3.5 利用三角形全等测距离
- 格式:ppt
- 大小:2.59 MB
- 文档页数:13
《利用三角形全等测距离》教学设计一、教学内容《利用三角形全等测距离》是北师大版数学七年级(下)第三章第五节的内容。
二、教学目标及重难点1.教学目标:教学目标:(1)知识与技能会利用“边角边”,“角边角”,“角角边”来构造全等三角形测距离,培养学生把实际问题转化为数学问题的能力。
(2)过程与方法在经历从现实生活中抽象出几何模型的过程中,有意识地培养学生合作探究精神及有条理的思考、表达能力,以及创新意识,体会数学与实际生活的联系。
(3)情感态度与价值观通过情境创设,激发学生学习兴趣,体会数学来源于实际,又服务于实际生活的重大意义.教学重点――利用三角形全等测距离。
教学难点――如何把实际问题转化为数学问题(数学建模)。
三、教学方法:小组合作、探究式相结合四、教学工具:多媒体课件五、教学基本流程:一.回顾思考,温故知新二.创设情境,激发兴趣三.动手实践,探索新知四.小组合作,学以致用五.归纳总结,反思提高六.反馈练习,强化新知七.布置作业,课后延拓六、教学过程:教师活动学生活动设计意图一、回顾思考,温故知新(1)要判定两个全三角形全等有哪些方法?并思考在判定的三个条件中至少要有一个什么条件?(2)全等三角形有什么性质?学生独立思考后,举手回答问题(1)SSS,SAS,ASA,AAS 三个条件中至少需要一个边的条件(2)全等三角形的对应边相等,对应角相等。
通过提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础。
二.创设情境,激发兴趣出示一个玻璃瓶,两根等长的小棒,一把刻度尺提问:谁能利用我们所学的知识,用现在的这些器材测量出玻璃瓶的内径?这就是今天要学习的内容——利用三角形全等测距离。
启示:通过三角形的全等将不易测,不能到达的两点间的距离转化为可以测量的两点间的距离。
学生分小组讨论后派代表上前演示:把两根木棍的中点穿在一起,让木棍可以自由地活动,然后把两根木棍重叠在一起,插入瓶中,将两根木棍的角度打开,让木棍下面两端靠着瓶子内壁,只需测量外面两个点之间的距离就得到瓶子的内径。
利用三角形全等测距离2篇文章1一、什么是三角形全等测距离?三角形全等测距离是指通过观察和测量三角形的各个边长和角度,来确定两个或多个三角形之间的距离。
在实际应用中,我们常常需要测量一些无法直接测量的物体的距离,而三角形全等测距离提供了一种有效的方法。
通过观察和测量三角形的特征,我们可以推导出相似三角形之间的比例关系,从而计算出距离。
二、如何利用三角形全等测距离测量距离?要进行三角形全等测距离的测量,我们需要以下步骤:步骤一:选择一个可测量的标志物体。
在测量过程中,我们需要选择一个已知距离的标志物体作为参照。
这个标志物体可以是任何形状的物体,但是必须要有明确的测量标准。
例如,我们可以选择一根知道长度的杆子或测量单位已知的标尺作为参考。
步骤二:确定视角。
为了进行距离的测量,我们需要确定测量者与被测量物体之间的视角。
视角的选择将直接影响到后续的测量结果。
步骤三:观察和记录。
通过眼睛观察被测物体和标志物体之间的角度和边长关系,并将其记录下来。
这些记录将作为计算距离的依据。
步骤四:计算距离。
利用已知角度和边长的比例关系,我们可以通过简单的几何运算计算出待测物体与标志物体之间的距离。
具体的计算公式可以根据实际情况进行调整,但原理是相同的。
三、三角形全等测距离的应用领域三角形全等测距离在现实生活中有广泛的应用。
以下是其中一些应用场景:1.地图测量在绘制地图时,我们需要准确测量不同地理特征之间的距离,并将其绘制到比例尺上。
利用三角形全等测距离,我们可以通过测量一些关键标志物体之间的距离来计算出其他位置的距离。
2.建筑设计在建筑设计中,我们常常需要测量建筑物与周围地物的距离。
例如,在规划一片土地时,我们需要计算出建筑物与道路、河流等的距离。
通过利用三角形全等测距离,我们可以准确测算出各个位置之间的距离。
3.导航系统导航系统需要准确测量车辆或行人与目标地点之间的距离。
通过利用三角形全等测距离,我们可以在导航系统中引入三角测量的原理,从而提供准确的距离信息。
4.5利用三角形全等测距离【例1】在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,如何估测这个距离呢?一位战士想出来这样一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.分析:由战士所讲述的方法可知:战士的身高AD不变,战士与地面是垂直的(AD⊥BC);视角∠DAC=∠DAB.战士要测的是敌碉堡(B)与我军阵地(D)的距离,战士的结论是只要按要求测得DC的长度即可.(即BD=DC)探索新知合作探究【例2】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.(1)DE=AB吗?请说明理由;(2)如果DE的长度是8 m,则AB的长度是多少?教师指导1.易错点在构建全等三角形的时候,需要考虑的就是三角形全等的条件,然后再结合实际条件进行考虑.2.归纳小结能利用三角形的全等解决实际问题,能在解决问题的过程中进行有条理的思考和表达.3.方法规律根据三角形全等测距离,主要是根据三角形全等的性质,对应边相等进行求解.只需要去构建全等的三角形就能够解决问题.当堂训练1.如图所示,要测量河岸相对的两点A,B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A,C与E在同一直线上,那么测得A,B的距离为.2.如图,两根长12 m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.。
《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对三角形全等概念的理解,并熟练掌握利用三角形全等测距离的技巧,增强学生的空间想象力和实践能力,为学生今后解决实际问题打下坚实基础。
二、作业内容作业内容主要包括以下几个部分:1. 理论知识回顾:要求学生复习三角形全等的定义和判断方法,如SSS、SAS、ASA等全等条件,加深对全等三角形性质的理解。
2. 基础练习:设计一系列练习题,包括选择题、填空题和简答题,重点训练学生判断三角形全等的能力,并能够根据全等三角形的性质进行简单的计算。
3. 实践操作:提供具体的测距情境,要求学生运用所学知识,通过实地测量或绘图,利用三角形全等原理测量指定距离。
具体可以设计为两个活动:- 活动一:测量校园内两个点之间的距离。
学生需要先画出示意图,再根据实地情况确定两个点,并利用三角形全等原理测量出距离。
- 活动二:绘制图形并标注数据。
学生需根据所给条件绘制出符合要求的三角形,并标注出必要的测量数据,以验证三角形全等的条件。
4. 拓展延伸:设计一些更具挑战性的问题,如通过多边形中某些边的关系求证多边形内的两点间距离等问题,激发学生自主探索和解决问题的能力。
三、作业要求1. 理论知识回顾部分要求学生务必熟悉全等三角形的相关概念和性质。
2. 基础练习部分要求学生认真完成,对每一道题目都要进行充分的思考和计算。
3. 实践操作部分要求学生按照活动要求进行实地测量或绘图,并准确记录测量数据和计算结果。
同时,学生需在作业中附上详细的步骤说明和解释。
4. 拓展延伸部分鼓励学生自主探索和创新,尝试解决更具挑战性的问题。
如有困难,可查阅相关资料或请教老师。
四、作业评价1. 教师根据学生完成作业的情况,给予相应的评价和指导。
评价内容包括理论知识的掌握程度、解题思路的正确性、计算结果的准确性以及实践操作的规范性等方面。
2. 对于优秀的学生作品,可以在班级内进行展示和交流,以激发学生的积极性和自信心。
利用三角形全等测距离一、教材依据北师大版七年级(下册)第三章第5节《利用三角形全等测距离》。
二、设计思路前面内容中已经学习了“三角形”,“全等三角形”以及“三角形全等的条件及性质”。
通过探索三角形全等,得到了三角形判断定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,学生就具备了“利用三角形全等测距离”的理论基础。
学生已经历过解决实际问题的过程,具备了一定的分析问题和解决问题的能力,通过本节的学习,学生解决实际问题的能力会得到提升。
在实际应用中,并没有全等三角形,学生的障碍点就是如何构造全等三角形,这是一个难点,所以学生必须要自己构造出全等三角形,把不能直接测量的转化为能直接测量的。
所以,在教学中要先把构造好的全等三角形,展示在学生面对,让学生解决,在问题中给出提示,最后让学生自己构造,做到顺理成章。
三、教学目标1.知识能力目标:(1)进一步巩固和理解全等三角形的性质与判定;(2)能利用三角形全等解决实际问题,体会数学与实际生活的联系;(3)在实际应用及交谈中发展有条理地思考与表达的能力.2.方法与途径:(l)采用小组合作,分组讨论;(2)结合学生的学案,在自主讨论的基础上做适当引导、评价;在解决问题中让学生自己构造,做到水到渠成。
(3)培养学生建模的思想。
3、情感目标:(1)通过生动、有趣、现实的例子来激发学生的学习兴趣,自主设计、讨论后代表发言形式,进而培养数学学习兴趣;(2)通过对问题的探索、思考、讨论,培养学生的探索精神与科学态度;(3)通过活动,让学生增强合作与交流的意识。
四、教学重点利用三角形全等测量距离。
五、教学难点如何把实际问题转化成数学问题(即建模)。
六、教学准备指导学生做好学案老师备好多媒体教具。
教学环节教学活动说明提示准备1、复习全等三角形的性质及判定条件;回顾全等三角形的判定方法,为新探讨内容打基础。
探究内容一1、图例:课本故事形式。
(老师配合多媒体投影)2、显示并讲述此故事后,明确题意“使视线通过帽檐正好落在碉堡的底部”这句话含义。
《利用三角形全等测距离》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在让学生通过实际操作,理解并掌握三角形全等的基本原理,并能够运用这一原理来测量实际距离。
通过作业的完成,达到巩固知识、提升技能的目标,为后续学习打下坚实基础。
二、作业内容1. 理论知识复习:学生需回顾并熟练掌握三角形全等的定义、性质和判定方法,了解不同全等条件下的三角形关系。
2. 动手实践操作:(1)绘制一系列全等的三角形图案,通过剪切和拼接的方式,直观感受三角形全等的基本概念。
(2)结合生活实际,选择合适的地点(如校园内、家中),利用三角形全等原理,测量已知角度的两点间的距离。
学生需绘制测量示意图,并记录详细的测量步骤和结果。
3. 作业题目练习:设计一系列与三角形全等相关的题目,包括选择题、填空题和解答题,重点考察学生对三角形全等知识的理解和应用能力。
三、作业要求1. 理论复习部分:学生需自行整理笔记,总结三角形全等的相关知识点,并能够流利地与同学进行交流。
2. 动手实践操作部分:(1)图案绘制要求准确、清晰,剪切和拼接过程需保持小心谨慎,确保三角形全等的准确性。
(2)实地测量时,学生需注意安全,遵循正确的测量步骤,准确记录测量数据和结果。
测量示意图应清晰明了,能够准确反映测量过程和结果。
3. 作业题目练习部分:学生需独立完成题目,并按照格式要求书写答案。
如有不懂之处,可查阅教材或请教老师。
四、作业评价1. 教师将根据学生提交的作业进行批改,对理论知识复习部分进行评价,看学生是否掌握了三角形全等的基本概念和原理。
2. 对动手实践操作部分进行评价,看学生是否能够正确运用三角形全等原理进行实地测量,并准确记录测量结果。
3. 对作业题目练习部分进行评价,看学生是否能够正确理解和应用三角形全等的知识点。
五、作业反馈1. 教师将针对学生的作业情况进行反馈,对表现优秀的学生给予表扬和鼓励,对存在问题的地方进行指导和纠正。
2. 学生需根据教师的反馈意见进行反思和总结,找出自己的不足之处,并加以改进。
3.5 利用三角形全等测距离
1.如图,为了要测量湖宽AB ,先在AB 的延长线上选下C 点,再选一适当的点M ,然后延长BM 、CM 到C B ''、,使MC C M MB B M ='=',,又在B C ''的延长线上找一点A ',使A '、M 、A 三点在同一条直线上,这时,只要量出线段B A ''的长度就可知湖宽.
你能说明其中的道理吗?
2.如图,将两根钢条B B A A '',的中点O 连在一起,可以作成一个测量工件内槽宽的工具(工人把这种工具叫卡钳),只要量出B A ''的长度,就可以知道工件的内径AB 是否符合标准,你能说出工人这样做的道理吗?
3.如图,有一湖的湖岸在A 、B 之间呈一段弧状,A 、B 之间的距离不能直接测量,你能用已学过的知识或方法设计测量方案,求出A 、B 之间的距离吗?
参考答案
1.提示:BCM ∆≌M C B ''∆,AMC ∆→≌ABM C M A ∆→''∆≌B A AB M B A ''=→''∆.
2.在AOB ∆和B O A ''∆中
⎪⎩
⎪⎨⎧'=''∠=∠'=O B BO B O A AOB O A AO )(对顶角相等
∴AOB ∆≌B O A ''∆(SAS )
∴B A AB ''=
3.方案:在湖右边的空地上选一个能直接到达A 点和B 点的C 点,连接AC 并延长至D ,使AC CD =,连接BC 并延长至E ,使CE BC =,连接DE ,并测量DE 的长度即可求出A 、B 之间的距离.。