机械振动第二章ch2d
- 格式:ppt
- 大小:553.00 KB
- 文档页数:15
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩&&&00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-=V所以:7(/)n rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=&& 其中,初始条件:(0)0.2(0)0x x=-⎧⎨=⎩& (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=- 弹簧力为:()()cos ()k n mg F kx t x t t N ω===-V因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+& 212U kx =由()0T d E U +=可知:12()0m m x kx ++=&& 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩&2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+&) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩&200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
第2章二自由度系统的振动(单自由度问题向多自由度问题的过渡)12二自由度系统,其运动需要两个独立坐标描述。
u k 21k 如图是一汽车的简化模型,车轮及悬架简化成刚度为k 1 和k 2 的两个弹簧,车体简化成为刚性杆。
车体相对于随体坐标系的振动有沿u 方向的上下运动,也有沿ϑ方向的俯仰运动,一般这两种运动同时发生。
这样,系统的运动就要用两个独立坐标u 和ϑ来描述,这就是一个二自由度系统。
平面内刚性杆的运动描述需两个自由度32.1 系统运动微分方程t 1u 2u 1k k 23k c 12c 3c m 1m 2f 1( )t ( )f 2u 1u 2u 2k 3u k 11c u 11m 1m 2( )f 1tt ( )2f k 2( )u -1u 2u -( )2k u 12u -( )2c 2u 1( )u -2c u 12u c 32⎩⎨⎧+−−−−−−=+−−−−−−=)()()()()()(22312223122221212112121111t f u c u u c u k u u k u m t f u u c u c u u k u k u m 变量耦合的运动方程组考察图示的二自由度系统:4⎩⎨⎧===++00)0(,)0()()()()(u u u u f Ku u C u M t t t t ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+−−++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+−−++⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2010212010212121322221213222212121)0()0(,)0()0(00uu u uu u u u f f u u k k k k k k uuc c c c c c u um m 矩阵描述:质量矩阵,阻尼矩阵,刚度矩阵;位移向量,激励力向量。
基本特征a. 描述系统特性的M、K和C 不再是三个常数,而是三个矩阵;b. 系统中两质量块的运动是相互关联的,这反映在方程中矩阵K 和C的非对角元素不为零(更广义的M非对角元素亦不为零)。
新教材鲁科版2019版物理选择性必修第一册第2章知识点清单目录第2章机械振动第1节简谐运动第2节振动的描述第3节单摆第4节科学测量:用单摆测量重力加速度第5节生活中的振动第2章机械振动第1节简谐运动一、机械振动1. 定义:物理学中,将物体(或物体的某一部分)在某一位置附近的往复运动称为机械振动,简称振动。
2. 平衡位置:振动物体在某一位置附近做往复运动,这个位置称为平衡位置,也是物体所受回复力为零的位置。
3. 回复力(1)方向:总是指向平衡位置。
(2)作用效果:使物体总是在平衡位置附近振动。
(3)来源:回复力可由某一个力来提供,也可由振动物体受到的几个力的合力来提供。
二、简谐运动及其特征1. 弹簧振子(1)弹簧振子是一种理想模型。
(2)弹簧振子的组成:如图所示,弹簧一端固定,另一端连接一个可视为质点的物体,不计弹簧质量,物体置于光滑水平面上。
(3)弹簧振子的回复力:回复力由物体所受弹簧弹力提供,为F=-kx。
其中k等于弹簧劲度系数,x是物体相对平衡位置的位移,负号表示力与位移的方向相反。
2. 简谐运动(1)定义:物体所受回复力的大小与位移大小成正比,方向总是与位移方向相反的运动称为简谐运动。
(2)简谐运动的运动学特征:a=-kx。
m(3)弹簧振子能量特征:只有弹簧弹力做功,系统的动能和弹性势能相互转换,机械能守恒。
3. 易错警示(1)物体在平衡位置所受合力不一定为零,而是沿简谐运动方向的合力为零,且物体在平衡位置时速度最大。
(2)简谐运动的位移和一般运动的位移有很大区别,一般运动的位移都是由初位置指向末位置,而简谐运动的位移都是由平衡位置指向振动质点所在位置。
三、对简谐运动的位移、速度、回复力和加速度的理解1. 简谐运动三个物理量的特点(1)位移:以平衡位置为坐标原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻物体的位移用该时刻物体所在位置的坐标来表示。
(2)速度:速度是描述物体在平衡位置附近运动快慢的物理量。
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。