沪教版六年级数学第二学期期末复习试卷及答案(4)
- 格式:doc
- 大小:644.00 KB
- 文档页数:6
沪教版(上海)六年级数学第二学期第五章有理数必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若2(1)|3|0++-=x y ,则x ,y 的值分别为()A .1,3B .1,3-C .1-,3D .1-,3-2、观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;②当0a >时,33()a a -=-.其中表示的规律正确的是()A .①B .②C .①、②都正确D .①、②都不正确3、计算20082009(1)(1)-+-所得结果是()A .2-B .0C .1D .24、某公司去年1~3月平均每月亏损1.5万元,4~6月平均盈利2万元,7~10月平均盈利1.7万元,11~12月平均亏损2.3万元,这个公司去年总盈亏情况是( )A .盈利0.1万元B .亏损0.1万元C .亏损0.3方元D .盈利3.7万元 5、分数267介于两个相邻的整数之间,这两个整数是( )A .3和4B .4和5C .5和6D .6和76、在数轴上,点A 表示-2,若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是()A .2B .4C .6D .-47、某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg8、湖南省第十一次党代会以来,我省6820000建档立卡贫困人口全部脱贫.数据6820000用科学记数法表示正确的是()A .66.8210⨯B .568.210⨯C .56.8210⨯D .70.68210⨯9、下列说法中正确的有( )①0乘任何数都得0;②一个数同1相乘,仍得原数;③﹣1乘任何有理数都等于这个数的相反数;④互为相反数的两个数相乘,积是1A .1个B .2个C .3个D .4个10、下列各组数中,运算结果相等的是( )A .(﹣3)2与﹣32B .(﹣3)3与﹣33C .32()3-与323- D .34与43第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、矿井下A ,B ,C 三处的高度分别是37-m ,129-m ,71.3-m ,那么最高处比最低处高______m .2、某地气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么5千米高空的气温是 ______℃.3、计算:(−1)9(−32)2___________. 4、比较大小:23___35(填“>”或“<”). 5、已知a 、b 互为相反数,m 是负整数中最大的数,n 是绝对值最小的数,则2023a b n m ++-=______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)()()2464-÷⨯-(2)()2232112328.542⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎣⎦⎝⎭ (3)()377604126⎛⎫+-⨯- ⎪⎝⎭(4)()()6342312-+⨯---2、把下列各数填在相应的大括号内:﹣35,0.1,﹣47,0,﹣314,1,4.0100100……,22,﹣0.3,π. 正数:{ ……};整数:{ ……};负分数:{ ……};非负整数:{ ……}.3、某模具厂规定每个工人每周要生产某种模具280个,平均每天生产40个;但由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小张的生产情况(超产记为正减产记为负):(1)根据记录的数据计算小张本周实际生产模具的数量;(2)该厂实行“每日计件工资制”.每生产一个玩具可得工资6元,若超额完成任务,则超过部分每个另奖4元;少生产一个则倒扣2元,那么小张这一周的工资总额是多少元?4、把下列各数填在相应的集合里:3,1-,2-,0.5,0,110,13-,0.75-,30%,π. (1)负数集合:{ …};(2)整数集合:{ …};(3)正有理数集合:{ …};5、计算:412|5|(3)26⎡⎤-+---÷+⎢⎥⎣⎦.-参考答案-一、单选题1、C【分析】由平方和绝对值的非负性,即可求出x ,y 的值.【详解】解:∵2(1)|3|0++-=x y ,∴10x +=,30y -=,∴1x =-,3y =,故选:C .【点睛】本题考查了非负性的应用,解题的关键是掌握绝对值的非负性,从而进行计算.2、B【分析】根据三组数的运算的规律逐个判断即可得.【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-, []3334(4)(4)64-=--=--=-, 归纳类推得:当0a <时,33()a a =--,式子①错误;由三组数的运算得:3328(2)-=-=-,33327(3)--=-=,33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子②正确;故选:B .【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键.3、B【分析】根据-1的奇数次幂是1,-1的偶数次幂1,先算乘方,再算加法.【详解】解:(-1)2008+(-1)2009=1+(-1)=0.故选:B.【点睛】本题考查的是有理数的乘方的法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,熟练掌握相关运算法则是解题的关键.4、D【分析】根据盈利为正、亏损为负,然后再求和计算即可.【详解】解:∵-1.5×3+2×3+1.7×4+(-2.3)×2=3.7万元∴这个公司去年总盈利3.7万元.故选:D.【点睛】本题主要考查了正负数的应用、有理数加减运算等知识点,理解“盈利为正、亏损为负”并据此列式成为解答本题的关键.5、A【详解】解:267=537,所以分数267介于3和4两个整数之间,故选:A.【点睛】本题考查了带分数和假分数的转换,假分数的分子除以分母可以得出商和余数,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分数部分的分母还是假分数的分母,如果余数为0,那么假分数就转换成整数.6、A【分析】根据向右加的运算法则,计算-2+4的结果就是新数.【详解】根据题意,得点B表示的数是-2+4=2,故选A.【点睛】本题考查了数轴上的动点问题,熟练掌握新数的表示方法是解题的关键.7、B【分析】用最重的质量减去最轻的质量即可.【详解】解:由25±0.3可得最重为25+0.3=25.3kg,最轻为25-0.3=24.7kg,所以最多相差25.3-24.7=0.6kg,故选:B.【点睛】本题考查了正负数的意义,以及有理数减法的应用,正确列出算式是解答本题的关键.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】6820000=6.6.8210故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.9、C【分析】根据有理数的乘法以及相反数的定义解决此题.【详解】解:①根据有理数的乘法,0乘以任何数等于0,那么①正确.②根据有理数的乘法,任何数乘以1都得本身,那么②正确.③根据有理数的乘法以及相反数的定义,得﹣1乘任何有理数都等于这个数的相反数,那么③正确.④根据相反数的定义(符号相反,绝对值相等的两个数互为相反数),那么④不正确.综上:正确的有①②③,共3个.故选:C.【点睛】本题主要考查有理数的乘法及相反数的意义,熟练掌握有理数的乘法及相反数的意义是解题的关键.【分析】根据有理数乘方的性质,对各个选项逐个分析,即可得到答案.【详解】A 、(﹣3)2=9,﹣32=﹣9,故本选项错误;B 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;C 、32()3-=827- ,323-=83-,故本选项错误; D 、34=81,43=64,故本选项错误;故选:B .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.二、填空题1、故答案为:(2)1210100%20%2-⨯=. 故答案为:20%.【点睛】本题考查有理数混合运算的实际应用.根据题意正确列出算式是解答本题的关键. 70.92【分析】先确定最高处和最低处,根据有理数的减法,可得两地的相对高度.【详解】解:∵最高处:-37m,最低处:-129m,最高处比最低处高:-37-(-129)=92m,故答案为:92.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2、﹣10【分析】根据高度每增加1千米,气温大约下降5℃,求出下降的温度,再相减计算即可.【详解】解:15﹣5÷1×5=15﹣5×5=15﹣25=﹣10(℃).3、9 4 -【详解】解:29399 11.244故答案为:9 4 -【点睛】本题考查的是有理数的乘法运算与乘方运算,掌握“负数的奇次方是负数”是解本题的关键.4、>【详解】解:因为210315=,39515=,1091515, 所以2335>. 故答案为:>.【点睛】本题考查了有理数比较大小,解题的关键是熟记有理数大小比较法则.5、1【分析】根据:a 、b 互为相反数,m 是负整数中最大的数,n 是绝对值最小的数,可得:a +b =0,m =-1,n =0,代入计算即可.【详解】解:由题意可得:a +b =0,m =-1,n =0,∴()20230011a b n m ++-=+--=,故答案为:1.【点睛】此题考查了有理数的混合运算,相反数,倒数,以及绝对值,熟练掌握各自的性质是解本题的关键.三、解答题1、(1)16(2)-6(3)-10【分析】(1)先计算除法,再计算乘法;(2)先计算括号,再乘方,后乘除,最后加减;(3)利用乘法的分配律计算;(4)先计算乘方.(1)()()2464-÷⨯-=(4)(4)-⨯-=16.(2)()2232112328.542⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎣⎦⎝⎭ =118948.544⎡⎤---⨯-÷⎢⎥⎣⎦ =11824-+÷ =1842-+⨯=82-+= -6.(3)()377604126⎛⎫+-⨯- ⎪⎝⎭=453570--+(4)()()6342312-+⨯--- 16318=-+⨯+16385=-++=-.【点睛】本题考查了有理数加减乘除乘方的混合运算,熟练掌握运算顺序是解题的关键.2、正数:{ 0.1,1,4.0100100……,22,π ……};整数:{ ﹣35,0,1,22 ……};负分数:{ ﹣47,﹣314,﹣0.3 ……}; 非负整数:{ 0,1,22 ……}【分析】根据有理数的分类可对给出数字进行分类.【详解】解:正数:{0.1,1,4.0100100……,22,π……};整数:{﹣35,0,1,22 ……};负分数:{47-,134-,﹣0.3……}; 非负整数:{0,1,22 ……}.【点睛】本题考查了有理数的分类,理解有理数的分类是解题的关键.3、(1)286个(2)1776元【分析】(1)用计划生产数量加上实际增减产量即可;(2)计算出玩具数量工资,再加上每日奖励或减去倒扣工资即可.(1)解:(1)()28091348170+--+-++2806=+286=(个)答:小张本周实际生产模具286个。
沪教版(上海)六年级数学第二学期第七章线段与角的画法重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副三角板的直角顶点重合放置于A 处(两块三角板可以在同一平面内自由动),下列结论一定成立的是( )A .BAE DAC ∠>∠B .45BAE DAC ∠-∠=︒ C .180BAE DAC ∠+∠=︒D .BAD EAC ∠≠∠2、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'3、如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE =90°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个4、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线5、下列说法正确的是()A.画一条长2cm的直线B.若OA=OB,则O是线段AB的中点C.角的大小与边的长短无关D.延长射线OA6、如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为()A.2 B.3 C.4 D.57、下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是()A.B.C .D .8、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°9、木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是( ).A .两点之间,线段最短B .线动成面C .经过一点,可以作无数条直线D .两点确定一条直线10、如图,货轮在O 处观测到岛屿B 在北偏东45°的方向,岛屿C 在南偏东60°的方向,则∠BOC 的大小是( )A .75°B .80°C .100°D .105°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 比较大小:3815︒'___38.15︒(填写“>”、“ =”、“ <”).2、3830'=___°.3、怀柔北部山区的分水岭隧道全长3333米,是我区最长的隧道.建成后有效缩短了我区北部乡镇居民往返怀柔城区的路程.如图,你能用学过的数学知识来解释走分水岭隧道与原盘山路相比缩短路程的原因吗?_________________________________.4、若5318α'∠=︒,则α∠的余角为______度.5、计算:18⎛⎫︒= ⎪⎝⎭_____'. 三、解答题(5小题,每小题10分,共计50分)1、作图题:已知:如图,是由三条线段a ,b ,c 首尾顺次相连而成的封闭图形(三角形),求作:线段DE ,使DE =b +c -a2、如图,点C 是线段AB 上的一点,延长线段AB ,使BD CB =.(1)请依题意补全图形(用尺规作图,保留作图痕迹);(2)若7AD =,3AC =,求线段DB 的长.3、已知A ,B ,C ,O ,M 五点在同一条直线上,且AO =BO ,BC =2AB .(1)若AB =a ,求线段AO 和AC 的长;(2)若点M 在线段AB 上,且AM =m ,BM =n ,试说明等式MO =12|m ﹣n |成立;(3)若点M 不在线段AB 上,且AM =m ,BM =n ,求MO 的长.4、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.5、 如图,已知线段AC =12cm ,点B 在线段AC 上 ,满足BC =12AB .(1)求AB 的长;(2)若D 是AB 的中点,E 是AC 的中点,求DE 的长.-参考答案-一、单选题1、C【分析】根据直角的性质及各角之间的数量关系结合图形求解即可.【详解】解:∵直角三角板,∴90BAC DAE ∠=∠=︒,∴180BAE BAD BAE EAC ∠+∠+∠+∠=︒,即180BAE DAC ∠+∠=︒.故选:C .【点睛】题目主要考查角度的计算,结合图形,找准各角之间的数量关系是解题关键.2、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.3、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F 在线段CD 上时点F 到点B 、C 、D 、E 的距离之和最小,当点F 和E 重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.4、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.5、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A、直线是无限长的,直线是不可测量长度的,所以画一条2cm长的直线是错误的,故本选项不符合题意;B、若OA=OB,则O不一定是线段AB的中点,故本选项不符合题意;C、角的大小与边的长短无关,故本选项符合题意;D、延长射线OA说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C.【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行6、A【分析】根据线段中点的定义,可得AC=CD=DB=4,代入数据进行计算即可得解求出AB的长;再求出AE的长,最后CE=AE-AC.【详解】解:∵AC=CD=DB,点E是线段AB的中点,∴AD=AC+CD=8.AC=CD=DB=4,AB=6,∴AB=3AC=12,AE=12则CE=AE-AC=6-4=2.故选:A.【点睛】本题考查了线段的和差,两点间的距离,主要利用线段中点的定义,比较简单,准确识图是解题的关键.7、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.8、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.9、D【分析】找准题中所给情境的关键词“画两个点”、“过这两点弹出一条墨线”即可得出结论.【详解】根据题意可知,木匠师傅先在木板上画两个点,然后过这两点弹出一条墨线.利用的是经过两点有且只有一条直线,简称:两点确定一条直线.故选:D .【点睛】本题是通过生活情境说出数学原理.关键在于抓住关键词.10、A在正北和正南方向上分别确定一点A 、D ,根据方位角定义,求出AOB ∠、COD ∠的度数,再利用角的关系,求出∠BOC 的大小即可.【详解】解:在正北和正南方向上分别确定一点A 、D ,如下图所示:由题意可知:45AOB ∠=︒,60COD ∠=︒,18075BOC AOB COD ∴∠=︒-∠-∠=︒,故选:A .【点睛】本题主要是考查了方位角的定义,以及角之间的关系,熟练利用方位角的定义,求解对应角度,是解决该题的关键.二、填空题1、>【分析】根据角度制的换算关系即可得.【详解】解:381538(1560)︒'=︒+÷︒38.2538.15=︒>︒,故答案为:>.【点睛】本题考查了角的度数大小比较,熟练掌握角度制是解题关键.2、38.5【分析】根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.【详解】解:∵30'3060=()°=0.5°,∴38°30'=38°+0.5°=38.5°.故答案为:38.5.【点睛】本题考查了角度制的换算,相对比较简单,注意以60为进制即可.3、两点之间,线段最短【分析】依据线段的性质,即可得出结论.【详解】解:走分水岭隧道与原盘山路相比缩短路程,其道理用数学知识解释的是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了线段的性质.熟记两点之间线段最短是解决本题的关键.4、36.7【分析】根据余角的定义计算即可.【详解】解:∵5318α'∠=︒=53.3°,∴α∠的余角=90°-53.3°=36.7°,5、7.5【分析】根据角度制的进率进行计算即可.【详解】 解:10.1257.58⎛⎫'︒=︒= ⎪⎝⎭, 故答案为:7.5.【点睛】本题主要考查了角度制的换算,熟知角度制的进率是解题的关键.三、解答题1、见解析【分析】利用尺规作图解答,作射线DM ,在射线上分别截取DQ=b ,QF=c ,FE=a ,则DE = b +c -a .【详解】解:线段 DE 即为所求.【点睛】此题考查了尺规作图,正确掌握截取线段的方法及线段的和差关系是解题的关键.2、(1)作图见解析;(2)2【分析】(1)根据题干的语句作图即可;(2)先求解线段4,CD = 再结合,BC BD = 从而可得答案.【详解】解:(1)如图,线段BD 即为所求作的线段,(2) 7AD =,3AC =,734,CD AD AC,BC BD = 1 2.2BD CD 【点睛】本题考查的是作一条线段等于已知线段,线段的和差倍分关系,掌握“画一条线段等于已知线段”是解本题的关键. 3、(1)12a ;3a 或a ;(2)见解析;(3)()1+2MO m n = 【分析】(1)分情况讨论当点C 在点B 右侧和左侧时,根据已知等量关系即可求解;(2)由题意知点M 在线段AB 上,分别将M 点在O 点左右两侧时MO 的长度用m 、n 表示出来,再讨论m n <和m n >时,MO 的值即可;(3)当点M 不在线段AB 上,则M 在A 左边或B 右边,根据题干数量关系分别求出两种情况时MO 的值即可.【详解】解:∵AO =BO ,AB =a , ∴11=22AO BO AB a == , 当点C 在点B 右侧时,如下图所示:∵BC =2AB ,AB =a ,∴233AC AB BC AB AB AB a =+=+== ,当点C 在点B 左侧时,如下图所示:∵BC =2AB ,AB =a ,∴2AC BC AB AB AB AB a =-=-==,∴线段AO 的长为12a ,线段AC 的长为3a 或a ; (2)当M 点在O 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = ,∴MO AO AM =-()111111222222AB AM AM BM AM AM BM AM BM AM =-=+-=+-=- , ∵AM m BM n ==, , ∴()111222MO n m n m =-=- , 当M 点在O 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴MO BO BM =- ,()111111222222AB BM AM BM BM AM BM BM AM BM =-=+-=+-=- , ∵,AM m BM n == , ∴()111222MO m n m n =-=- , 综上,当AM BM < 即m n < 时,()12MO n m =-, 当AM BM > 即m n > 时,()12MO m n =-, ∴12MO m n =-; (3)当点M 在A 点左侧时,如下图所示:∵AO =BO , ∴12AO AB = , ∴+MO AO AM =()111111+++222222AB AM BM AM AM BM AM AM BM AM ==-+=-=, ∵,AM m BM n ==, ∴()111++222MO n m m n ==, 当点M 在B 点右侧时,如下图所示:∵AO =BO , ∴12BO AB = , ∴+MO BO BM = ,()111111222222AB BM AM BM BM AM BM BM AM BM =+=-+=-+=+ , ∵,AM m BM n ==, ∴()111++222MO m n m n ==, 综上,()1+2MO m n =. 【点睛】 本题考查两点间距离,利用线段中点的性质、线段的和差分情况讨论是解题关键.4、(1)78°;(2)80°.【分析】(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得BOD BOC DOC ∠=∠+∠,然后将角度代入计算即可;(2)由互补可得180AOD BOD ∠+∠=︒,结合图形可得:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得12BOC AOC ∠=∠,利用等量代换得出321802AOC DOE ∠+∠=︒,将已知角度代入求解即可. 【详解】解:(1)OB 是AOC ∠的平分线,且42AOB ∠=︒,OD 是COE ∠的平分线,且36DOE ∠=︒,∴42AOB BOC ∠=∠=︒,36COD DOE ∠=∠=︒,∴423678BOD BOC DOC ∠=∠+∠=︒+︒=︒,∴78BOD ∠=︒;(2)∵AOD ∠与BOD ∠互补,∴180AOD BOD ∠+∠=︒,由图知:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠, 由角平分线定义知:12BOC AOC ∠=∠, ∴11802AOC DOE AOC DOE ∠+∠+∠+∠=︒, 即321802AOC DOE ∠+∠=︒,∵30DOE ∠=︒,∴32301802AOC ∠+⨯︒=︒,即80AOC ∠=︒.【点睛】题目主要考查角平分线及互补的定义,角度之间的计算,理解题意,找准角度进行计算是解题关键. 5、(1)8cm(2)2cm【分析】(1)根据BC =12AB 可得23AB AC =,代入计算即可; (2)根据中点分别求出AD 和AE 的长,即可得到DE 的长.(1) 1 2BC AB = 2212833AB AC cm ∴==⨯= (2)∵D 是AB 的中点142AD AB cm ∴== ∵E 是AC 的中点162AE AC cm ∴== 2DE AE AD cm ∴=-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。
沪教版(上海)六年级数学第二学期第七章线段与角的画法专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若1∠的余角为4835︒',则1∠的补角为( )A .4125︒'B .13125'︒C .13835'︒D .14125'︒2、下列图形中能用∠1,∠AOB ,∠O 三种方法表示同一个角的图形是( )A .B .C .D .3、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )A .用两个钉子就可以把木条固定在墙上B .把弯曲的公路改直,就能缩短路程C .锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹D.植树时,只要定出两棵树的位置就能确定同一行树所在的直线4、金水河是郑州最古老的河流.2500年来,金水河像一条飘带,由西向东,流淌在郑州市民身边,和郑州这座城市结下了不解之缘.近年来,我区政府在金水河治理过程中,有时会将弯曲的河道改直,这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短5、如图,OA是北偏东40°方向的一条射线,若∠AOB=90°,OB的方向是()A.西偏北50°B.东偏北50°C.北偏东50°D.北偏西50°6、有两根木条,一根AB长为80cm,另一根CD长为130cm,在它们的中点处各有一个小圆孔M、N (圆孔直径忽略不计,M、N抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是()A.25cm B.25cm或105cm C.105cm D.50cm或210cm7、如图,剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是()A .两点确定一条直线B .手线段最短C .同角的余角相等D .两点之间线段最短8、下列说法正确的是( )A .若10x +=,则1x =B .若1a >,则1a >C .若点A ,B ,C 不在同一条直线上,则AC BC AB +>D .若AM BM =,则点M 为线段AB 的中点9、下列说法正确的是( )A .画一条长2cm 的直线B .若OA =OB ,则O 是线段AB 的中点C .角的大小与边的长短无关D .延长射线OA10、周末小华从家出发,骑车去位于家南偏东35°方位的公园游玩,那么他准备回家时,他家位于公园的哪个方位( )A .北偏西55°B .北偏西35°C .南偏东55°D .南偏西35°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当时钟指向上午10点20分时,时针与分针的夹角是_____度.2、比较大小:1625'︒________16.25︒(填“>”“<”或“=”).3、已知∠A =20°24′,∠B =20.4°.比较大小:∠A ________∠B (填“>或<或=”).4、若∠A=20°18',则∠A 的补角的大小为__________.5、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知数轴上点A ,O ,B 对应的数分别为2-,0,6,点P 是数轴上的一个动点.(1)设点P 对应的数为x .①若点P 到点A 和点B 的距离相等,则x 的值是________;②若点P 在点A 的左侧,则PA =________,PB =__________(用含x 的式子表示);(2)若点P 以每秒1个单位长度的速度从点O 向右运动,同时点A 以每秒3个单位长度的速度向左运动,点B 以每秒6个单位长度的速度向右运动,在运动过程中,点M 和点N 分别是AP 和OB 的中点,设运动时间为t .①移动后,点P 在数轴上所表示的数为________,点A 在数轴上所表示的数为_________,点B 在数轴上所表示的数为__________,(用含t 的式子表示);②求MN 的长(用含的式子表示);③当t =_______时,MN AB =.参考公式:若数轴上A 、B 两点对应的数分别为a ,b ,则线段AB 的中点对应的数为2a b +. 2、如图1,BOC ∠和AOB ∠都是锐角,射线OB 在AOC ∠内部,AOB α∠=,BOC β∠=.(本题所涉及的角都是小于180︒的角)(1)如图2,OM 平分BOC ∠,ON 平分AOC ∠,当40α=︒,70β=︒时,求∠MON 的大小; 解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1_______=________2CON ∠=,所以°____35=_____MON CON COM ︒︒∠=∠-∠=-.(2)如图3,P 为AOB ∠内任意一点,直线PQ 过点O ,点Q 在AOB ∠外部,类比(1)的做法,完成下列两题:①当OM 平分POB ∠,ON 平分POA ∠,MON ∠的度数为_______;(用含有α或β的代数式表示); ②当OM 平分QOB ∠,ON 平分QOA ∠,MON ∠的度数为_________.(用含有α或β的代数式表示)3、 如图,40AOB ∠=︒,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若10DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,求COE ∠的度数.4、根据题意,补全解题过程.如图,点C 为线段AB 上一点,D 为线段AC 的中点,若AD =3,BC =2,求BD 的长.解:∵D 为线段AC 的中点,AD =3,∴CD = = .( )∵BD = + ,BC =2,∴BD = .5、在数轴上有A ,B ,C ,M 四点,点A 表示的数是-1,点B 表示的数是6,点M 位于点B 的左侧并与点B 的距离是5,M 为线段AC 的中点.(1)画出点M ,点C ,并直接写出点M ,点C 表示的数;(2)画出在数轴上与点B 的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q 满足14QA QC =,求点Q 表示的数.-参考答案-一、单选题1、C【分析】根据余角和补角的定义,先求出1∠,再求出它的补角即可.【详解】解:∵1∠的余角为4835︒',∴19048354125''∠=-=︒︒︒,1∠的补角为180412513835-︒=︒''︒,故选:C .【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.2、B【分析】利用角的定义及表示方法,进行判断即可得出结果.【详解】解:A、图中角只能表示为:∠1,∠AOB,故错误;B、图中角可表示为:∠1,∠AOB,∠O,故正确;C、图中角可表示为:∠1,∠AOB,故错误;D、图中角可表示为:∠1,∠AOB,故错误.故答案为:B.【点睛】本题主要考察的是角的表示方法,确定顶点即角的两边是解题的关键.3、B【分析】由题意可得A,B,D选项都与直线相关联,而C选项与距离相关,可以用“两点之间,线段最短”来解析,从而可得答案.【详解】解:用两个钉子就可以把木条固定在墙上,可用基本事实“两点决定一条直线”来解释,故A不符合题意;把弯曲的公路改直,就能缩短路程,可用基本事实“两点之间,线段最短”来解释,故B符合题意;锯木料时,一般先在木板上画两点,然后过这两点弹出一条墨迹,可用基本事实“两点决定一条直线”来解释,故C不符合题意;植树时,只要定出两棵树的位置就能确定同一行树所在的直线,可用基本事实“两点决定一条直线”来解释,故D不符合题意;故选B【点睛】本题考查的是两点之间,线段最短,两点决定一条直线,理解生活中的现象所反应的几何原理是解本题的关键.4、D【分析】根据线段的基本事实——两点之间,线段最短,即可求解.【详解】解:根据题意得:这一做法的主要依据是两点之间,线段最短.故选:D【点睛】本题主要考查了线段的基本事实,熟练掌握两点之间,线段最短是解题的关键.5、D【分析】根据方位角的概念,写出射线OB表示的方向即可.【详解】解:如图:∵OA 是北偏东40°方向上的一条射线,∠AOB =90°,∴∠1=90°-40°=50°,∴射线OB 的方向角是北偏西50°,故选:D .【点睛】本题考查了方向角,解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.6、B【分析】根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时;作出相应图形,结合图形求解即可.【详解】解:根据题意,分两种情况讨论:①当A ,(C 或B ,)D 重合,且剩余两端点在重合点同侧时,由图可得:()111113080252222MN CN AM CD AB cm =-=-=⨯-⨯=;②当B ,(C 或A ,)D 重合,且剩余两端点在重合点两侧时,由图可得:()1111130801052222MN CN BM CD AB cm =+=+=⨯+⨯=;∴两根木条的小圆孔之间的距离MN 是25cm 或105cm .故选:B .【点睛】题目主要考查线段两点间的距离,理解题意,分类讨论,作出相应图形是解题关键.7、D【分析】利用两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些线中,线段最短,据此解题.【详解】解:剪去四边形的“一角”,得到一个五边形,这个五边形的周长一定小于这个四边形的周长,依据是:两点之间线段最短,故选:D .【点睛】本题考查线段的性质,正确掌握相关知识是解题关键.8、C【分析】根据解方程、绝对值、线段的中点等知识,逐项判断即可.【详解】解:A. 若10x +=,则1x =-,原选项错误,不符合题意;B. 若1a >,则1a >或1a <-,原选项错误,不符合题意;C. 若点A ,B ,C 不在同一条直线上,则AC BC AB +>,符合题意;D. 若AM BM =,则点M 为线段AB 的中点,当A 、B 、M 不在同一直线上时,点M 不是线段AB 的中点,原选项错误,不符合题意;故选:C .【点睛】本题考查了解方程、绝对值、线段的中点等知识,解题关键是熟记相关知识,准确进行判断.9、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A 、直线是无限长的,直线是不可测量长度的,所以画一条2cm 长的直线是错误的,故本选项不符合题意;B 、若OA =OB ,则O 不一定是线段AB 的中点,故本选项不符合题意;C 、角的大小与边的长短无关,故本选项符合题意;D 、延长射线OA 说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C .【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.10、B【分析】根据描述作出草图,进而根据两直线平行,内错角相等以及方位角的表示方法即可求得答案【详解】解:如图所示,周末小华从家出发,骑车去位于家南偏东35°方位的公园游玩,那么他准备回家时,他家位于公园北偏西35°故选B【点睛】本题考查了方位角,掌握方位角的表示方法是解题的关键.二、填空题1、170【分析】由钟面角的意义可得:时针每分钟转0.5,分针每分钟转6,同时每一大格为30, 从而可得答案.【详解】解:如图,由钟面角的意义可得,∠BOC =∠COD =∠DOE =∠EOF =∠FOG =360°×112=30°, ∠AOB =30200.520, ∴∠AOG =30°×5+20°=170°,故答案为:170.【点睛】本题考查钟面角,解题的关键是“理解钟面上时针每分钟转0.5, 分针每分钟转6, 同时每一大格为30.”2、>【分析】先把单位化统一,再比较即可.【详解】解:因为16.251615'︒=︒,所以162516.25'︒>︒,故答案为:>.【点睛】本题考查了角的大小比较,注意单位要化统一,依据1°=60′,1′=60′′是解题的关键.3、=【分析】根据度分秒的换算:1°=60′解答即可.【详解】解:∵0.4×60′=24′,∴∠B =20.4°=20°24′=∠A,【点睛】本题考查度分秒的换算、角的度数大小比较,熟练掌握度分秒的换算进率是解答的关键. 4、159°42'(或159.7°)【分析】根据补角的定义可直接进行求解.【详解】解:由∠A=20°18',则∠A 的补角为180201815942''︒-︒=︒;故答案为159°42'.【点睛】本题主要考查补角,熟练掌握求一个角的补角是解题的关键.5、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x +3x =90°,解得x =18°,所以∠α=36°,∠β=54°, 所以25253654693636αβ∠+∠=⨯︒+⨯︒=︒;【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、(1)①2;②2x --,6x -;(2)①t ,23t --,66t +;②44MN t =+;③1.【分析】(1)①根据数轴上两点中点计算公式计算即可;②利用数轴上两点之间距离的计算方法列代数式即可;(2)①根据数轴上的点左右移动,相应点的变化求解即可;②用时间t 表示各个点在数轴上所表示的数,再求出MN 即可;③由MN =AB 得到关于t 的等式,解出t 值即可.【详解】(1)①由中点公式得:2622x -+==, 故答案为:2;②由数轴上两点间的距离公式可得:PA =-2-x ,PB =6-x ,故答案为:2x --,6x -;(2)①移动t 秒后,点P 在数轴上所表示的数为t ,点A 在数轴上所表示的数为-2-3t ,点B 在数轴上所表示的数为6+6t ,故答案为:t ,23t --,66t +;②∵点M 是AP 的中点,∴点M 在数轴上所表示的数为2312t t t --+=--; ∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+6t 2=3+3t ;∴33(1)44MN t t t =+---=+;③由题意得:4+4t =6-(-2),解得:t =1.故答案为:1.【点睛】考查数轴表示数的意义,掌握数轴上两点之间距离的计算方法和两点距离公式是解决问题的关键. 2、(1)AOC ∠,55°,55︒,20︒(2)①2α;②1802α︒- 【分析】(1)由题意直接根据角的度数和角平分线定义进行分析即可得出答案;(2)①由题意直接根据角的度数和角平分线定义得出∠MON =∠POM +∠PON =12∠AOB ,进而进行计算即可;②根据题意利用角平分线定义得出∠MON =1212QOB QOA ∠+∠,进而进行计算即可. (1)解:因为OM 平分BOC ∠,∠BOC =70β︒= 所以°°1170=3522COM BOC ∠=∠=⨯,因为°40AOB α∠==,∠BOC =70β︒=所以∠AOC=+AOB ∠∠BOC =°°40+70=110︒因为ON 平分AOC ∠,∠AOC =110︒ 所以°1=552CON AOC ∠=∠,所以°5535=20MON CON COM ︒︒∠=∠-∠=-.故答案为:AOC ∠,55°,55︒,20︒.(2)解:①如图,∵OM 平分∠POB ,ON 平分∠POA ,∴∠POM =12∠POB ,∠PON =12∠POA ,∴∠MON =∠POM +∠PON =12∠AOB =2α, 故答案为:2α; ②如图,∵OM 平分∠QOB ,ON 平分∠QOA ,∴∠MON =1212QOB QOA ∠+∠=1(360)2AOB ︒-∠=1802α︒-. 【点睛】本题考查角的计算以及角平分线的定义,熟练掌握并明确角平分线的定义是解答此题的关键. 3、(1)50°(2)60°【分析】(1)根据OB 是AOC ∠的平分线,OD 是COE ∠的平分线,可得40,10BOC AOB COD DOE ∠=∠=︒∠=∠=︒,即可求解;(2)设COD DOE x ∠=∠=︒ ,可得()40BOD BOC COD x ∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,再由AOD ∠与BOD ∠互补,从而得到()()4080180x x +︒++︒=︒ ,解得30x = ,即可求解.(1)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40,10BOC AOB COD DOE ∴∠=∠=︒∠=∠=︒,401050BOD BOC COD ∴∠=∠+∠=︒+︒=︒ ;(2)OB 是AOC ∠的平分线,OD 是COE ∠的平分线,40BOC AOB ∴∠=∠=︒,设COD DOE x ∠=∠=︒ ,()40BOD BOC COD x ∴∠=∠+∠=+︒ ,()80AOD AOB BOC COD x ∠=∠+∠+∠=+︒ ,∵AOD ∠与BOD ∠互补,()()4080180AOD BOD x x ∴∠+∠=+︒++︒=︒ ,30x ∴= ,30COD DOE ∴∠=∠=︒ ,260COE COD ∴∠=∠=︒ .【点睛】本题主要考查了角平分线的定义,补角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;互补两个角和等于180°是解题的关键.4、AD ,3,线段中点定义,CD ,BC ,5【分析】根据线段中点定义求出CD ,代入BD=CD+BC 求出即可.【详解】解:∵D 为线段AC 的中点,AD =3,∴CD=AD=3.(线段中点定义)∵BD=CD+BC ,BC =2,5、(1)M 为1,C 为3;图见解析;(2)图见解析,是长为10的线段CD ;(3)Q 表示1753--或【分析】(1)点M 在点B 左侧距离为5,故用6-5=1;M 为AC 中点,因此C 为3;(2)与点B 的距离小于或等于5的点组成的图形是一条长度为10的线段;(3)设x ,通过QA=14QC 建立等式,再解x ,从而求出Q 点表示的数,注意分Q 点位于AC 之间和Q 点在A 点左边两种情况建立方程求解.【详解】(1)M 为1,C 为3,如图:(2)如图:图形特征是一条长度为10的线段CD .(3)当Q 在AC 之间时:设Q 点表示的数为x ,则有x -(-1)=()134x -,解得x =15- 当Q 在A 点左边时:设Q 点表示的数为x ,则有-1-x =()134x ⨯-,解得x =73-【点睛】本题考查数轴上的点的标注,掌握各点 之间数量关系是本题解题关键.。
第六章一次方程(组)和一次不等式(组)难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果3(2)x -与2(3)x -互为相反数,那么x 的值是( )A .0B .1C .2D .32、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .3、若x <y ,则下列不等式中不成立的是( )A .x -5<y -5B .16x <16yC .x -y <0D .-5x <-5y4、如果a b >,那么下列结论中正确的是( )A .22a b -<-B .33a b <C .22a b ->-D .22a b ->+5、下列方程变形中,正确的是( )A .方程3445x x +=-,移项得3454x x -=-B .方程342x -=,系数化为1得342x ⎛⎫=⨯- ⎪⎝⎭C .方程()3215x -+=,去括号得3225x --=D .方程131123x x -+-=,去分母得()()311231x x --=+ 6、如果二元一次方程组3x y a x y a -=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,那么a 的值是( ) A .9 B .7 C .5 D .37、某车间24名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个.现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x 列出的方程正确的是( )A .()24246x x ⨯-=B .()26424x x ⨯=-C .()24624x x ⨯=-D .()42624x x =⨯-8、某学校体育有场的环形跑道长250m ,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔20s 相遇一次.如果同向而行,那么每隔50s 乙就追上甲一次,设甲的速度为m/s x ,乙的速度为m/s y ,则可列方程组为( )A .20()25050()250x y y x +=⎧⎨-=⎩B .20()50050()250x y x y -=⎧⎨+=⎩ C .20()25050()250y x x y -=⎧⎨+=⎩ D .20()25050()500x y y x +=⎧⎨-=⎩ 9、几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x 人,则下列方程中,符合题意的是( )A .8374x x -=+B .8374x x +=-C .3487x x -+=D .3487x x ++=10、受疫情影响,某公司2月份产值相比1月份下降80%,3月份开始回暖,达到1月份产值的70%,设该公司3月份相比2月份增长率为x,则下列关于x的方程正确的是()A.80%(1+x)=70% B.(1﹣80%)(1+x)=70%C.1﹣80%+x=70% D.(1﹣80%)x=70%第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有______户人家?2、二元一次方程组40610x yy x-=⎧⎨-=⎩的解为 _____.3、3x与2y的差是非正数,用不等式表示为_________.4、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.5、有一个不完整圆柱形玻璃密封容器如图1,测得其底面直径20cma=,高为30cm,其内装液体若干,若如图2放置时,测得液面高为15cm,若如图3放置时,测得液面高为20cm,则该玻璃密封容器的总容积是______(结果保留π)三、解答题(5小题,每小题10分,共计50分)1、解方程组:111, 522x yx y+-⎧-=-⎪⎨⎪+=⎩.2、已知点P是图形M上的任意点,点Q是图形N上的任意点.给出规定:如果P,Q两点的距离有最小值,那么我们称这个最小值为图形M—N的亲和距离;记作:d(图形M,图形N).特别地,当P,Q两点重合时,d(图形M,图形N)=0举例说明:如图,数轴上的点A表示的数是1,点B,C表示的数分别是2与3,那么d(点A,线段BC)=1根据以上定义完成下列问题:数轴上的点D,点E表示的数分别是x,x+1,点O为原点,(1)当x=1时,d(原点O,线段DE)=;(2)如果d(原点O,线段DE)=3,那么x=;(3)数轴上的点F,点G表示的数分别是y,y+4,如果d(线段DE,线段FG)=2,直接写出x y-的值.3、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?4、解方程:x+314=1.2.5、某校七年级组织去北京世园公园开展综合实践活动.已知参加活动的教师和学生共70人;其中学生人数比教师人数的3倍还多6人,问参加活动的教师和学生各有多少人?-参考答案-一、单选题1、A【分析】根据“互为相反数的两个数的和为0”,可列出方程,求解即可.【详解】解:由题意可知,3(2)2(3)0x x -+-=,则36620x x -+-=,0x ∴=,故选:A .【点睛】本题主要考查解一元一次方程,相反数,解题的关键是掌握解一元一次方程的一般步骤是解题的关键,在解题时还应注意解方程易错点:去分母时保留括号,等式左右每一项都要乘最小公分母,移项要变号等.2、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.3、D【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、A【分析】结合不等式的性质,对各个选项逐个分析,即可得到答案.【详解】∵a b >∴a b -<-,33a b >,即选项B 错误; ∴22a b -<-,22a b -<-,即选项A 正确,选项C 错误;根据题意,无法推导得22a b ->+,故选项D 不正确;故选:A .【点睛】本题考查了不等式的性质 ,解题的关键是熟练掌握不等式的性质并能灵活运用.5、C【分析】A 、根据等式的性质1即可得到答案;B 、根据等式的性质1即可得到答案;C 、根据去括号法则即可得到答案;D 、根据等式的性质,两边同时乘6,可得答案.【详解】解:A 、方程3445x x +=-,移项得3454x x -=--,原变形不正确,不符合题意;B 、方程342x -=,移项,未知数系数化为1,得234x ⎛⎫=⨯- ⎪⎝⎭,原变形不正确,不符合题意; C 、方程()3215x -+=,去括号,得3225x --=,原变形正确,符合题意;D 、131123x x -+-=,去分母得()()316231x x --=+,原变形不正确,不符合题意; 故选:C .【点睛】本题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.6、B【分析】先求出3x y a x y a -=⎧⎨+=⎩的解,然后代入3570x y --=可求出a 的值. 【详解】解:3x y a x y a -=⎧⎨+=⎩①②, 由①+②,可得2x =4a ,∴x =2a ,将x =2a 代入①,得2a -y =a ,∴y =2a ﹣a =a ,∵二元一次方程组的解是二元一次方程的一个解,∴将2x a y a=⎧⎨=⎩代入方程3x ﹣5y ﹣7=0,可得6a ﹣5a ﹣7=0, ∴a =7,故选B .【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.7、C【分析】根据x 名工人生产螺栓4x 个,生产螺母6(24)x -个,且螺栓和螺母按1:2配套,列出一元一次方程即可【详解】解:设x 名工人,则生产螺栓4x 个,生产螺母6(24)x -个,螺母的数量是螺栓的2倍,则 2⨯4x =6(24)x -故选C【点睛】本题考查了一元一次方程的应用,注意生产的螺栓的总数量的2倍与螺母的总数量相等是解题的关键.8、A【分析】此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.【详解】解:①根据反向而行,得方程为30(x +y )=400;②根据同向而行,得方程为80(y -x )=400.那么列方程组20()25050()250x y y x +=⎧⎨-=⎩, 故选:A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.9、A【分析】根据“如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱”,即可得出关于x 的一元一次方程组,此题得解.【详解】解:依题意,得:8374x x -=+故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程组,找准等量关系,正确列出一元一次方程组是解题的关键.10、B【分析】设该公司3月份相比2月份增长率为x,根据某公司2月份产值相比1月份下降80%,3月份开始回暖,达到1月份产值的70%,列出方程即可.【详解】解:设该公司3月份相比2月份增长率为x,根据题意知:(1﹣80%)(1+x)=70%,故选B.【点睛】本题主要考查了从实际问题中抽象出一元一次方程,解题的关键在于能够准确理解题意.二、填空题1、75【分析】设城中有x户人家,根据“今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完”,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设城中有x户人家,依题意,得:x+13x=100,解得:x=75.故答案为:75.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2、205x y =⎧⎨=⎩ 【分析】利用加减消元法解二元一次方程组即可得到答案.【详解】解:40610x y y x -=⎧⎨-=⎩①②, 用①+②得:210y =,解得5y =,把5y =代入①中得:200x -=,解得20x,∴方程组的解为205x y =⎧⎨=⎩. 【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.3、3x -2y ≤0【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x 与2y 的差是非正数,用不等式表示为3x -2y ≤0.故答案为:3x -2y ≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.4、1或2或1【分析】设租用A 型车x 辆,B 型车y 辆,再列方程8420,x y 再求解方程的正整数解即可.【详解】解:设租用A 型车x 辆,B 型车y 辆,则8420,x y52,y x由题意得:,x y 为正整数,13x y 或2,1x y 所以租用A 型车1辆或2辆,故答案为:1或2【点睛】本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.5、32000cm π【分析】根据圆柱体的体积公式和图②和图③中的溶液体积相等,可以列出相应的方程,从而可以解答本题.【详解】解:设该玻璃密封器皿总容量为3Vcm ,()222015203020V ππ⨯⨯=-⨯⨯-,解得2000V π=,即该玻璃密封器皿总容量为32000cm π.故答案为:32000cm π.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用数形结合的思想解答.三、解答题1、13x y =-⎧⎨=⎩ 【分析】原方程组化简后用代入消元法求解.【详解】解:原方程组化简,得25172x y x y -=-⎧⎨+=⎩①②, ②×5+①,得7x =-7,∴x =-1,把x =-1代入②,得-1+y =2,∴y =3,∴13x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.2、(1)1(2)3或-4(3)3-或6【分析】(1)根据当x =1时,点D 表示的数是1,点E 表示的数是x +1=2,点O 到线段DE 的最短距离为OD =1即可;(2)根据d (原点O ,线段DE )=3,可得OD =3或OE =3,分类考虑当OD =3时,点D 在点O 的右侧,可得x -0=3,当OE =3时,点E 在点O 的左侧,0-(x +1)=3,解方程即可;(3)线段DE 与FG 的位置有两种,DE 在FG 的左侧,或DE 在FG 的右侧,当DE 在FG 的左侧时,d (线段DE ,线段FG )=2,即EF =2,利用两点距离公式得出()12y x -+=,当DE 在FG 的右侧时,d (线段DE ,线段FG )=2,即GD =2,根据两点距离公式得出()42x y -+=即可.(1)解:当x =1时,点D 表示的数是1,点E 表示的数是x +1=2,∴点O 到线段DE 的最短距离为1,d (原点O ,线段DE )=1;故答案为1;(2)解:∵d (原点O ,线段DE )=3,∴OD =3或OE =3当OD =3时,x -0=3,x =3,当OE =3时,0-(x +1)=3∴x =-4,故答案为-4或3;(3)解:线段DE 与FG 的位置有两种,DE 在FG 的左侧,或DE 在FG 的右侧,当DE 在FG 的左侧时,∵d (线段DE ,线段FG )=2,即EF =2,∴()12y x -+=,∴3y x -=,∴3x y -=-;当DE 在FG 的右侧时,∵d (线段DE ,线段FG )=2,即GD =2,∴()42x y -+=,∴6-=x y ,∴d (线段DE ,线段FG )=2,x y -=-3或6.【点睛】本题考查新定义图形的距离,数轴上表示数,数轴上两点距离,一元一次方程的应用,分类思想的应用等,掌握相关知识是解题关键.3、(1)甲种文具需要20元,一个乙种文具需要10元(2)20【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:1218420 1614460x yx y+=⎧⎨+=⎩,解得:2010xy=⎧⎨=⎩,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.4、6970 x=【分析】对原方程进行移项并合并同类项即可原方程的解.【详解】解:移项得:x=1.2﹣314,合并同类项得:x=69 70.故答案为:69 70.【点睛】本题考查了解一元一次方程的合并同类项与移项,移项定义:把等式一边的某项变号后移到另一边,叫做移项,移项的原理就是等式的性质1,移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两项的位置,移项时一定要改变所移动的项的符号,不移动的项不能变号,在移项时,最好先写左右两边不变的项,再写移来的项,合并同类项的原则:找对同类项,把同类项的系数相加,字母与字母的指数不变.5、教师有16人,学生有54人【分析】设教师有x人,则学生有(3x+6)人.根据题意列出方程,即可求解.【详解】解:设教师有x人,则学生有(3x+6)人.根据题意得:(36)70x x++=.解这个方程,得:16x=.36316654x+=⨯+=.答:教师有16人,学生有54人.【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.。
沪教版小学六年级上册期末考试数学试卷一.选择题(共10小题)1.37005609最高位的计数单位是()A.千万位B.千万C.百万2.一个数既是48的因数,又是6的倍数,这个数不可能是()A.48B.24C.16D.123.一根木料截下米,还剩下1米,这要根木料原来长()A.3米B.1C.1米4.圆的直径与正方形的边长都是4厘米,那么圆的周长()正方形的周长.A.大于B.等于C.小于5.的分子增加6,要使分数的大小不变,分母应()A.增加6B.增加8C.增加16D.乘66.把小数化成分数不正确的是()A.1.6=1B.0.4=C.0.375=D.0.75=7.用x、2、6和12这四个数组成比例,x不可能是()A.1B.3C.4D.368.在元旦期间,四家商场同一种商品的价格都发生了变化,情况如下.现价与原价一样的是()A.先降价20%,再涨价20%B.先涨价20%,再降价25%C.先降价20%,再降价20%D.先降价20%,再涨价25%9.如图,以直角三角形ABC的两条直角边为直径作两个半圆,已知这两段弧的长度之和是43.96厘米,那么△ABC的面积最大是()平方厘米(π取3.14)A.49B.98C.144D.19610.计算如图阴影部分的面积.正确的算式是()A.3.14×6﹣3.14×4B.3.14×(3﹣2)C.3.14×(32﹣22)二.填空题(共9小题)11.二十三亿九千七百万是由2个,3个,9个和7个组成的.12.一个分数是,如果分母加上12,要使分数值不变,分子应该.13.40吨的是吨;吨的是40吨;比40米多的是米;比多的是60.14.一本故事书,小明第一天看了这本书的,第二天看了这本书的,还剩这本书的.15.把7:11的前项加上14,要使比值不变,后项应加上.16.如图中,大圆半径等于小圆的直径,大圆的周长是cm.17.圆的半径扩大到原来的3倍,直径就扩大到原来的倍,面积就扩大到原来的.18.220分解质因数是:.19.一杯糖水的含糖率是20%,喝了一半,剩下的糖水含糖率是.三.判断题(共5小题)20.10以内所有质数的和是17.(判断对错)21.6克的和6个克相等.(判断对错)22.9:12和16:118可以组成比例.(判断对错)23.“三成五”是十分之三点五,写成百分数是35%.(判断对错)24.半径相同的一个整圆的周长一定比半圆的周长长.(判断对错)四.计算题(共3小题)25.先从下面的数中圈出合数,再把它们分解质因数.27、39、119、97、4526.一大盒冰激凌比一小盒冰激凌的容量大百分之几?27.脱式计算.2.5÷+1××[﹣(﹣)]÷9.五.应用题(共4小题)28.参加学校合唱队的人数有60人,参加舞蹈队比合唱队多,参加舞蹈队的有多少人?29.有一包糖果,无论是平均分给8个人,还是平均分给10个人,都剩下3块.这包糖果至少有多少块?30.一个水泥厂生产了一批水泥,已经卖出2100吨,正好卖了这批水泥的70%,还有多少吨水泥没有卖出?31.在一个直径10米的圆形水池的周围铺上一条3米宽的石子小路,这条小路的面积是多少平方米?参考答案与试题解析一.选择题(共10小题)1.解:37005609最高位的计数单位是千万;故选:B.2.解:48的因数有:1、2、3、4、6、8、12、16、24、48;48以内6的倍数有:6、12、18、24、30、36、42、48.所以一个数既是48的因数,又是6的倍数,这个数是:12、24、48,不可能是16.答:这个数不可能是16.故选:C.3.解:+1=1(米)答:这要根木料原来长1米.故选:B.4.解:正方形的周长是:4×4=16(厘米);圆的周长是3.14×4=12.56(厘米),所以圆的周长小于正方形的周长.故选:C.5.解:因为的分子增加6,变成了3+6=9,扩大了9÷3=3倍,要使分数的大小不变,分母也应该扩大3倍,即变成8×3=24,分母应增加24﹣8=16;故选:C.6.解:1.6==10.4==≠0.375==0.75==故选:B.7.解:(1)把2和6当作这个比例的两个外项,那么x和12就作为这个比例的两个內项x=2×6÷12=1(2)把2和12当作这个比例的两个外项,那么x和6就作为这个比例的两个內项x=2×12÷6=4(3)把6和12当作这个比例的两个外项,那么x和2就作为这个比例的两个內项x=6×12÷2=36所以用x、2、6和12这四个数组成比例,x可能是1、4或36,不可能是3.故选:B.8.解:A.1×(1﹣20%)×(1+20%)=1×0.8×1.2=0.96=96%;答:现价是原价的96%.B.1×(1+20%)×(1﹣25%)=1×1.2×0.75=0.9=90%;答:现价是原价的90%.C.1×(1﹣20%)×(1﹣20%)=1×0.8×0.8=0.64=64%;答:现价是原价的64%.D.1×(1﹣20%)×(1+25%)=1×0.8×1.25=1=100%;答:现价与原价相同.故选:D.9.解:因为3.14×(AB+AC)÷2=43.96,所以AB+AC=43.96×2÷3.14=28(厘米);要使三角形ABC的面积最大,AB与AC最接近,由此确定AB与AC的长度为:AB=AC=28÷2=14(厘米),所以三角形ABC的面积最大是:14×14÷2=98(平方厘米);答:三角形ABC的面积最大是98平方厘米.故选:B.10.解:由圆环的面积公式可得,如图阴影部分的面积,正确的算式是3.14×(32﹣22).故选:C.二.填空题(共9小题)11.解:二十三亿九千七百万是由2个十亿,3个亿,9个千万和7个百万组成的;故答案为:十亿,亿,千万,百万.12.解:的分母加上12,变成4+12=16,分母扩大了16÷4=4倍,要使分数值不变,分子也应扩大相同的倍数,变成1×4=4,因此原分子应加上4﹣1=3,即加上3.故答案为:加上3.13.解:(1)40×=8(吨)(2)40÷=200(吨)(3)40×(1+)=40×=65(米)(4)60÷(1+)=60÷=40答:40吨的是8吨;200吨的是40吨;比40米多的是65米;比40多的是60.故答案为:8,200,65,40.14.解:1﹣﹣=﹣=答:还剩这本书的.故答案为:.15.解:7:11的前项加上14,由7变成21,相当于前项乘3,要使比值不变,后项也应该乘3,由11变成33,相当于后项加上:33﹣11=22.故答案为:22.16.解:3.14×(6×2)=3.14×12=37.68(厘米)答:大圆的周长是37.68厘米.故答案为:37.68.17.解:圆的半径扩大到原来的3倍,直径就扩大到原来的3倍,面积就扩大到原来的3×3=9倍.故答案为:3;9倍.18.解:220分解质因数是:220=2×2×5×11.故答案为:220=2×2×5×11.19.解:一杯糖水含糖率是20%,喝了一半后,剩下糖水的含糖率还是20%;故答案为:20%.三.判断题(共5小题)20.解:10以内所有的质数有:2,3,5,7.所以:10以内所有的质数的和是:2+3+5+7=17.即本题说法正确;故答案为:√.21.解:6×=(克)×6=(克)克=克所以6克的和6个克相等,原题说法正确.故答案为:√.22.解:A、因为16×12=192,9×118=1062,192≠1062,所以9:12和16:118不能组成比例,所以原题说法错误.故答案为:×.23.解:“三成五”是十分之三点五,写成百分数是35%,说法正确;故答案为:√.24.解:据分析可知:圆的周长=2π×r=6.28r,半圆的周长=π×r+2×r=5.14r,6.28r>5.14r所以半径相同的一个整圆的周长一定比半圆的周长长这个说法是正确的.故答案为:√.四.计算题(共3小题)25.解:如图所示:27=3×3×339=3×13119=7×1745=3×3×526.解:(300﹣200)÷200=100÷200=50%答:一大盒冰激凌比一小盒冰激凌的容量大50%.27.解:(1)2.5÷+1×=2.5×+×=4+=4(2)×[﹣(﹣)]÷9=×[﹣]÷9=××=五.应用题(共4小题)28.解:60×(1+)=60×=75(人)答:参加舞蹈队的有75人.29.解:8=2×2×210=2×58和10的最小公倍数是:2×2×2×5=4040+3=43(块)答:这包糖果最少有43块.30.解:2100÷70%﹣2100=3000﹣2100=900(吨)答:还有900吨水泥没有卖出.31.解:3.14×(10÷2+3)2﹣3.14×(10÷2)2=3.14×64﹣3.14×25=3.14×(64﹣25)=122.46(平方米).答:这条小路的面积是122.46平方米.。
沪教版(上海)六年级数学第二学期第七章线段与角的画法专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线B .若AB BC =,则点B 为线段AC 的中点C .点,,A B C 在一条直线上,则AB BC AC +=D .点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =2、已知线段AB ,延长AB 至C ,使2BC AB =,D 是线段AC 上一点,且12BD AB =,则AC AD的值是( ).A .6B .4C .6或4D .6或2 3、已知1∠和2∠互余,且14017'∠=︒,则2∠的补角是( )A .4943'︒B .8017'︒C .13017'︒D .14043'︒4、把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A.70°B.90°C.105°D.120°5、若∠α=73°30',则∠α的补角的度数是()A.16°30'B.17°30'C.106°30'D.107°30'6、植树时,只要定出两个树坑的位置,就能使同一行树坑在一条直线上,运用到的数学知识是()A.两点之间,线段最短B.线段的中点的定义C.两点确定一条直线D.两点的距离的定义7、下列说法正确的是()A.画一条长2cm的直线B.若OA=OB,则O是线段AB的中点C.角的大小与边的长短无关D.延长射线OA8、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°25′.∠BOA度数是()A.64°75′B.54°75′C.64°35′D.54°35′9、若一个角比它的余角大30°,则这个角等于()A.30°B.60°C.105°D.120°10、如图,点B在点O的北偏东60°方向上,∠BOC=110°,则点C在点O的()A.西偏北60°方向上B.北偏西40°方向上C.北偏西50°方向上D.西偏北50°方向上第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、OC是∠AOB的平分线,从点O引出一条射线OD、使∠BOD=13∠COD,若∠BOD=15°,则∠AOB=_____°.2、如图,∠AOB=90°,OC是∠AOB里任意一条射线,OD,OE分别平分∠AOC,∠BOC,则∠DOE=_____.3、如图,OD平分∠AOC.∠AOB=82°,∠BOC=(2x+10)°,∠AOD=(3x-12)°,则∠COD=______.4、若∠A =50.5°,则∠A 的余角为_____°_________′5、把5136'︒化成用度表示的形式,则5136'︒=______度.三、解答题(5小题,每小题10分,共计50分)1、如图,长度为18的线段AB 的中点为M ,点C 将线段MB 分成MC ︰CB =1︰2,求线段AC 的长度.2、如图,已知数轴上点O 是原点,点A 表示的有理数是2-,点B 在数轴上,且满足3OB OA =.(1)求出点B 表示的有理数;(2)若点C 是线段AB 的中点,请直接写出点C 表示的有理数.3、线段与角的计算.(1)如图1,CE 是线段AB 上的两点,D 为线段AB 的中点.若AB =6,BC =2,且AE :EC =1:3,求EC 的长;(2)如图2,O 为直线AB 上一点,且∠COD 为直角,OE 平分∠BOD ,OF 平分∠AOE .若∠BOC +∠FOD =117°,求∠BOE 的度数.4、如图,已知三点A 、B 、C .(1)连接AC .(2)画直线BC .(3)画射线AB .5、已知:点O 是直线AB 上一点,过点O 分别画射线OC ,OE ,使得OC OE ⊥.(1)如图,OD 平分AOC ∠.若40BOC ∠=︒,求DOE ∠的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵点O 是直线AB 上一点,∴180AOC BOC ∠+∠=︒.∵40BOC ∠=︒,∴140AOC ∠=︒.∵OD 平分AOC ∠.∴12COD AOC ∠=∠( ).∴COD ∠= °.∵OC OE ⊥,∴90COE ∠=︒( ).∵DOE ∠=∠ +∠ ,∴DOE ∠= °.(2)在平面内有一点D ,满足2AOC AOD ∠=∠.探究:当()0180BOC αα∠=︒<<︒时,是否存在α的值,使得COD BOE ∠=∠.若存在,请直接写出α的值;若不存在,请说明理由.-参考答案-一、单选题1、D【分析】根据射线的定义,线段中点定义,线段的数量关系分别判断即可.【详解】解:A 、射线AB 和射线BA 不是同一条射线,故该项不符合题意;B 、若AB BC =,则点B 不一定为线段AC 的中点,故该项不符合题意;C 、点,,A B C 在一条直线上,则AB BC AC +=不一定成立,故该项不符合题意;D 、点C 在线段AB 上,,M N 分别是线段,AC CB 的中点,则2AB MN =,故该项符合题意; 故选:D .【点睛】此题考查了射线的定义,线段中点定义,线段的数量关系,正确理解题意并分析进行判断是解题的关键.2、D【分析】根据延长AB 至C ,使2BC AB =,求出AC 与AB 的关系,再根据点D 在AB 或BC 上,分别求出AD 与AB 的关系,再求两线段的比.【详解】解:∵线段AB ,延长AB 至C ,使2BC AB =,∴AC =AB +BC =AB +2AB =3AB ,∵D 是线段AC 上一点,且12BD AB =, 当点D 在AB 上,AD =AB -BD =AB -12AB =12AB , ∴3612AC AB AD AB ==,当点D 在BC 上,∴AD =AB +BD =AB +1322AB AB =,∴3232AC AB AD AB ==.故选择D .【点睛】本题考查线段的画法,分类考虑点D 的位置,线段的和差倍分,两线段的比,掌握线段的画法,分类考虑点D 的位置,线段的和差倍分,两线段的比,利用数形结合思想再求求出AD 与AB 的关系是解题关键.3、C【分析】由余角的定义得∠2=90°-∠1,由补角的定义得2∠的补角=90°+∠1,再代入∠1的值计算.【详解】解:∵1∠和2∠互余,∴∠2=90°-∠1,∴2∠的补角=180°-∠2=180°-(90°-∠1)=180°-90°+∠1=90°+∠1,∵14017'∠=︒,∴2∠的补角=90°+4017'︒=13017'︒,故选C .【点睛】本题考查了余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.4、D【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【详解】解:∠ABC=30°+90°=120°.故选:D.【点睛】本题考查了角度的计算,理解三角板的角的度数是关键.5、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.6、C【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:只要定出两个树坑的位置,这条直线就确定了,即两点确定一条直线.故选:C .【点睛】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.7、C【分析】根据线段的长度、两点间的距离、角的概念对各个选项进行判断即可.【详解】解:A 、直线是无限长的,直线是不可测量长度的,所以画一条2cm 长的直线是错误的,故本选项不符合题意;B 、若OA =OB ,则O 不一定是线段AB 的中点,故本选项不符合题意;C 、角的大小与边的长短无关,故本选项符合题意;D 、延长射线OA 说法错误,射线可以向一个方向无限延伸,故本选项不符合题意;故选:C .【点睛】此题主要考查线段的长度、两点间的距离、角的性质与特点,解题的关键是熟知各自的性质特点进行分析判断.8、C【分析】由射线OC 平分DOB ∠,2525'BOC DOC ∠=∠=︒,从而求得AOB ∠.【详解】解:∵OC 平分DOB ∠,∴2525'BOC DOC ∠=∠=︒,∵90AOC ∠︒=,∴902525'6435'∠=∠-∠=︒-︒=︒AOB AOC BOC .故选:C .【点睛】题目主要考查角平分线的定义以及角的计算,关键是由已知先求出BOC ∠.9、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B【点睛】本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.10、C【分析】根据题意即可知AOB ∠的大小,再由AOC BOC AOB ∠=∠-∠,可求出AOC ∠的大小,最后即可用方位角表示出点C 和点O 的位置关系.【详解】如图,由题意可知60AOB ∠=︒,∵=110BOC ∠︒,∴1106050AOC BOC AOB ∠=∠-∠=︒-︒=︒.∴点C 在点O 的北偏西50︒方向上.故选:C .【点睛】本题考查与方位角有关的计算.掌握方位角的表示方法是解答本题的关键.二、填空题1、60或120【分析】根据题意分类讨论当射线OB 在OC 和OD 之间时和当射线OB 在OC 和OD 之外时,画出图形,结合角平分线的性质即可解答.【详解】根据题意可分类讨论:①当射线OB 在OC 和OD 之间时,如图,∵15BOD ∠=︒,13BOD COD ∠=∠,∴45COD ∠=︒,∴451530BOC COD BOD ∠=∠-∠=︒-︒=︒.∵OC 是∠AOB 的平分线,∴223060AOB BOC ∠=∠=⨯︒=︒;②当射线OB 在OC 和OD 之外时,如图,∵15BOD ∠=︒,13BOD COD ∠=∠,∴45COD ∠=︒,∴451560BOC COD BOD ∠=∠+∠=︒+︒=︒.∵OC 是∠AOB 的平分线,∴2260120AOB BOC ∠=∠=⨯︒=︒.综上,可知AOB ∠的大小为60︒或120︒.故答案为:60或120【点睛】本题考查角的运算,角平分线的性质.利用数形结合和分类讨论的思想是解答本题的关键. 2、45°【分析】 由角平分线的定义得到1=2DOC AOC ∠∠,1=2EOC BOC ∠∠,再由∠AOB =90°,得到∠AOC +∠BOC =90°,则∠DOE =∠DOC +∠EOC =11=4522AOC BOC +︒∠∠. 【详解】解:∵OD ,OE 分别平分∠AOC ,∠BOC , ∴1=2DOC AOC ∠∠,1=2EOC BOC ∠∠, ∵∠AOB =90°,∴∠AOC +∠BOC =90°,∴∠DOE =∠DOC +∠EOC =11=4522AOC BOC +︒∠∠, 故答案为:45°.【点睛】本题主要考查了角平分线的定义,熟知角平分线的定义是解题的关键.3、24°【分析】根据角平分线定义可得∠COD=∠AOD=(3x-12)°,然后利用∠AOC+∠BOC=∠AOB列出方程可得x的值,进而可得答案.【详解】解:∵OD平分∠AOC,∠AOD=(3x-12)°,∴∠COD=∠AOD=(3x-12)°,∠AOC=2∠AOD=2(3x-12)°,∵∠AOB=82°,∠BOC=(2x+10)°,∴2(3x-12)°+(2x+10)°=82°,解得:x=12°,∴∠COD=3×12°-12°=24°.故答案为:24°.【点睛】本题考查了角平分线的定义,利用角的和差列出方程得到x的值是解题关键.4、39 30【分析】根据余角的定义及角的单位与角度制可进行求解.【详解】解:∵∠A =50.5°,∴∠A 的余角为9050.539.53930'︒-︒=︒=︒;5、51.6【分析】根据小单位化成大单位除以进率,可得答案.【详解】解:5136510.651.6'︒=︒+︒=︒,故答案为:51.6.【点睛】本题考查了度分秒的换算,利用小单位化成大单位除以进率是解题关键.三、解答题1、12【分析】由线段的中点的含义先求解9AM BM ==,再利用MC ︰CB =1︰2,求解,MC 再利用线段的和差关系可得答案.【详解】 解: 长度为18的线段AB 的中点为M , 19,2AM BM ABMC ︰CB =1︰2, 193,3MC9312.AC AM MC【点睛】本题考查的是线段的和差,线段的中点的含义,掌握“利用线段的和差关系求解线段的长度”是解本题的关键.2、(1)6±;(2)C 表示的数为:2或 4.-【分析】(1)设B 对应的数为:,x 则,OB x 而22,OA 再列绝对值方程求解即可;(2)分两种情况讨论:当B 表示6时,当B 表示6-时,结合点C 是线段AB 的中点,从而可得答案.【详解】解:(1)设B 对应的数为:,x 则,OB x 而22,OA3OB OA =,326,x解得:6,x所以点B 表示的有理数为: 6.±(2)当B 表示6时,点C 是线段AB 的中点,C ∴表示的数为:622,2当B 表示6-时,点C 是线段AB 的中点,C ∴表示的数为:624,2综上:C 表示的数为:2或 4.-【点睛】本题考查的是数轴上两点之间的距离,绝对值方程的应用,数轴上线段的中点对应的数,线段的倍分关系,掌握“数轴上线段的中点对应的数的表示”是解本题的关键.3、(1)3;(2)18︒.【分析】(1)根据题意可求出AC 的长,再根据:1:3AE EC =,即可确定:3:4EC AC =,从而即可求出EC 的长;(2)由角平分线的性质即可推出12BOE DOE BOD ∠=∠=∠,12AOF EOF AOE ∠=∠=∠.根据题意可知12FOD AOE BOE ∠=∠-∠,180AOE BOE ∠=︒-∠,即推出3902FOD BOE ∠=︒-∠.由题意还可推出 902BOC BOE ∠=︒-∠,最后根据117BOC FOD ∠+∠=︒,即可求出∠BOE 的大小.【详解】解:(1)∵62AB BC ==,,∴624AC AB BC =-=-=.∵:1:3AE EC =,∴:3:4EC AC =,即:43:4EC =,∴3EC =.(2)∵OE 平分∠BOD ,OF 平分∠AOE , ∴12BOE DOE BOD ∠=∠=∠,12AOF EOF AOE ∠=∠=∠. ∵12FOD EOF DOE AOE BOE ∠=∠-∠=∠-∠,180AOE BOE ∠=︒-∠,∴13(180)9022FOD BOE BOE BOE ∠=︒-∠-∠=︒-∠. ∵902BOC COD BOD BOE ∠=∠-∠=︒-∠, ∴3(902)(90)1172BOE BOE ︒-∠+︒-∠=︒, ∴18BOE ∠=︒.【点睛】本题考查线段的和与差,成比例线段,角平分线的性质以及角的运算.利用数形结合的思想是解答本题的关键.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)直接连接AC 即可;(2)由直线的定义,画出直线BC 即可;(3)由射线的定义,画射线AB 即可;【详解】:(1)如图;(2)如图;(3)如图【点睛】本题考查了作图——复杂作图、直线、射线、线段,解决本题的关键是准确画图.5、(1)角平分线的定义;70;垂直的定义;DOC ;EOC ;110;(2)存在,=120α︒或144°【分析】(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;(2)分点D 在AB 上方和下方两种情况画出图形,用含有α的式子表示出COD ∠和∠BOE ,由COD BOE ∠=∠列式求解即可.【详解】解:(1)∵点O 是直线AB 上一点,∴180AOC BOC ∠+∠=︒.∵40BOC ∠=︒,∴140AOC ∠=︒.∵OD 平分AOC ∠. ∴12COD AOC ∠=∠( 角平分线的定义 ).∴COD ∠= 70 °.∵OC OE ⊥,∴90COE ∠=︒( 垂直的定义 ).∵DOE ∠=∠ DOC +∠ EOC ,∴DOE ∠= 110 °.故答案为:角平分线定义;70;垂直的定义;DOC ;EOC ;110;(2)存在,=120α︒ 或144°①点D 在AB 上方时,如图,∵BOC α∠=,90COE ∠=︒∴180,90AOC BOE αα∠=︒-∠=-︒∵2AOC AOD ∠=∠ ∴1(180)2COD AOD α∠=∠=︒-∵COD BOE ∠=∠ ∴1(180)902αα︒-=-︒∴120α=︒②当点D 在AB 的下方时,如图,∵,90BOC BOE αα∠=∠=-︒∴180180AOC BOC α∠=︒-∠=︒-∵2AOC AOD ∠=∠∴11(180)22AOD AOCα∠=∠=︒-∴1180(180)2COD AOC AODαα∠=∠+∠=︒-+︒-∵BOE COD ∠=∠∴1180(180)902ααα︒-+︒-=-︒∴144综上,α的值为120°或144°【点睛】本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键.。
2019-2020学年第二学期六年级数学期末模拟试卷(一)【沪教版】(满分100分时间90分钟)一、选择题(本大题共6题,每题2分,满分12分)1.在(—I): (—I)。
—23, (—3)2这四个数中,最大的数比最小的数大( )A.8;B.9;C.10;D. 17.【答案】D;【解析】因为(—1)5=」,(—1)4=1, -23=-8, (—3)2=9,所以最大的数比最小数大9 —(—8) = 17.故选D. 2.-1上的倒数乘以上的相反数,其积为( )4 4= 仁 1 1A.+5 ;B. —5 ;C. ;D.—.5 5【答案】D;【解析】根据题意,#U(-l-)x(--) = l-(--)x(--) = lx-x- = -,故答案选D. 4 4 4 4 5 4 53.下列结论中不正确的是( )A.若ab > Q,b> 0 ,则a>0;B.若ab < Q,b< 0,则a<0 ;C.若汕>0,则->0;D.若-<0,则ab<0. b b【答案】B;【解析】A、若口。
>0,。
>0,贝正确,A不符合题意;B、若沥<0力<0,则a>0,故B错误,所以B符合题意;C、若汕>0,则->0,正确,故C不符合题意;D、若色<0,则沥<0,正确,故b bD不符合题意;因此答案选B.4.线段AB=3厘米,延长BA到C,使BC=2AB,则AC的长为( )A.9厘米;B.6厘米;C.3厘米;D,无法确定.【答案】C;【解析】线段AB=3厘米,延长BA到C,贝UBC=2AB=6厘米,所以AC=BC-AB=6-3=3厘米,故选C.5.如图,两块直角三角板的直角顶点重合,ZAOD = 130°,则匕的补角的度数是( )A. 40°;B.50°;C.140°;D.130°.O A【答案】C;【解析】因为ZBOD = ZAOC = 90° , ZBOC = ZAOC+ZBOD-ZAOD = 90°x2-130° = 50° ,所以403 = 90°—50。
第六章一次方程(组)和一次不等式(组)同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列利用等式的基本性质变形错误的是( )A .如果37x -=,那么73x =+B .由210x =得5x =C .如果14x y +=-,那么41x y -=--D .如果142-=x ,那么2x =- 2、下列等式变形不正确的是( )A .若a b =,则0a b -=B .若a b =,则2a a b =+C .若532a a b =+,则a b =D .若ac bc =,则a b =3、几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x 人,则下列方程中,符合题意的是( )A .8374x x -=+B .8374x x +=-C .3487x x -+=D .3487x x ++=4、若x <y 成立,则下列不等式成立的是( )A .﹣x +2<﹣y +2B .4x >4yC .﹣3x <﹣3yD .x ﹣2<y ﹣25、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩6、如图,数轴上的点O 和点A 分别表示0和10,点P 是线段OA 上一动点.点P 沿O →A →O 以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(t 不超过10秒).若点P 在运动过程中,当PB =2时,则运动时间t 的值为( )A .32秒或52秒B .32秒或72秒或132秒或152秒 C .3秒或7秒或132秒或172秒 D .32秒或72秒或132秒或172秒 7、已知关于x 的方程2mx x +=的解是4x =,则m 的值为( )A .12B .2C .32D .238、两辆汽车从相距84km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇,则甲车速度为( )A .84km /hB .94km /hC .74km /hD .114km /h9、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( )A .4-B .4C .2-D .210、已知关于x 的方程21x a x +=-与方程231x -=的解相同,则a 的值为( )A .2B .-2C .5D .-5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若1x =是关于x 的方程327x a +=的解,则a 的值为_________.2、 “x 的4倍减去2-的差是正数”,用不等式表示为_________.3、请写出一个解为2的一元一次方程,这个方程可以为______.4、已知等式(2A ﹣7B )x +(3A ﹣8B )=8x +10,对一切实数x 都成立,则A +B =_____.5、数轴上A 、B 两点对应的数分别为a 、b ,则A 、B 两点之间的距离表示为:AB a b .若数轴上A 、B 两点对应的数分别为a 、b ,且满是()25100a b ++-=.(1)求得A 、B 两点之间的距离是______;(2)若P 、Q 两点在数轴上运动,点P 从A 出发以2个单位长度/秒的速度向右匀速运动,同时,点Q 从B 出发以3个单位长度/秒的速度向左匀速运动.经过______秒,P 、Q 两点相距5个单位长度.三、解答题(5小题,每小题10分,共计50分)1、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A ,B 两种型号的新型公交车,已知购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.(1)求A 型公交车和B 型公交车每辆各多少万元?(2)公交公司计划购买A 型公交车和B 型公交车共140辆,且购买A 型公交车的总费用不高于B 型公交车的总费用,那么该公司最多购买多少辆A 型公交车? 2、甲同学解答“解不等式:12123x x ++-≤1”的过程如下,请指出解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得3(1+x )﹣2(2x +1)≤6…①去括号,得3+3x ﹣4x +1≤6…②移项,得3x ﹣4x ≤6﹣3﹣1…③合并同类项,得﹣x ≤2…④两边都除以﹣1,得x ≤﹣2…⑤3、解方程:(1)()5132x x +=-(2)11132x x +--= 4、给定一列数,我们把这列数中的第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,依此类推,第n 个数记为n a (n 为正整数),如下而这列数2,4,6,8,10中,12a =,24a =,36a =,48a =,510a =,规定运算1231n i n i a a a a a ==++++∑.即从这列数的第一个数开始依次加到第n 个数,如在上面的一列数中,3123124612i i a a a a ==++=++=∑.(1)已知一列数1,2-,3,4-,5,6-,7,8-,9,10-,那么5a = ,51i i a==∑ ;(2)已知这列数1,2-,3,4-,5,6-,7,8-,9,10-,…,按照规律可以无限写下去,那么2020a = ,20221i i a ==∑ ;(3)在(2)的条件下,若存在正整数n 使等式12022ni i a ==∑成立,直接写出n 的值.5、对于一个四位正整数n ,如果n 满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“幸运数”.例如:n 1=8455,∵8+4+5﹣5=12,∴8455是“幸运数”;n 2=2021,∵2+0+2﹣1=3≠12,∴2021不是“幸运数”.(1)判断3753,1858是否为“幸运数”?请说明理由.(2)若“幸运数”m =1000a +100b +10c +203(4≤a ≤8,1≤b ≤9,1≤c ≤5且a ,b ,c 均为整数),s 是m 截掉其十位数字和个位数字后的一个两位数,t 是m 截掉其千位数字和百位数字后的一个两位数,若s 与t 的和能被7整除,求m 的值.-参考答案-一、单选题1、D【分析】等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】解:如果x -3=7,那么x =7+3,故A 选项正确;如果210x =,那么x =5,故B 选项正确;如果14x y +=-,那么41x y -=--,故C 选项正确; 如果142-=x ,那么8x =-,故D 选项错误. 故选D【点睛】本题主要考查了等式的性质,解题时注意:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.2、D【分析】根据等式的性质逐一判断即可得答案.【详解】A.若a b =,等号两边同时减b 得0a b -=,故该选项正确,B.若a b =,等号两边同时加a 得2a a b =+,故该选项正确,C.若532a a b =+,等号两边同时减3a 后,再同时除以2得a b =,故该选项正确,D.若ac bc =,0c ≠时,等号两边同时除以c 得a b =,故该选项错误,故选:D .【点睛】本题考查等式的性质:1、等式两边同时加上相等的数或式子,两边依然相等;2、等式两边同时乘或除同一个不为零的数或式子,两边依然相等;熟练掌握等式的性质是解题关键.3、A【分析】根据“如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱”,即可得出关于x 的一元一次方程组,此题得解.【详解】解:依题意,得:8374x x -=+故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程组,找准等量关系,正确列出一元一次方程组是解题的关键.4、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A 、不等式x <y 的两边都乘﹣1,不等号的方向改变,即﹣x >﹣y ,不等式﹣x >﹣y 的两边都加上2,不等号的方向不变,即﹣x +2>﹣y +2,原变形错误,故此选项不符合题意;B 、不等式x <y 的两边都乘4,不等号的方向不变,即4x <4y ,原变形错误,故此选项不符合题意;C 、不等式x <y 的两边都乘﹣3,不等号的方向改变,即﹣3x >﹣3y ,原变形错误,故此选项不符合题意;D 、不等式x <y 的两边都减去2,不等号的方向不变,即x ﹣2<y ﹣2,原变形正确,故此选项符合题意;故选:D .【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.5、A【分析】根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.【详解】解:设绳索长x 尺,竿长y 尺,则5152x y x y =+⎧⎪⎨=-⎪⎩ 故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.6、D分0≤t ≤5与5≤t ≤10两种情况进行讨论,根据PB =2列方程,求解即可.【详解】解:①当0≤t ≤5时,动点P 所表示的数是2t ,∵PB =2,∴|2t −5|=2,∴2t −5=−2,或2t −5=2,解得t =32或t =72; ②当5≤t ≤10时,动点P 所表示的数是20−2t ,∵PB =2,∴|20−2t −5|=2,∴20−2t −5=2,或20−2t −5=−2,解得t =132或t =172. 综上所述,运动时间t 的值为32秒或72秒或132秒或172秒. 故选:D .【点睛】此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据P 点位置的不同正确进行分类讨论,进而列出方程是解题的关键.7、A【分析】把4x =代入原方程,再解方程即可求解.【详解】解:把4x =代入2mx x +=得,解得,12m=,故选:A.【点睛】本题考查了方程的解和解一元一次方程,解题关键是明确方程解的含义,代入后正确地解方程.8、B【分析】设乙车的速度为x km/h,则甲车的速度为(x+20)km/h,根据题意列出方程,求出方程的解即可求解.【详解】解:(1)设乙车的速度是每小时x千米,则甲车的速度为(x+20)km/h,根据题意得1 2(x+20)+12x=84,解得 x=74.故乙车的速度是每小时74千米;x+20=74+20=94.故甲车的速度是94km/h,故选:B.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9、A【分析】求出方程组的解得到a 与b 的值,即可确定出-a -b 的值.【详解】解:51234a b a b +=⎧⎨-=⎩①②, ①+②×5得:16a =32,即a =2,把a =2代入①得:b =2,则-a -b =-4,故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10、D【分析】先求出方程231x -=的解,然后代入方程21x a x +=-,即可求出答案.【详解】解:∵231x -=,∴2x =,把2x =代入方程21x a x +=-,则2212a ⨯+=-,解得:5a =-;故选:D .【点睛】本题考查了解一元一次方程,方程的解,解题的关键是掌握解一元一次方程的方法进行解题.二、填空题1、2【分析】把1x =代入方程327x a +=,再解方程即可.【详解】解:把1x =代入方程327x a +=得,327a +=,解得,2a =,故答案为:2.【点睛】本题考查了一元一次方程的解和解法,解题关键是明确方程解的意义,代入原方程求解. 2、420x【详解】解:“x 的4倍减去2-的差是正数”,用不等式表示为:420,x故答案为:420x【点睛】 本题考查的是列不等式,理解题意,体现准确的运算关系与运算顺序是列式的关键,注意正数即是大于0的数.3、20x -=或 510x =(答案不唯一)【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且0a ≠),据此求解即可.【详解】解:∵2x =,∴根据一元一次方程的一般形式0ax b +=(a ,b 是常数且0a ≠),可列方程20x -=或 510x =等,故答案为:20x -=或 510x =(答案不唯一).【点睛】本题主要考查了一元一次方程的一般形式,熟练掌握一元一次方程的定义及一般形式是解题关键. 4、25【分析】根据关键语“等式(2A ﹣7B )x +(3A ﹣8B )=8x +10对一切实数x 都成立”,只要让等式两边x 的系数和常数分别相等即可列出方程组求解.【详解】解:(2A ﹣7B )x +(3A ﹣8B )=8x +10,∴2783810A B A B -=⎧⎨-=⎩, 解得:6545A B ⎧=⎪⎪⎨⎪=-⎪⎩, 则A +B =25, 故答案为:25.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5、15 2或4【分析】(1)根据非负数的性质求出a 、b 的值,然后根据数轴上两点的距离公式求解即可;(2)分当PQ 相遇前和和当PQ 相遇后,两种情况讨论求解即可.【详解】解:(1)∵()25100a b ++-=,50a +≥,()2010b -≥,∴50a +=,100b -=,∴5a =-,10b =, ∴5101515AB =--=-=,故答案为:15;(2)设两人运动的时间为t 秒如图1所示,当PQ 相遇前,由题意得:点P 表示的数为25t -,点Q 表示的数为103t -,∴()103255t t ---=,即103255t t --+=,解得2t =,如图2所示,当PQ 相遇后,由题意得:点P 表示的数为25t -,点Q 表示的数为103t -,∴()25103t t ---,即251035t t --+=,解得4t=,故答案为:2或4.【点睛】本题主要考查了非负数的性质,数轴上两点的距离,解题的关键在于能够利用数形结合的思想求解.三、解答题1、(1)A型公交车每辆45万元,B型公交车每辆60万元;(2)80【分析】(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,由题意:购买A型公交车的总费用不高于B型公交车的总费用,列出一元一次不等式,解不等式即可.(1)解:设A型公交车每辆x万元,B型公交车每辆y万元,由题意得:2165 23270x yx y+=⎧⎨+=⎩,解得:4560xy=⎧⎨=⎩,答:A型公交车每辆45万元,B型公交车每辆60万元;解:设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意得:45m≤60(140﹣m),解得:m≤80,答:该公司最多购买80辆A型公交车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.2、见解析【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1依次计算可得.【详解】解:解答错误的步骤是②、⑤,正确的解答过程是:去分母得:3(1+x)﹣2(2x+1)≤6…①,去括号得:3+3x﹣4x﹣2≤6…②,移项得:3x﹣4x≤6﹣3+2…③,合并同类项得:﹣x≤5…④,两边都除以﹣1得:x≥﹣5…⑤.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.去括号时,不要漏乘没有分母的项;系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.(1)x =72-;(2)x =1-【分析】(1)先去括号,后移项,合并同类项求解即可;(2)方程两边同时乘以6,去分母,后按照步骤求解即可.(1)∵()5132x x +=-,去括号,得5x +1=3x -6,移项,得5x -3x =-6-1,合并同类项,得2x =-7,系数化为1,得 x =72-.(2) ∵11132x x +--=, 去分母,得2(x +1)-3(x -1)=6,去括号,得2x+2-3x+3=6,移项,得2x-3x=6-5,合并同类项,得-x=1,系数化为1,得x=1-.【点睛】本题考查了一元一次方程的解法,熟练掌握解一元一次方程的基本步骤是解题的关键.4、(1)5,3(2)-2022,-1011(3)4043【分析】(1)根据题目中给出的材料,求出5a和前5个数的和即可;(2)按照题目中的规律写出第2020个数,根据规律求出它们的和即可;(3)根据(2)中规律,列出方程求解即可.(1)解:这列数中第5个数是5,故55a=;51123453 iia==-+-+=∑,故答案为:5,3.(2)解:按照规律奇数为正,偶数为负,则20202020a =-,2022112345620212022i i a ==-+-+-+-∑,=10111111----个=-1011,故答案为:-2022,-1011.(3) 解:由12022ni i a ==∑可知,n 是奇数,则120222n n --+=, 解得,4043n =.【点睛】本题考查了新运算和有理数计算,一元一次方程的应用,解题关键是明确题意,按照题目给出的信息进行计算,根据题目中的等式列出方程.5、(1)3753是幸运数,1858不是幸运数,见解析(2)m 的值为8343,7353【分析】(1)读懂“幸运数”的意思,再根据定义代入3773和1858进行验证;(2)m 是一个四位数,s 、t 分别是两位数,都是可以用字母a 、b 、c 表示,这样就可以用a 、b 、c 表示s 和t .再根据m 是满月数,化简得到a +c =12-b .最后s 和t 的和能被7整除,再代入求出值.(1)解: 3753是幸运数,1858不是幸运数,理由如下:∵3+7+5﹣3=12,1+8+5﹣8=6,∴3753是幸运数,1858不是幸运数.(2)①当1≤b≤7时,∵m=1000a+100b+10c+203=1000a+100(b+2)+10c+3,∴s=10a+b+2,t=10c+3,∴s+t=10a+10c+b+2+3=10(a+c)+b+5.∵m为“幸运数”,∴a+(b+2)+c﹣3=12,∴a+c=13﹣b,∴10(a+c)+b+5=135﹣9b.∵135﹣9b能被7整除,且1≤b≤9,∴b=1,∴a+c=12.∵4≤a≤8,1≤c≤5,∴当a=8时,c=4,m=8×1000+100×(2+1)+10×4+3=8343;当a=7时,c=5,m=7×1000+100(2+1)+10×5+3=7353.②当8≤b≤9时,m=1000(a+1)+100(b﹣8)+10c+3,∴a+1+b﹣8+c﹣3=12,∴a+b+c=22,当b=8时,a+c=14(舍去);当b=9时,则a+c=13,∴85ac=⎧⎨=⎩,∴m=9153,而91+53=146不能被7整除,答:3764是幸运数,2858不是幸运数;m的值为8343,7353.【点睛】本题主要考查了学生的阅读理解能力,根据题目给的新定义去求解,而找到字母之间的关系,用代入消元和整体法消元是解题的关键.。
六年级数学第二学期第八章长方体的再认识章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面图形是由4个完全相同的小立方体组成的,它的左视图是()A.B.C.D.2、图中所示几何体从上面看,得到的平面图形为()A.B.C.D.3、如图是正方体的一个平面展开图,如果原正方体上前面的字为“友”,则后面的字为()A.爱B.国C.诚D.善4、在下列各组视图中,能正确表示由4个立方体搭成几何体的一组视图为()A.B.C.D.5、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.196、如图所示的几何体的俯视图是()A.B.C.D.7、下列几何体中,面的个数最少的为()A.B.C.D.8、某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球9、如图是一个由6个相同的正立方块搭成的几何体,其三视图中面积最大的是()A.主视图B.左视图C.俯视图D.左视图与俯视图10、在“爱国、爱党”主题班会上,小颖特别制作了一个正方体玩具,其表面展开图如图所示,则原正方体中与“有”字相对的字是( )A .少B .年C .强D .国第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方体的总棱长是64cm ,长:宽:高5:1:2=,则高等于_______cm .2、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为 2cm .3、在长方体1111ABCD A B C D -中,与平面11AA D D 垂直的棱有________条.4、如果长方体的长、宽、高之和为12cm ,则它的棱长总和为_______cm .5、等边三角形绕其对称轴旋转一周形成的几何体是______.三、解答题(5小题,每小题10分,共计50分)1、画一个长宽高分别为4厘米、3厘米、2厘米的长方体.2、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示.从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数.请问:(1)x表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形.3、如图是由若干个相同的小正方体组成的几何体从正面、上面看到的形状图.(1)组成这个物体的小正方体的个数可能是多少?(2)求这个几何体的最大表面积.4、已知长方体无盖纸盒的长、宽、高分别为9cm、7cm、5cm,这个纸盒的外表面积和容积各是多少?5、十九世纪中叶,诞生了一个新的几何学分支⋯“拓扑学(又称‘位置解析’)”.它所研究的是几何图形这样一些最基本的、最深刻的性质:图形经受剧烈的变形,以致所有度量性质和射影性质都失去之后,这些性质仍然存在.数学家们找到若干个令人叹为观止的实例,例如著名的Mobius带、Klein瓶⋯⋯请看如图,你能否将正方形图中上方的小方块与下方的对应的小方块用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处.-参考答案-一、单选题1、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从左面看得到的图形是:.故选:A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解题关键是明确左视图的意义,树立空间观念,准确识图.2、D【分析】根据从上面可以看到三个矩形判断即可.【详解】解:从上面看,可以看到三个矩形,如图,故选:D.【点睛】本题考查了从不同方向看几何体,解题关键是建立空间想象能力.3、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“国”与“信”是相对面,“诚”与“友”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状,依此即可求解.【详解】解:A、主视图与俯视图的列数不一致,不符合题意;B、能正确表示由4个立方体搭成几何体,符合题意;C、左视图与俯视图的行数不一致,不符合题意;D、主视图与左视图的高度不一致,不符合题意.故选:B.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,解题关键是树立空间想象能力.5、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.【详解】解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍故选:A.【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.6、A【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个三角形.故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.7、B【分析】根据长方体、圆锥、三棱柱和圆柱的特点即可得.【详解】解:A、长方体有6个面;B、圆锥有一个曲面和一个底面,共有2个面;C、三棱柱有5个面;D、圆柱有一个侧面和两个底面,共有3个面;故选:B.【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.8、C【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】解:根据主视图是三角形,圆柱、正方体、球不符合要求,A、B、D错误,不符合题意;根据几何体的三视图,圆锥符合要求.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.9、C【分析】找到从物体的正面、上面和左面看,所得到的图形里正方形的个数最多的那个视图即可.【详解】解:小立方块的边长为1,那么看到的一个正方形面积为1.从正面看,得到从左往右3列正方形的个数依次为1,2,1,面积为4;从左面看,得到从左往右3列正方形的个数依次为1,2,1,面积为4;从上面看得到从左往右3列正方形的个数依次为1,3,1,面积为5,∴三视图中面积最大的是俯视图.故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.10、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“有”与“年”相对,“强”与“少”相对,“我”与“国”相对,故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题1、4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高2、36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm 2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.3、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.4、48【分析】根据长方体的棱长计算公式计算即可;【详解】长方体的棱长和41248cm=⨯=;故答案是48.本题主要考查了长方体的棱长计算,准确计算是解题的关键.5、圆锥【分析】根据简单几何体的形成分式即可求解.【详解】等边三角形绕其对称轴旋转一周形成的几何体是圆锥故答案为:圆锥.【点睛】此题主要考查几何体的形成方式,解题的关键是熟知简单几何体的特点.三、解答题1、见解析【分析】根据题意直接作图即可.【详解】作图如下:【点睛】本题主要考查长方体的概念,根据定义作图是解题的关键.2、(1)x=1,由7个小立方块搭成(2)见解析(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图.【详解】解:(1)由主视图和俯视图之间的关系,可得x=1∴小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”.3、(1)4或5(2)22【分析】(1)根据正面、上面看到的形状图可得到从上面看到的形状图中正方体个数,即可求出这个物体的小正方体的个数;(2)根据题意分情况求出表面积即可比较求解.【详解】(1)由正面、上面看到的形状图得从上面看到的形状图中正方体个数如下图:或或故组成这个物体的小正方体的个数为4或5;(2)当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+4×2=20;当从上面看到的形状图中正方体个数如下图时则从左面看为故表面积为2×3+2×3+5×2=22;故这个几何体的最大表面积为22.【点睛】此题主要考查立体图形的三视图,解题的关键是根据三视图的定义分情况讨论.4、外表面积为2223cm ,容积为2315cm【分析】根据长方体的表面积和容积的计算公式计算即可;【详解】纸盒的外表面积为()29795752223cm ⨯+⨯+⨯⨯=;容积为3975315cm ⨯⨯=. 答:这个纸盒的外表面积为2223cm ,容积为2315cm .【点睛】本题主要考查了长方体的棱与棱的关系及面积、体积公式应用,准确分析是解题的关键.5、见解析【分析】根据题意用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处即可求解.【详解】解:如图所示:或【点睛】本题考查了数学常识,关键是根据题意要求连线.。
六年级第二学期数学期末练习(4)
一、选择题:(本大题共6题,每小题2分,满分12分)
1、下列大小关系中,正确的是…………………………………………………………( ) (A )4143>-
(B )3
2
41> (C )31135->- (D )8797->- 2、两个有理数之和等于零,那么这两个有理数必须是………………………………( ) (A )都是零 (B )相等 (C )互为相反数 (D )有一个数是零
3、不等式042≥--x 的解集在数轴上表示正确的是 ………………………………( )
(A ) (B ) (C ) (D )
4、下列方程组中,属于二元一次方程组的是…………………………………………( ) (A )⎩⎨
⎧=+=+13z x y x (B )⎩⎨⎧==+23y y x (C )⎩⎨⎧=-=+3
32y x y x (D )⎩⎨⎧==+23
xy y x
5、如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子 不正确的是 ………………………………………………………………………………( )
(A )AC AB 2= (B )AB DB CD AC =++ (C )AB AD CD 21-
= (D ))(2
1
AB CD AD += 6、小杰在学习“线段与角”章节有关知识时,有如下说法:
(1)两点之间线段最短; (2)如果8353'︒∠=α,那么α∠余角的度数为2236'︒ ; (3)互补的两个角一个是锐角一个是钝角; (4)一个锐角的余角比这个角的补角小︒90. 你认为小杰以上说法正确的个数为……………………………………………………( ) (A )1个 (B )2个 (C )3个 (D )4个 二、填空题:(本大题共12题,每小题3分,满分36分)
7、在数轴上,到原点的距离等于4个单位长度的点所表示的有理数是 . 8、计算:)
(-5
4531÷= . 9、将方程45=-y x 变形为用含y 的式子表示x ,那么=x . 10、“x 的一半减去5所得的差不小于3”,用不等式表示 . 11、已知不等式的解集是12<≤x -,则该不等式的整数解是____________.
12、在2008年北京奥运会国家体育场“鸟巢”钢结构工程施工建设中,首先使用了我国科研人 员自主研制的强度约为460 000 000帕的钢材,这个数据用科学记数法表示为 帕. 13、一家商店将某种衣服按成本价加价40%作为标价,又以8折卖出,结果每件服装仍可获利 15元,如设这种服装每件的成本价为x 元,则根据题意可列方程为_____________.
14、如图,将两块三角板的直角顶点重合后重叠在一起,如果︒∠421=,那么=2∠ 度. 15、在长方体ABCD -EFGH 中,与棱EF 和棱EH 都异面的棱是 .
16、如图,在山坡上栽种的小树,要检验它是否与地面(水平面)垂直,可以用 方法检验.
17、一个二元一次方程的一个解是⎩
⎨
⎧==21y x -
,这个二元一次方程可以是 .
(只要写出一个符合条件的方程即可).
18、根据如图所示的程序计算,若输入x 的值为2-,则输出y 的值为 .
三、解答题:(本大题共4题,每小题5分,满分20分)
[将下列各题的解答过程,做在答题纸上]
19、计算:()[]
3
4
323
1
1----⨯. 20、解方程:
28
5416++=x x .
21、解不等式组:⎪⎩
⎪
⎨⎧-≥++>31212150
2x x x -,并把解集在数轴上表示出来.
2
1
B
C
题第14题
第15题
第16
22、解方程组:252130x y z x y z x z -+=⎧⎪
+-=⎨⎪-=⎩
①②③
四、(本大题共3题,第23题6分,第24、25题8分,满分22分) 23、如图,点A 表示A 城,点D 表示D 城. (1)如果B 城在A 城的南偏西60º方向,
请画出从A 城到B 城方向的射线; (2)如果C 城在A 城的北偏东30º方向,
在D 城的南偏东60º方向,请确定
C 城的位置.(用点C 表示)
要求:不写画法,保留画图痕迹,写出结论.
24、如图,已知线段AB 的长为cm 8.2.
(1)用直尺和圆规按所给的要求作图:点C 在线段BA 的延长线上,且AB CA =; (2)在上题中,如果在线段BC 上有一点M ,且线段AM 、BM 长度之比为3:1,
求线段CM 的长.
A B
南
东
西
25、如图,点A 、O 、C 在一直线上,OE 是BOC ∠的平分线,︒=∠90EOF ,︒+=∠)204(1x ,
︒-=∠)10(2x .
(1)求:1∠的度数;(请写出解题过程) (2)如以OF 为一边,在COF ∠的外部画COF DOF ∠∠=,问边OD 与边OB 成一直线吗?
请说明理由.
五、(本大题满分10分)
26、在“爱心传递”活动中,我区某校积极捐款,其中六年级的3个班级的捐款金额如下表所示:
小杰在统计时不小心把墨水滴到了其中两个班级的捐款数额上,但他知道下面三条信息: 信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于48元,小于51元; 请根据以上信息,帮助小杰同学解决下列问题: 问题一:求出(2)班和(3)班的捐款金额各是多少元? 问题二:求出(1)班的学生人数.
2
1
A
O
C
E
D
F
B
参考解答及评分要求
一、(每小题2分,共12分)
1、D
2、C
3、A
4、B
5、D
6、C 二、(每小题3分,共36分)
7、4±
8、2-
9、54+y 10、352
1≥-x 11、2-、1-、0 12、8
106.4⨯ 13、15100
80
)100401(=-⋅+
x x 14、42 15、CG 16、铅垂线 17、略 18、1 三、(每小题5分,共20分)
19、解:原式=[])27(231
1-⨯--- (2分)
329
1--= (2分)
3
32
-= (1分)
20、解: 32)54(2++=x x (1分) 32108++=x x (1分) 427=-x (2分) 6-=x 所以原方程的解是6-=x (1分) 21、解: 由(1)得:2<x (1分) 由(2)得:1-≥x (2分) 所以不等式的解集是21<≤x -,(1分) 数轴表示略 (1分) 22、解:(1)+(2)得:63=+z x (4) (1分) (3)+(4)得:66=x 解得:1=x (1分) 分别代入(3)和(1),得:3=z (1分) 2=y (1分)
所以原方程组的解是⎪⎩
⎪
⎨⎧===321
z y x (1分)
四、(满分22分) 23、(本题6分)
解:(1)图略(2分) (2) 图略(各2分,共4分) 24、(本题8分)
解:(1)图略 (2分)
(2)因为AB CA =,8.2=AB ,所以8.2=CA (1分)
当点M 在线段AB 上时,设x AM =,x BM 3=, 所以8.23=+x x ,7.0=x
所以cm AM CA CM 5.37.08.2=+=+= (2分)
当点M 在线段AC 上时,设x AM =,x BM 3=, 所以8.23=-x x ,4.1=x
所以cm AM CA CM 4.14.18.2=-=-= (2分)
所以CM 的长为5.3厘米或4.1厘米 (1分) 25、(本题8分)
(1)解:因为OE 是BOC ∠的平分线 所以22∠=∠BOC , (1分) 因为点A 、O 、C 在一直线上 所以︒∠∠1801=+BOC (1分)
因为︒+=∠)204(1x ,︒-=∠)10(2x ,
所以180)102)204(=-+x x (+ (1分)
解得:30=x ︒=∠1401 所以1∠的度数为︒140 (1分) (2)边OD 与边OB 成一直线
因为︒=∠+∠=∠90COF EOC EOF (1分) 又因为BOC EOC ∠=
∠21,DOC FOC ∠=∠2
1
︒=∠+∠902
1
21DOC BOC 即︒=∠+∠180DOC BOC (2分) 所以点D 、O 、B 在一直线上,即边OD 与边OB 成一直线 (1分) 五、(本题10分)
26、解:(1)解设(2)班的捐款金额为x 元,(3)班的捐款金额为y 元 根据信息一、二可得:⎩⎨
⎧=-=++30077002000y x y x (2分) 解得⎩⎨⎧==2700
3000
y x (2分)
答:(2)班的捐款金额是3000元,(3)班的捐款金额是2700元 (1分) (2)设(1)班学生人数为x 人
根据信息三得:⎩⎨⎧><2000
51200048x x (2分) 解得:32
41511139<<x (2分) 因为x 是正整数,所以x 取40人或41人
答:(1)班的学生人数为40人或41人。
(1分)。