎣⎭时,数列{}n a 是递增数列C .当2λ=−时,若数列{}n a 是递增数列,则()()1,31,a ∞∞∈−−⋃+D .当13,0a λ==时,1211112223n a a a +++<+++【答案】ACD【解析】对于A ,当54λ=时,2215111042n n n n n a a a a a +⎛⎫−=++=++≥> ⎪⎝⎭,又12a =,故11n n a a +>+,所以1211211n n n a a a a n n −−>+>+>>+−+=,故A 项正确.对于B ,因为22111()24n n n n n a a a a a λλ+−=++=++−且1,4λ∞⎡⎫∈+⎪⎢⎣⎭,所以10n n a a +−≥, 当14λ=,112a =-时,22211111,,()2220n n n n n a a a a a a a ++⇒⇒−=+==-==-,此时数列{}n a 是常数列,故B 项错误;对于C, 由于数列{}n a 是递增数列, 当2n ≥时,故10n n a a −−>,2211111(22)(22)()(2)0n n n n n n n n n n a a a a a a a a a a +−−−−−=+−−+−=−++>,故120n n a a −++>, 所以2121020a a a a −>⎧⎨++>⎩,即()()211121112202220a a a a a a ⎧+−−>⎪⎨+−++>⎪⎩,解得11a >或13a <−,故C 项正确;对于D,当0λ=时,2212(1)1n nn n a a a a +=+=+−,结合13a =,可知2214111a a =−=>, 232133a a =−>,⋯,结合111()(2)n n n n n n a a a a a a +−−−=−++,可知{}n a 是递增数列,13n a a ≥=,则12(2)3(2)n n n n a a a a ++=+≥+, 即1232n n a a ++≥+,所以1121212223(2)222n nn n n a a a n a a a −−−−+++⨯⨯⨯≥≥+++, 即11523(2)3(2)3n nn a a n −+≥+=⨯≥,所以131(2)253n n n a ≤⨯≥+,当1n =时,1111312553a =≤⨯+,所以*131(N )253n n n a ≤⨯∈+, 可得2111(1)1311133133()125333510313nn n i i a =−≤+++=⨯<<+−∑,故D 项正确; 故选:ACD .10.(多选题)已知数列{}n a 满足2122n n n a a a +=−+,则下列说法正确的是( )A .当112a =时,()5124n a n <≤≥ B .若数列{}n a 为常数列,则2n a = C .若数列{}n a 为递增数列,则12a > D .当13a =时,1221n n a −=+【答案】AD【解析】对于A ,当112a =时,254a =,令1n nb a =−,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =−+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =−,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +−=−>,解得0n b <或1n b >.当11b <−时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b −≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <−或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =−,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列, 12log 2n n b −∴=,即11222,21n n n n b a −−=∴=+,D 正确.故选:AD.11.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = . 【答案】3【解析】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3.12.某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为 .【答案】134【解析】设第一层有m 根,共有n 层,则(1)20242n n n S nm −=+=, 4(21)404821123n m n +−==⨯⨯,显然n 和21m n +−中一个奇数一个偶数,则1121368n m n =⎧⎨+−=⎩或1621253n m n =⎧⎨+−=⎩或23176n m =⎧⎨=⎩,即11179n m =⎧⎨=⎩或16119n m =⎧⎨=⎩或2377n m =⎧⎨=⎩,显然每增加一层高度增加53当11179n m =⎧⎨=⎩时,10531096.6h =⨯≈厘米150<厘米,此时最下层有189根; 当16119n m =⎧⎨=⎩时,155310139.9h =⨯≈厘米150<厘米,此时最下层有134根;当2377n m =⎧⎨=⎩时,22310200.52150h =⨯≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根. 故答案为:13413.已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m nS S −{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00mn −的值为 .【答案】21【解析】不妨设数列{}n a 的公差大于零, 由于9100a a <,得9100,0a a <>, 且9n ≤时,0n a <,10n ≥时,0n a >, 不妨取m n >,则1mm n ii n S S a=+−=∑,设3030910i i k S S a ==−=∑,若9,30n m >=,则030301n ii n S S ak =+−≤<∑,此时式子取不了最大值;若9,30n m <=,则09301n ii n S S a k =+−≤+∑,又9i ≤时,0i a <, 因为09301n ii n S S a k k =+−≤+<∑,此时式子取不了最大值;因此这就说明09n n ==必成立. 若30m <,则0910m m i i S S a k =−≤<∑,这也就说明030m <不成立,因此030m =, 所以0021m n −=. 故答案为:21.14.已知数列 {}n a 是各项均为正数的等比数列, n S 为其前 n 项和, 1331614a a S ==,, 则2a = ; 记 ()1212n n T a a a n ==,,, 若存在 *0n ∈N 使得 n T 最大, 则 0n 的值为 .【答案】 4 3或4【解析】等比数列{}n a 中,公比0q >;由213216a a a ⋅==,所以24a =,又314S =,所以13131610a a a a ⋅=⎧⎨+=⎩解得1328a a =⎧⎨=⎩或1382a a =⎧⎨=⎩;若1328a a =⎧⎨=⎩时,可得2q,则21224a a q ==⨯=,且012,,,n a a a ⋯的值为2,4,8,16⋯,,可知数列{}n a 单调递增,且各项均大于1, 所以不会存在0n 使得012,,,n a a a ⋯的乘积最大(舍去);若1382a a =⎧⎨=⎩时,可得12q =,则211842a a q ==⨯=,且012,,,n a a a ⋯的值为118,4,2,1,,24,…,可知数列{}n a 单调递减,从第5项起各项小于1且为正数, 前4项均为正数且大于等于1,所以存在03n =或04n =,使得8421⨯⨯⨯的乘积最大, 综上,可得0n 的一个可能值是3或4. 故答案为:4;3或415.在数列{}n a 中,122,3a a ==−.数列{}n b 满足()*1n n n b a a n +=−∈N .若{}n b 是公差为1的等差数列,则{}n b 的通项公式为nb= ,n a 的最小值为 .【答案】 6n − 13−【解析】由题意1215b a a =−=−,又等差数列{}n b 的公差为1,所以()5116n b n n =−+−⋅=−; 故16n n a a n +−=−,所以当6n ≤时,10n n a a +−≤,当6n >时,10n n a a +−>, 所以123456789a a a a a a a a a >>>>>=<<<⋅⋅⋅,显然n a 的最小值是6a .又16n n a a n +−=−,所以()()()()()612132435465a a a a a a a a a a a a =+−+−+−+−+−()()()()()25432113=+−+−+−+−+−=−,即n a 的最小值是13−. 故答案为:6n −,13−16.第24届北京冬奥会开幕式由一朵朵六角雪花贯穿全场,为不少人留下深刻印象.六角雪花曲线是由正三角形的三边生成的三条1级Koch 曲线组成,再将六角雪花曲线每一边生成一条1级Koch 曲线得到2级十八角雪花曲线(如图3)……依次得到n 级*()n K n ∈N 角雪花曲线.若正三角形边长为1,我们称∧为一个开三角(夹角为60︒),则n 级n K 角雪花曲线的开三角个数为 ,n 级n K 角雪花曲线的内角和为 .。
高一数学知识点如何灵活运用解题对于刚刚踏入高中阶段的同学们来说,高一数学无疑是一个新的挑战。
数学知识点繁多,如何将这些知识点灵活运用到解题中去,是提高数学成绩、培养数学思维的关键。
首先,我们要对高一数学的主要知识点有清晰的认识。
集合、函数、数列、三角函数等,都是高一数学的重要内容。
以函数为例,函数的定义、性质(单调性、奇偶性、周期性等)、图像都是解题时需要重点关注的。
那么,如何实现灵活运用这些知识点解题呢?第一步,要扎实掌握基础知识。
这就好比建造高楼大厦,坚实的地基是关键。
对于每个知识点的定义、定理、公式,不仅要熟记于心,更要理解其推导过程和适用条件。
比如说,在学习等差数列的通项公式时,要明白是如何通过首项和公差推导出来的,这样在解题时才能灵活运用。
在掌握基础知识后,要多做练习题。
但这里的“多做”并非盲目地搞题海战术,而是有针对性地练习。
可以根据知识点的不同类型和难度,选择相应的题目进行训练。
通过练习,能够熟悉知识点在不同情境下的应用,提高解题的熟练度和速度。
比如,在学习函数的单调性时,可以做一些判断函数单调性、求函数单调区间的题目,通过实际操作来加深对知识点的理解。
同时,要善于总结归纳。
做完一道题后,不要只是满足于得出答案,而是要思考这道题考查了哪些知识点,用到了什么方法和技巧,还有没有其他的解法。
将同一类型的题目放在一起进行比较,找出它们的共性和规律,形成自己的解题思路和方法。
例如,对于求函数最值的问题,可以总结出通过求导、利用函数单调性、利用均值不等式等多种方法,并明确在什么情况下使用哪种方法更为简便。
在解题过程中,要注重思维的转化。
有些题目可能看起来比较复杂,但通过适当的转化,就可以将其变为熟悉的问题。
比如,将几何问题转化为代数问题,或者将实际问题转化为数学模型。
以三角函数为例,求一个角的三角函数值,可以通过构造直角三角形将其转化为边的比值来计算。
学会分析题目中的条件也是至关重要的。
很多同学在解题时,往往没有充分利用题目所给的条件,导致解题思路受阻。
高中数学培优笔记灵活思考与技巧解析高中数学,作为高中学习的基本功之一,对学习者的潜能的开发和能力的提高起着重要的作用。
学习高中数学,让学生了解数学的基本概念,掌握求解问题的基本方法,培养学生逻辑思维能力,增强英语阅读能力,有利于学习生物、物理等学科。
因此,提高高中数学水平,对提高学生学习兴趣,增强学习能力和解决问题能力,具有重要意义。
要想在学习高中数学时取得良好的成绩,就必须结合灵活的思维能力和技巧的解析来进行学习。
灵活的思维能力指的是根据实际问题的要求,运用各种数学思想和方法,通过抽象建模,建模分析问题,从而求解问题的能力。
而技巧的解析指的是根据学习的内容,运用不同的方法和思想来解决具体的问题。
它要求学生有较强的分析问题能力,并具有数学技巧和公式运用技能,从而达到快速求解数学问题的目的。
为了有效提高高中数学水平,我们可以根据上述提到的两个方面,灵活思考和技巧解析,来提高我们的学习效率。
首先,灵活思考,学习者应该深入理解数学概念,仔细观察数学题目,用发散思维、抽象思维和综合思维来分析问题,找到问题的解决方案,让自己有效地理解数学知识,掌握数学规律,学会用数学来解决实际问题。
其次,技巧解析,技巧解析也是提高数学水平的重要方面,它需要学生熟练掌握一定的公式,如勾股定理、三角函数等,以及相关的求解方法,用有效的思维方式和正确的方法解决问题,并能灵活运用此方法来处理,解决各类复杂数学问题,提高解题能力。
最后,学习高中数学,要做到做到反复复习,熟练掌握公式,不断练习,积累经验,深入理解。
总结错误,仔细检查,正确地理解数学知识,正确使用数学思路,提高数学解题能力,从而取得更好的数学成绩。
通过上述讨论,不难看出提高高中数学水平的关键,就是灵活思考和技巧解析的结合,只有在此基础上,才能真正提高高中学习数学的能力和综合能力,才能取得良好的数学成绩。
高一数学必修2练习题(9)A 组题(共100分)一、选择题:本大题共5小题,每小题7分,共35分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数y =lg (2-x )的定义域是 ( )A .(-∞,2)B . (-∞,2]C .(2,+∞)D . [2,+∞) 2.下列与函数y =x 有相同图象的一个函数是 ( )A 2xy =B xxy 2=C )10(l o g ≠>=a a a y x a且D x a a y l o g =3. 函数y =log 22x +log 2x 2+2的值域是 ( ) A .(0,+∞) B .[1,+∞) C .(1,+∞) D .R4. 三个数60.70.70.76log 6,,的大小关系为( )A 60.70.70.7log 66<<B 60.70.70.76log 6<<C 0.760.7l o g 660.7<<D 60.70.7log 60.76<<5. 若f (ln x )=3x +4,则f (x )的表达式为 ( )A 3ln xB 3ln x +4C 3e x+4 D 3e x二、填空题:本大题共4小题,每小题6分,共24分。
6.判断函数2lg(1)y x x =++的奇偶性7.幂函数()f x 的图象过点43,27)(,则()f x 的解析式是_____________8.函数y =lg x +lg (x -1)的定义域为A ,y =lg (x 2-x )的定义域为B ,则A 、B 关系是 .9.计算:(log )log log 2222545415-++= .三、解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。
10.(本小题13分)计算100011343460022++-++-lg .lglg lg lg .的值11.(本小题14分)求函数y =lg x +lg (x +2)的反函数.12.(本小题14分)已知函数211()log 1x f x xx+=--,求函数的定义域,并讨论它的奇偶性单调性B 组题(共100分)四、选择题:本大题共5小题,每小题7分,共35分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
13.函数12log (32)y x =-的定义域是 ( )A [1,)+∞ B 2(,)3+∞ C 2[,1]3D 2(,1]314.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 的值为( )A42 B22 C41 D2115. 函数y =lg ︱x ︱是 ( )A .偶函数,在区间(-∞,0)上单调递增B .偶函数,在区间(-∞,0)上单调递减C .奇函数,在区间(0,+∞)上单调递增D 奇函数,在区间(0,+∞)上单调递减16. 已知函数=-=+-=)(.)(.11lg)(a f b a f xx x f 则若 ( )A bB b - Cb1 D 1b-17. 已知函数2log ()3xx f x ⎧=⎨⎩(0)(0)x x >≤,则1[()]4f f 的值是 ( )A .9B .19C .-9D .-19一.填空题:本大题共4小题,每小题6分,共24分。
18.已知1414log 7,log 5,a b ==则用a 、b 表示35log 28=19.设(){}1,,lg A y xy =, {}0,,B x y =,且A =B ,则x = ;y =20. 计算:()()5log22323-+21. 若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx上述函数是幂函数的个数是五、解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。
22.(本小题13分)已知函数()log ()xa f x a a =-(1)a >,求f (x )的定义域和值域.23.(本小题14分)已知f (x )=lg (a x -b x )(a ,b 为常数), 当a >1>b >0时,判断f (x )在定义域上的单调性,并用定义证明. 24.(本小题14分)求函数10lg100lg )(x x x f ⨯=的最小值及取得最小值时自变量x 的值.C 组题(共50分)六、选择或填空题:本大题共2题。
25.已知y =log a (2-ax )在[0,1]上为x 的减函数,则a 的取值范围为 ( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)26.已知x 1是方程x +lg x =3的根,x 2是方程x +10x=3的根,那么x 1+x 2的值为( )A .1B . 2C . 3D .4七、解答题:本大题共3小题,解答题应写出文字说明、证明过程或演算步骤。
27.已知函数f (x )=log 2(x +1),点(x ,y )在函数y = f (x )的图象上运动,点(t ,s )在函数y =g(x )的图象上运动,并且满足.,3y s x t ==①求出y =g(x )的解析式.②求出使g(x )≥f (x )成立的x 的取值范围.③在②的范围内求y = g(x )-f (x )的最小值.28.设函数y = f (x )是定义在R +上的减函数,并且满足f (xy )= f (x )+ f (y ),f (13)=1,(1)求f (1)的值,(2)如果f (x )+ f (2-x )<2,求x 的取值范围.29.已知函数f (x )= log a11-+x x ,(a >0,a ≠1),当x ∈(r ,a -2)时,f (x )的值域为(1,+∞),求a 与r 的值.厦门市2007—2008学年数学必修1练习(四)参考答案A 组题(共100分)一、选择题: ADBDC二、填空题: 6.(奇函数),7.(34()f x x =),8.(A ⊂≠B ),9.(-2) 三、解答题:10.解:原式13lg 32lg 300=-+-+22lg 3lg 326=+-++= 11. 解:函数有意义条件是x >0,由x 2+2x =10y ,∴(x +1)2=10y +1 x +1=101y+,所求反函数为y =101x+-1(x ∈R ) 12. 解:0x ≠且101xx+>-,11x -<<且0x ≠,即定义域为(1,0)(0,1)- ;221111()log log ()11x x f x f x x x x x-+-=-=-+=--+-为奇函数; 212()log (1)11f x xx =-+-在(1,0)(0,1)-和上为减函数B 组题(共100分)四、选择题: DABBB 五、填空题: 18.(2a a b-+),19.(1,1--),20.(15),21.(2)六、解答题:22.解:0,,1x x a a a a x -><<,即定义域为(,1)-∞;0,0,log ()1x x xa a a a a a a ><-<-<,即值域为(,1)-∞23.解:设212121,10;,1),(021x x x x x x b b b b b a a a b a x x -<-⇒>∴<<<∴>><<),()(),lg()lg(,2122112211x f x f bab ababax x xx x x x x <-<-⇒-<-⇒即即可f (x )为增函数。
24. 解:f (x )=(2+lg x )(lg x -1)=(lg x )2+lg x -2=(lg x +12)2-214≥-214,∴当x =1010时函数取得最小值-214.C 组题(共50分)七、选择或填空题: 25.(B ),26.(C ) 八、解答题:27.解:①由题意知⎩⎨⎧==⎪⎩⎪⎨⎧==s y t x sy tx3,3则∵点(x ,y )在函数y =log 2(x +1)的图象上,∴s =log 2(3t+1) 即:y =g(x )=log 2(3x +1)②由g(x )≥f (x ) 即:log 2(3x +1)≥log 2(x +1)得0131001013113≥⇒⎪⎪⎩⎪⎪⎨⎧>->≥⇔⎪⎩⎪⎨⎧>+>++≥+x x x x x x x x ∴使g(x )≥f (x )的x 的取值范围是x ≥0③)1(log )13(log )()(22+-+=-=x x x f x g y )123(l o g 113l o g 22+-=++=x x x312310<+-≤∴≥x x又∵y =log 2x 在x ∈(0,+∞)上单调递增 ∴当,01log )123(log ,022=≥+-=≥x y x 时 即y min =028.解:①令x =y =1,则f (1)=2f (1),∴f (1)=0; ②有意义条件0<x <2,又f (x )+f (2-x )=f (2x -x 2),2=f (13)+ f (13)=f (19) ∴f (2x -x 2)< f (19),又函数是R +上的减函数,∴2x -x 2<19∴x <1-223或x >1+223,综上x 的取值范围是0<x <1-223或1+223< x <2.29.解: 讨论a >1时,而x <-1,或x >1。
函数可拆成y = log a t ,t =11-+x x ,y →+∞,t →+∞,x →1, r =1,该条件值+∞要会用;再由单调性得f (a -2)=1,(a >3)a =2+3。
0<a <1时,y →+∞,t →0,x →-1,a -2=-1矛盾。
∴a =2+3,r =1说明:A 组题:最基本要求.最高达到会考的中等要求,与课本的练习题.简单的习题对应.B 组题:中等要求.会考的中、高级要求,高考的中等要求,与课本的习题对应C 组题:高等要求.对应高考的高等要求. 其中:有些题出自高三复习资料.北京小学语文家教-小学语文一对一辅导老师NO.1:本人兴趣广泛,待人亲和,各学科平衡发展。
高中语文成绩一直保持班级前三名,高考物理成绩为全省前5%,可带高中语文和高中物理家教。
北京小学语文家教-小学语文一对一辅导老师NO.2:乐观,有主见,直爽,对文科感兴趣,喜欢交际,沟通,从小喜欢阅读,中考语文市第一,可带初中语文家教。