高考物理二轮(通用)选练(10)及解析
- 格式:pdf
- 大小:148.25 KB
- 文档页数:7
绝密★启用前湖南省2024-2025学年高三上学期10月第二次联考物理考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,a 、b 两段圆柱形导体连接在一起,两圆柱体的材料、长度均相同,a 的横截面积小于b 的横截面积,a 圆柱体的电阻为,b 圆柱体的电阻为。
在连接体两端加上恒定电压,a 圆柱体两端的电压为,单位时间通过导体横截面的电量为,导体中自由电荷定向移动的速率为;b 圆柱体两端的电压为,单位时间通过导体横截面的电量为,导体中自由电荷定向移动的速率为。
下列关系正确的是A .B .C .D .2.在平直的道路上测试两辆赛车的启动和刹车性能,两赛车均从静止开始先匀加速运动后匀减速运动到速度为零。
若两车运动的位移相等,则下列判断正确的是A .两车加速时加速度大小一定相等B .两车减速时加速度大小一定相等C .两车运动的最大速度之比一定等于两车运动时间之比D .两车运动的最大速度之比一定等于两车运动时间之比的倒数3.如图所示,O 点为等边三角形ABC 的中心。
在A 、B 两点放置两电荷量相等的点电荷,若两点电荷是同种电荷,则O 点场强大小为;若两点电荷是异种电荷,则O 点场强大小为,与的比值为1R 2R 1U 1q 1v 2U 2q 2v 12R R <12v v >12q q >12U U =1E 2E 1E 2EAB .C .3 D4.如图所示,从地面上P 点斜向上抛出甲、乙两个小球,分别落在地面上的M 、N 点,两球运动的最大高度相同,甲球到达M 点时的动能和乙球到达N 点时的动能相等,甲球到达M 点时的速度大小为,重力的瞬时功率为;乙球到达N 点时的速度大小为,重力的瞬时功率为。
2014年高考物理二轮复习专题10:力学实验配套检测(满分:100分时间:60分钟)1.(10分)如图10-11甲、乙所示,游标卡尺的示数为________cm;螺旋测微器的示数为________mm.图10-112.(10分)如图10-12所示,在“力的平行四边形定则”的实验探究中,某同学进行实验的主要步骤是:将橡皮条的一端固定在木板上的A点,另一端拴上两根带有绳套的细绳,每根绳套分别连着一个弹簧测力计.沿着两个方向拉弹簧测力计,将橡皮条的活动端拉到某一位置,将此位置标记为O点,读取此时弹簧测力计的示数,分别记录两个拉力F1、F2的大小并标出方向;再用一个弹簧测力计将橡皮条的活动端仍拉至O点,记录其拉力F的大小和方向.图10-12(1)用一个弹簧测力计将橡皮条的活动端仍拉到O点,这样做的目的是______________.(2)为尽可能减小实验误差,下列操作中正确的是________.A.弹簧秤、细绳、橡皮条都应与木板平行B.两细绳必须等长C.标记同一细绳方向的两点要远些D.用两弹簧秤同时拉细绳时夹角应尽可能大3.(10分)某小组利用如图10-13甲所示的气垫导轨实验装置来探究合力一定时,物体的加速度与质量之间的关系.(1)将滑块从图甲位置由静止释放,由数字计时器(图中未画出)可读出遮光条通过光电门1、2的时间分别为Δt1、Δt2;用刻度尺测得两个光电门中心之间的距离x,用游标卡尺测得遮光条宽度d,则滑块经过光电门1时的速度表达式v1=________;经过光电门2时的速度表达式v2=________.滑块加速度的表达式a=________.(以上表达式均用已知字母表示).如图乙,若用20分度的游标卡尺测量遮光条的宽度,其读数为______mm.图10-13(2)为了保持滑块所受的合力不变,可改变滑块质量M和气垫导轨右端高度h(见图甲).关于“改变滑块质量M和气垫导轨右端的高度h”的正确操作方法是________.A.M增大时,h增大,以保持二者乘积增大B.M增大时,h减小,以保持二者乘积不变C.M减小时,h增大,以保持二者乘积不变D.M减小时,h减小,以保持二者乘积减小4.(10分)某同学使用有透光狭缝的钢条和光电计时器的装置测量重力加速度(如图10-14甲所示).在钢条下落过程中,钢条挡住光源发出的光时,计时器开始计时,透光时停止计时,若再次挡光,计时器将重新开始计时.实验中该同学将钢条竖直置于一定高度(下端A高于光控开关),由静止释放,测得先后两段挡光时间t1和t2.(1)用游标卡尺测量AB、AC的长度,其中AB的长度如图乙所示,其值为________ mm.甲乙图10-14(2)若狭缝宽度不能忽略,则该同学利用h=12gt2,x=vt,v AC=ACt1+t2,g=2v AC-v ABt2及相关测量值得到的重力加速度值比其真实值________(填“偏大”或“偏小”).5.(10分)某研究性学习小组利用气垫导轨验证机械能守恒定律,实验装置如图10-15甲所示.在气垫导轨上相隔一定距离的两处安装两个光电传感器A、B,滑块P上固定一遮光条,若光线被遮光条遮挡,光电传感器会输出高电压,两光电传感器采集数据后与计算机相连.滑块在细线的牵引下向左加速运动,遮光条经过光电传感器A、B时,通过计算机可以得到如图乙所示的电压U随时间t变化的图象.图10-15(1)实验前,接通气源,将滑块(不挂钩码)置于气垫导轨上,轻推滑块,当图乙中的Δt1________Δt2(选填“>”“=”或“<”)时,说明气垫导轨已经水平.(2)用螺旋测微器测遮光条宽度d,测量结果如图丙所示,则d=________ mm.(3)滑块P用细线跨过气垫导轨左端的定滑轮与质量为m的钩码Q相连,将滑块P由图甲所示位置释放,通过计算机得到的图象如图乙所示,若Δt1、Δt2和d已知,要验证滑块和钩码组成的系统机械能是否守恒,还应测出________和________(写出物理量的名称及符号).(4)若上述物理量间满足关系式________,则表明在上述过程中,滑块和钩码组成的系统机械能守恒.6.(10分)某学习小组用如图所示装置探究“加速度和力的关系”。
训练10 力学实验中常考的3个问题1.读出图10-16甲、乙中给出的螺旋测微器和游标卡尺的示数,螺旋测微器的示数为________mm ,游标卡尺的示数为________cm.图10-162.(2012·济南模拟)在验证机械能守恒定律的实验中,使质量为m =200 g 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图10-17所示.O 为纸带下落的起始点,A 、B 、C 为纸带上选取的三个连续点.已知打点计时器每隔T =0.02 s 打一个点,当地的重力加速度为g =9.8 m/s 2,那么图10-17(1)计算B 点瞬时速度时,甲同学用v 2B =2gs OB ,乙同学用v B =s AC2T .其中所选择方法正确的是________(填“甲”或“乙”)同学.(2)同学丙想根据纸带上的测量数据进一步计算重物和纸带下落过程中所受的阻力,为此他计算出纸带下落的加速度为________m/s 2,从而计算出阻力f =________N. (3)若同学丁不慎将上述纸带从OA 之间扯断,他仅利用A 点之后的纸带能否实现验证机械能守恒定律的目的?________.(填“能”或“不能”)3.(2012·安徽卷,21·Ⅰ)图10-18为“验证牛顿第二定律”的实验装置示意图.砂和砂桶的总质量为m ,小车和砝码的总质量为M .实验中用砂和砂桶总重力的大小作为细线对小车拉力的大小.(1)实验中,为了使细线对小车的拉力等于小车所受的合外力,先调节长木板一端滑轮的高度,使细线与长木板平行.接下来还需要进行的一项操作是( ).图10-18A.将长木板水平放置,让小车连着已经穿过打点计时器的纸带,给打点计时器通电,调节m的大小,使小车在砂和砂桶的牵引下运动,从打出的纸带判断小车是否做匀速运动B.将长木板的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去砂和砂桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动C.将长木板的一端垫起适当的高度,撤去纸带以及砂和砂桶,轻推小车,观察判断小车是否做匀速运动(2)实验中要进行质量m和M的选取,以下最合理的一组是( ).A.M=200 g,m=10 g、15 g、20 g、25 g、30 g、40 gB.M=200 g,m=20 g、40 g、60 g、80 g、100 g、120 gC.M=400 g,m=10 g、15 g、20 g、25 g、30 g、40 gD.M=400 g,m=20 g、40 g、60 g、80 g、100 g、120 g(3)图10-19是实验中得到的一条纸带,A、B、C、D、E、F、G为7个相邻的计数点,相邻的两个计数点之间还有四个点未画出,量出相邻的计数点之间的距离分别为:s AB =4.22 cm、s BC=4.65 cm、s CD=5.08 cm、s DE=5.49 cm,s EF=5.91 cm,s FG=6.34 cm.已知打点计时器的工作频率为50 Hz,则小车的加速度大小a=________m/s2.(结果保留两位有效数字).图10-194.某探究小组利用如图10-20甲所示装置探究平抛运动中机械能是否守恒.在斜槽轨道的末端安装一个光电门B,调节激光束与球心等高,斜槽末端水平.地面上依次铺有白纸、复写纸,让小球从斜槽上固定位置A点无初速释放,通过光电门后落在地面的复写纸上,在白纸上留下打击印.重复实验多次,测得小球通过光电门的平均时间为2.50×10-3 s.计算保留三位有效数字.(1)用游标卡尺测得小球直径如图乙所示,则小球直径为d=________cm,由此可知小球通过光电门的速度v B=________m/s;(2)实验测得轨道离地面的高度h=0.441 m,小球的平均落点P到轨道末端正下方O点的距离x=0.591 m,则由平抛运动计算小球的平抛初速度v0=________m/s;(3)实验只要满足________≈________,就可以认为,在误差允许范围内,平抛运动中机械能是守恒的.图10-20图10-215.在“验证力的平行四边形定则”实验中,将橡皮条的一端固定在竖直放置的木板上,另一端系上两根细绳OA、OB,O为两细绳与橡皮条的结点,细绳OA跨过钉在木板上的光滑的钉子C,下端挂重力已知的钩码,细绳OB用一个弹簧测力计钩住,如图10-21所示,可以通过改变钩码的个数和弹簧测力计的拉力调整橡皮条与两细绳的结点O的位置.(1)(多选)某同学认为在此过程中必须注意以下几项,其中正确的是________.A.两细绳的夹角必须成90°,以便于算出两细绳的合力B.橡皮条应与两绳夹角的平分线在同一直线上C.在使用弹簧测力计时要注意使弹簧测力计与木板平面平行D.只用弹簧测力计通过细绳拉橡皮条时结点O到达的位置应与用钩码、弹簧测力计同时拉时相同(2)(多选)图中OC与橡皮条延长线的夹角为α,细绳OB与橡皮条延长线的夹角为β,且α+β>90°,下列操作正确的是________.A.增加钩码个数后,为使结点位置不变,应减小β,同时减小弹簧测力计的拉力B.增加钩码个数后,为使结点位置不变,应增大β,同时增大弹簧测力计的拉力C.保持钩码个数不变,将钉子向左移动一些,为使结点位置不变,应增大β,同时增大弹簧测力计的拉力D.保持钩码个数不变,将钉子向左移动一些,为使结点位置不变,应减小β,同时增大弹簧测力计的拉力6.在科学探究活动中,对实验数据进行分析归纳得出结论是非常重要的环节.为探究物体做直线运动过程中x随t变化的规律,某实验小组经过实验和计算得到表中的实验数据.图10-22现根据表格数据,请你在如图10-22所示的坐标系中,纵、横轴分别选择合适的物理量和标度作出关系图线.同时请你根据图线,分析得出物体从A―→B的过程中x随t2变化的关系式是_______________________________________________________.7.(2012·泰兴)如图10-23为用拉力传感器和速度传感器探究“加速度与物体受力的关系”实验装置.用拉力传感器记录小车受到拉力的大小,在长木板上相距L =48.0 cm的A、B两点各安装一个速度传感器,分别记录小车到达A、B时的速率.图10-23(1)实验主要步骤如下:①将拉力传感器固定在小车上;②平衡摩擦力,让小车做________运动;④接通电源后自C点释放小车,小车在细线拉动下运动,记录细线拉力F的大小及小车分别到达A、B时的速率v A、v B;⑤改变所挂钩码的数量,重复④的操作.(2)下表中记录了实验测得的几组数据,v2B-v2A是两个速度传感器记录速率的平方差,则加速度的表达式a=________.请将表中第3次的实验数据填写完整.(3)由表中数据,在图10-24中坐标纸上作出a-F关系图线.图10-24(4)对比实验结果与理论计算得到的关系图线(图中已画出理论图线),造成上述偏差的原因是______________________________.参考答案1.解析本题考查螺旋测微器与游标卡尺的读数.螺旋测微器固定刻度部分读数为5.0 mm,可动刻度部分读数为0.485 mm,故读数为5.485 mm;游标卡尺主尺读数为41 mm,游标尺读数为0.20 mm,所以游标卡尺读数为41.20 mm=4.120 cm.答案 5.485 4.1202.解析本题考查验证机械能守恒定律的实验.(1)由于纸带与限位孔之间有摩擦,故重物下落时的加速度小于重力加速度,利用v B=s AC 2T计算B点瞬时速度的方法正确.(2)根据y BC-y AB=aT2可得a=9.5 m/s2,由牛顿第二定律可得mg-f=ma,解得f=0.06N.(3)根据ΔE p=ΔE k即重物重力势能的减少量等于其动能的增加量可知,能实现验证机械能守恒定律的目的.答案(1)乙(2)9.5 0.06 (3)能3.解析(1)在“验证牛顿第二定律”的实验中,为了使细线对小车的拉力大小等于小车所受的合外力,则需要平衡摩擦力,并使细线与长木板平行.平衡摩擦力的方法是只让小车牵引纸带(撤去砂及砂桶),纸带穿过打点计时器,并垫高长木板不带滑轮的一端,打点计时器接通电源工作.如果打出纸带上的点迹分布均匀,则说明小车做匀速运动.故选项B 正确,选项A 、C 错误.(2)在“验证牛顿第二定律”的实验中,为使细线对小车的拉力大小等于砂及砂桶的总重力,则M ≫m ,且尽可能地多做几组.故选项C 最合理. (3)根据题意,相邻计数点间的时间间隔为T =0.1 s , 根据Δs =aT 2,得,s DE -s AB =3a 1T 2 s EF -s BC =3a 2T 2 s FG -s CD =3a 3T 2所以小车的加速度a =a 1+a 2+a 33=s DE +s EF +s FG -s AB +s BC +s CD 9T2=0.42 m/s 2.答案 (1)B (2)C (3)0.424.解析 以斜槽末端为重力势能的零点,则小球平抛的初动能就等于小球运动时的机械能,也就等于小球落地时的机械能(认为是守恒的),因此以平抛运动计算得到的初动能(初速度)如果近似等于用光电门测得初动能(初速度),则可认为此过程机械能守恒.(1)d =0.50 cm ;v B =d t =0.005 02.50×10-3m/s =2.00 m/s ;(2)由平抛运动得x =v 0t ,h =12gt 2,解得v 0=xg2h=1.97 m/s 答案 (1)0.50 2.00 (2)1.97 (3)势能减少量 动能增加量 5.解析 (1)两细绳的拉力大小是用作图法求得的不是计算出来的,两细绳的夹角没有必要成90°,同时,橡皮条也没有必要与两绳夹角的平分线在同一直线上,选项A 、B 均错误;弹簧测力计与木板平面平行是为了保证所有力在同一平面内,选项C 正确;两次拉动的结果都是使橡皮条伸长到O 点,作用效果相同,选项D 正确. (2)O 点受到细绳OA 的拉力F 1、细绳OB 的拉力F 2和橡皮条的拉力F 3的作用三力平衡,则F 1与F 2的合力F 3′=F 3,方向与F 3的方向相反.如图甲所示,增加钩码的个数时,细绳OA 的拉力由F 1变化为F 1′,但F 1与F 2的合力F 3′,不变,弹簧测力计的拉力应由F 2增大为F 2′,同时β增大,选项A 错误、B 正确;如图乙所示,保持钩码的个数不变,将钉子向左移动一些,细绳OA 的拉力大小不变,方向由F 1的方向变化为F 1′的方向,合力F 3′不变,细绳OB 的拉力应由F 2增大为F 2′,同时β减小,选项C 错误、D 正确.答案 (1)CD (2)BD6.解析 建立以x 为纵轴,t 2为横轴的图象如图所示,图线是一条过原点的直线,所以x 与t 2成正比.所以x =kt 2,再由图线上的点可求出k =0.322.答案 图见解析图x =0.322 t 27.解析 (1)判断摩擦力是否平衡,要根据小车不受拉力作用时,沿长木板能否做匀速直线运动.(2)小车在拉力作用下做匀变速直线运动,由匀变速直线运动的规律可得:a =v 2B -v 2A2L.小车在不同拉力作用下均做匀变速直线运动,由v 2B -v 2A 与a 成正比可得:a =2.40 m/s 2.(3)根据表中a 与F 的数据描点,发现各点基本处于同一条直线上,通过各点作直线即可.(4)没有完全平衡摩擦力.当没有完全平衡摩擦力时,由F -f =ma 得:a =1m F -fm,a -F图线交于F 轴的正半轴.v2B-v2A 2L 2.40 (3)如图所示(4)没有完全平衡摩擦力答案(1)匀速直线(2)。
爆炸问题和反冲问题1、一个人在地面上立定跳远的最好成绩是(m)s ,假设他站立在船的右端处于静止状态要跳到距离(m)L 的岸上(设船与岸边同高,忽略水的阻力),则( ) A.L s <,他一定能跳上岸 B.L s <,他有可能跳上岸 C.L s =,他有可能跳上岸D.L s =,他一定能跳上岸2、将质量为1.00 g 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A .30/kg m s gB .5.7102/kg m s ⨯gC .6.0102/kg m s ⨯gD .6.3102/kg m s ⨯g3、质量为m 的炮弹以一定的初速度发射,其在水平地面上的射程为d ,若当炮弹飞行到最高点时炸裂成质量相等的两块,其中一块自由下落,则另一块的射程为( ) A.1. 5d B.2d C. d D.3d4、如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员在船尾,相对小船静止。
若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A.0mv v M+B.0mv v M-C.()00m v v v M ++ D.()00mv v v M+-5、向空中发射一炮弹,不计空气阻力,当炮弹的速度恰好沿水平方向时,炮弹炸裂为质量相等的a b、两块。
若a的速度方向仍沿原来的方向,且速度小于炸裂前瞬间的速度,则( )A.b的速度方向一定与炸裂前瞬间的速度方向相反B.从炸裂到落地这段时间内,a飞行的水平距离一定比b的大C.a b、一定同时到达地面D.炸裂的过程中,a b、动量的变化量大小一定不相等6、如图所示,一枚手榴弹开始时在空中竖直向下落,到某位置时爆炸成a、b两块同时落地,其中a落地时飞行的水平距离OA大于b落地时飞行的水平距离OB,下列说法正确的是()A.爆炸瞬间a、b两块的速度大小相等B.爆炸瞬间a、b两块的速度变化量大小相等C. a、b两块落地时的速度大小相等D.爆炸瞬间a、b两块的动量变化大小相等7、一弹丸在飞行到距离地面5m高时仅有水平速度2m/sv ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3:1,不计质量损失,重力加速度g取210m/s,则下列图中两块弹片飞行的轨迹可能正确的是()A. B.C. D.8、“世界航天第一人”是明朝的士大夫万户,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。
专题强化训练(一)一、选择题(共11个小题,4、9、10为多选,其余为单项选择题,每题5分共55分)1.如图所示,一只松鼠沿着较粗均匀的树枝从右向左缓慢爬行,在松鼠从A运动到B的过程中,下列说法正确的是()A.松鼠对树枝的弹力保持不变B.松鼠对树枝的弹力先减小后增大C.松鼠对树枝的摩擦力先减小后增大D.树枝对松鼠的作用力先减小后增大答案 C解析松鼠所受的弹力N=mgcosθ,从A到B的过程中,θ先减小后增大,则弹力先增大后减小,故A、B两项错误;松鼠所受的摩擦力f=mgsinθ,从A到B的过程中,θ先减小后增大,则摩擦力先减小后增大,故C项正确;树枝对松鼠的作用力与松鼠的重力等值反向,所以树枝对松鼠的作用力大小不变,故D项错误.故选C项.2.(2019·浙江二模)如图所示,斜面体M静止在水平面上,滑块m 恰能沿斜面体自由匀速下滑,现在滑块上加一竖直向下的恒力F,则与未施加恒力F时相比,下列说法错误的是()A.m和M间的压力变大B.m和M间的摩擦力变大C.水平面对M的支持力变大D.M和水平面间的摩擦力变大答案 D解析滑块恰好沿斜面匀速下滑时,滑块对楔形斜面体的压力等于mgcosθ,斜面体对滑块的摩擦力为μmg cosθ,施加一个竖直向下的恒力F后滑块对斜面体的压力等于(mg+F)cosθ,变大.斜面体对滑块的摩擦力为μ(mg+F)cosθ,变大,故A、B两项正确;滑块恰好沿斜面匀速下滑,根据平衡条件有:mgsinθ=μmg cosθ,解得:μ=tanθ.对滑块和斜面体整体可知,整体水平方向不受外力,所以地面对斜面体的摩擦力为零.地面对斜面体的支持力等于整体的总重力.施加一个竖直向下的恒力F,有:(mg+F)sinθ=μ(mg+F)cos θ,可知物块仍然做匀速运动.再对滑块和斜面体整体受力分析知,整体水平方向不受外力,所以地面对楔形斜面体的摩擦力为零,地面对楔形斜面体的支持力等于整体的总重力与F之和,变大,故C项正确,D项错误.本题选说法错误的,故选D项.3.长时间低头玩手机对人的身体健康有很大危害,当低头玩手机时,颈椎受到的压力会比直立时大.现将人体头颈部简化为如图所示的模型:头部的重力为G,P点为头部的重心,PO为提供支持力的颈椎(视为轻杆)可绕O点转动,PQ为提供拉力的肌肉(视为轻绳).当某人低头时,PO、PQ与竖直方向的夹角分别为30°、60°,此时颈椎受到的压力约为()A.2G B.3GC.2G D.G答案 B解析设头部重力为G,当人体直立时,颈椎所承受的压力等于头部的重量,即F=G;当某人低头时,PO、PQ与竖直方向的夹角分别为30°、60°,P 点的受力如图所示,根据几何关系结合正弦定理可得:F Osin120°=Gsin30°,解得:F O=3G,故A、C、D三项错误,B项正确.故选B项.4.如图所示,一根通电的导体棒放在倾斜为α的粗糙斜面上,置于图示方向的匀强磁场中,处于静止状态.现增大电流,导体棒仍静止,则在增大电流过程中,导体棒受到的摩擦力的大小变化情况可能是()A.一直增大B.先减小后增大C.先增大后减小D.始终为零答案AB解析若F安<mgsinα,因安培力方向向上,则摩擦力方向向上,当F安增大时,F摩减小到零,再向下增大,B项正确,C、D两项错误;若F安>mgsinα,摩擦力方向向下,随F安增大而一直增大,A项正确.5.(2019·安徽三模)如图,用硬铁丝弯成的光滑半圆环竖直放置,直径竖直,O为圆心,最高点B处固定一光滑轻质滑轮,质量为m的小环A穿在半圆环上.现用细线一端拴在A上,另一端跨过滑轮用力F拉动,使A缓慢向上移动.小环A及滑轮B大小不计,在移动过程中,关于拉力F以及半圆环对A的弹力N的说法正确的是()A.F逐渐增大B.N的方向始终指向圆心OC.N逐渐变小D.N大小不变答案 D解析在物块缓慢向上移动的过程中,小圆环A处于三力平衡状态,根据平衡条件知mg与N的合力与T等大、反向、共线,作出mg 与N的合力,如图所示,由三角形相似得:mgBO=NOA=TAB①F=T②,由①②可得:F=ABBO mg,AB变小,BO不变,则F变小,故A项错误;由①可得:N=OABO mg,AO、BO都不变,则N不变,方向始终背离圆心,故D项正确,B、C两项错误.故选D 项.6. (2019·江西一模)如图所示,质量为m(可视为质点)的小球P,用两根轻绳OP和O′P在P点拴结实后再分别系于竖直墙上且相距0.4 m的O、O′两点上,绳OP长0.5 m,绳OP刚拉直时,OP绳拉力为T1,绳OP刚松弛时,O′P绳拉力为T2,θ=37°(sin37°=0.6,cos37°=0.8),则T1T2为()A.3∶4 B.4∶3C.3∶5 D.4∶5答案 C解析绳OP刚拉直时,OP绳拉力为T1,此时O′P绳子拉力为零,小球受力如图1所示,根据几何关系可得sin α=OO ′OP =45,所以α=53°,所以α+θ=90°;根据共点力的平衡条件可得:T 1=mgsin α;绳OP 刚松弛时,O ′P 绳拉力为T 2,此时绳OP 拉力为零,小球受力如图2所示,根据共点力的平衡条件可得:T 2=mgtan α,由此可得:T 1T 2=sin53°tan53°=35,所以C 项正确,A 、B 、D 三项错误.故选C 项. 7.如图所示,光滑直杆倾角为30°,质量为m 的小环穿过直杆,并通过弹簧悬挂在天花板上,小环静止时,弹簧恰好处于竖直位置,现对小环施加沿杆向上的拉力F,使环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°.整个过程中,弹簧始终处于伸长状态,以下判断正确的是()A.弹簧的弹力逐渐增大B.弹簧的弹力先减小后增大C.杆对环的弹力逐渐增大D.拉力F先增大后减小答案 B解析由于弹簧处于伸长状态,使环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°的过程中,弹簧长度先减小后增大,弹簧的伸长量先减小后增大,故弹簧的弹力先减小后增大,故A项错误,B项正确;开始弹簧处于失重状态,根据平衡条件可知弹簧的弹力等于重力,即T=mg,此时杆对环的弹力为零,否则弹簧不会竖直;当环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°时,弹簧的长度等于原来的长度,弹力等于T=mg,此时有mgcos30°=Tcos30°,杆对环的弹力仍为零,故杆对环的弹力不是一直增大,故C项错误;设弹簧与垂直于杆方向的夹角为α,根据平衡条件可得,从初位置到弹簧与杆垂直过程中,拉力F=mgsin30°-Tsinα,α减小,sinα减小,弹簧的拉力减小,则F增大;从弹簧与杆垂直到末位置的过程中,拉力F=mgsin30°+Tsinα,α增大,sinα增大,弹簧的弹力增大,则拉力增大,故拉力F一直增大,故D项错误.故选B项.8.(2015·山东)如图所示,滑块A置于水平地面上,滑块B在一水平力F作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B 刚好不下滑.已知A与B间的动摩擦因数为μ1,A与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A与B的质量之比为()A.1μ1μ2B.1-μ1μ2μ1μ2C.1+μ1μ2μ1μ2D.2+μ1μ2μ1μ2答案 B解析 对物体A 、B 整体,在水平方向上有F =μ2(m A +m B )g ;对物体B ,在竖直方向上有μ1F =m B g ;联立解得:m A m B =1-μ1μ2μ1μ2,B 项正确.9. (2019·武昌区模拟)如图所示,竖直杆固定在木块C 上,两者总重为20 N ,放在水平地面上.轻细绳a 连接小球A 和竖直杆顶端,轻细绳b 连接小球A 和B ,小球B 重为10 N .当用与水平方向成30°角的恒力F 作用在小球B 上时,A 、B 、C 刚好保持相对静止且一起水平向左做匀速运动,绳a 、b 与竖直方向的夹角分别恒为30°和60°,则下列判断正确的是( )A.力F的大小为10 NB.地面对C的支持力大小为40 NC.地面对C的摩擦力大小为10 ND.A球重为10 N答案AD解析以B为研究对象受力分析,水平方向受力平衡,有:Fcos30°=T b cos30°,得:T b=F竖直方向受力平衡,则有:Fsin30°+T b sin30°=m B g得:F=m B g=10 N以A为研究对象受力分析,竖直方向上有:m A g+T b sin30°=T a sin60°水平方向:T a sin30°=T b sin60°联立得:m A=m B,即A球重为10 N,故A、D两项正确;以ABC整体为研究对象受力分析,水平方向:f=Fcos30°=5 3 N竖直方向:N+Fsin30°=(M+m A+m B)g解得:N=35 N,故B、C两项错误.故选A、D两项.10.如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行.小球A 的质量为m ,电量为q.小球A 的右侧固定放置带等量同种电荷的小球B ,两球心的高度相同,间距为d.静电力常量为k ,重力加速度为g ,两个带电小球可视为点电荷.小球A 静止在斜面上,则( )A .小球A 与B 之间库仑力的大小为kq 2d 2 B .当q d =mgsin θk 时,细线上的拉力为0 C .当q d =mgtan θk 时,细线上的拉力为0 D .当q d =mg ktan θ时,斜面对小球A 的支持力为0 答案 AC解析 根据库仑定律得A 、B 间的库仑力F 库=k q 2d2,则A 项正确;当细线上的拉力为0时,满足k q 2d 2=mgtan θ,得到q d =mgtan θk,则B项错误,C项正确;斜面对小球A的支持力始终不为零,则D 项错误.11. (2019·安徽模拟)如图所示,质量为m B=14 kg的木板B放在水平地面上,质量为m A=10 kg的木箱A放在木板B上与不发生形变的轻杆一端固定在木箱上,另一端通过铰链连接在天花板上,轻杆与水平方向的夹角为θ=37°.已知木箱A与木板B之间的动摩擦因数μ1=0.5,木板B与地面之间的动摩擦因数μ2=0.3.现用水平向左的力F 将木板B从木箱A下面抽出,最大静摩擦力等于滑动摩擦力(sin37°=0.6,cos37°=0.8,重力加速度g取10 m/s2),则所用力F的最小值为()A.150 N B.170 NC.200 N D.210 N答案 B解析对A受力分析如图甲所示,根据题意可得:F T cosθ=F f1,F N1=F T sinθ+m A gF f1=μ1F N1,联立解得:F T=100 N;对A、B整体进行受力分析如图乙所示,根据平衡条件可得:F T cosθ+F f2=FF N2=F T sinθ+(m A+m B)gF f2=μ2F N2,联立解得:F=170 N,故B项正确,A、C、D三项错误.故选B项.二、计算题(共3个小题,12题12分,13题15分,14题18分,共45分)12.风洞实验室中可以产生水平向右,大小可调节的风力.如图甲所示,现将质量为1 kg的小球套在足够长与水平方向夹角θ=37°的细直杆上,放入风洞实验室.小球孔径略大于细杆直径.假设小球所受最大静摩擦力大小等于滑动摩擦力大小.(取g=10 m/s2,sin37°=0.6,cos37°=0.8)(1)若在无风情况下,小球由静止开始经0.5 s 沿细杆运动了0.25 m ,求小球与细杆间的动摩擦因数及滑动摩擦力做的功;(2)在有风情况下,如图乙所示,若小球静止在细杆上,求风力大小;(3)请分析在不同恒定风力作用下小球由静止释放后的运动情况. 答案 (1)0.5 -2 J (2)1.82 N ≤F ≤20 N(3)如果风力大小为1.82 N ≤F ≤20 N ,则小球静止;若F<1.82 N ,小球向下做匀加速运动;若F>20 N ,小球向上做匀加速运动解析 (1)在无风情况下小球由静止开始经0.5 s 沿细杆运动了0.25 m ,则:x =12at 2可知a =2x t 2=2×0.250.52 m/s 2=2 m/s 2, 根据牛顿第二定律可得mgsin θ-μmg cos θ=ma ,解得:μ=0.5,滑动摩擦力做的功W f =-mgcos θ·x =-2 J.(2)当小球受到的摩擦力沿杆向上且最大时,风力最小,如图所示, 根据平衡条件可得:沿杆方向:mgsinθ=Fcosθ+f,垂直于杆方向:N=mgcosθ+Fsinθ,摩擦力f=μN,联立解得:F≈1.82 N;当小球受到的摩擦力沿杆向下且最大时,风力最大,根据平衡条件可得:沿杆方向:mgsinθ=Fcosθ-f,垂直于杆方向:N=mgcosθ+Fsinθ,摩擦力f=μN,联立解得:F=20 N;若小球静止在细杆上,则风力大小范围为1.82 N≤F≤20 N.(3)如果风力大小为1.82 N≤F≤20 N,则小球静止;若F<1.82 N,小球向下做匀加速运动;若F>20 N,小球向上做匀加速运动.13.如图所示,afe、bcd为两条平行的金属导轨,导轨间距l=0.5 m.ed 间连入一电源E=1 V,ab间放置一根长为l=0.5 m的金属杆与导轨接触良好,cf水平且abcf为矩形.空间中存在一竖直方向的磁场,当调节斜面abcf的倾角θ时,发现当且仅当θ在30°~90°之间时,金属杆可以在导轨上处于静止平衡.已知金属杆质量为0.1 kg,电源内阻r及金属杆的电阻R均为0.5 Ω,导轨及导线的电阻可忽略,金属杆和导轨间最大静摩擦力为弹力的μ倍.重力加速度g=10 m/s2,试求磁感应强度B及μ.答案2 3 T3 3解析由磁场方向和平衡可判断,安培力F方向为水平且背离电源的方向,由题意可知当θ=90°时,金属杆处于临界下滑状态有:f1=mg,①N1=F,②f1=μN1,③当θ=30°时,金属杆处于临界上滑状态有:N2=mgcos30°+Fsin30°,④f2+mgsin30°=Fcos30°,⑤f2=μN2,⑥由①~⑥解得:F=3mg,⑦μ=3 3,由闭合电路欧姆定律:I=E2R=1 A,⑧由安培力性质:F=BIl,⑨由⑦⑧⑨得:B=2 3 T,方向竖直向下.14. (2016·天津)如图所示,空间中存在着水平向右的匀强电场,电场强度大小为E=53N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小为B=0.5 T.有一带正电的小球,质量m=1×10-6 kg,电荷量q=2×10-6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2,求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t. 答案(1)20 m/s与电场方向成60°角斜向上(2)3.5 s解析(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有qvB=q2E2+m2g2,①代入数据解得:v=20 m/s,②速度v的方向与电场E的方向之间的夹角满足tanθ=qE mg,③代入数据解得:tanθ=3,θ=60°.④(2)方法一:撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图所示,设其加速度为a,有a=q2E2+m2g2m,⑤设撤去磁场后小球在初速度方向上的分位移为x,有x=vt;⑥设小球在重力与电场力的合力方向上分位移为y,有y=12at2,⑦tanθ=yx;⑧联立④⑤⑥⑦⑧式,代入数据解得:t=2 3 s≈3.5 s,⑨方法二:撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为v y=vsinθ⑤若使小球再次穿过P点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t-12gt2=0⑥联立⑤⑥式,代入数据解得t=2 3 s≈3.5 s.⑦21。
全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。
高考物理二轮选择题专题复习——力学选择题专练(共28题,有答案)1.2019年5月,我国第45颗北斗卫星发射成功。
已知该卫星轨道距地面的高度约为36000km,是“天宫二号”空间实验室轨道高度的90倍左右,则()A.该卫星的速率比“天宫二号”的大B.该卫星的周期比“天宫二号”的大C.该卫星的角速度比“天宫二号”的大D.该卫星的向心加速度比“天宫二号”的大2.国际单位制(缩写SI)定义了米(m)、秒(s)等7个基本单位,其他单位均可由物理关系导出。
例如,由m和s可以导出速度单位m•s﹣1.历史上,曾用“米原器”定义米,用平均太阳日定义秒。
但是,以实物或其运动来定义基本单位会受到环境和测量方式等因素的影响,而采用物理常量来定义则可避免这种困扰。
1967年用铯﹣133原子基态的两个超精细能级间跃迁辐射的频率△v=9192631770Hz定义s;1983年用真空中的光速c=299792458m •s﹣1定义m。
2018年第26届国际计量大会决定,7个基本单位全部用基本物理常量来定义(对应关系如图,例如,s对应△v,m对应c)。
新SI自2019年5月20日(国际计量日)正式实施,这将对科学和技术发展产生深远影响。
下列选项不正确的是()A.7个基本单位全部用物理常量定义,保证了基本单位的稳定性B.用真空中的光速c(m•s﹣1)定义m,因为长度l与速度v存在l=vt,而s已定义C.用基本电荷e(C)定义安培(A),因为电荷量q与电流I存在I=q/t,而s已定义D.因为普朗克常量h(J•s)的单位中没有kg,所以无法用它来定义质量单位3.汽车在平直公路上以20m/s的速度匀速行驶。
前方突遇险情,司机紧急刹车,汽车做匀减速运动,加速度大小为8m/s2.从开始刹车到汽车停止,汽车运动的距离为()A.10m B.20m C.25m D.50m4.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
专题10 电能表电能表是电功率一章中的重要知识点,是学习电学的又一重要仪表,是学好电能的基础,也是一个主要的知识点。
中考中,有关电能表的考题比较多,主要考查电能表的读数方法、电费的计算、电能表参数的认识、计量电能原理、利用电能表计算用电器的电功率等。
纵观历年考试,电能表所占分值一般在1分—2分左右。
1、电能表的作用:电能表是测量电能(或电功)的仪表。
2、电能表的读数:从电能表计数器上读出的数值的单位是KW·h,计数器上显示的是累计消耗电能的数值,其中5位数中的最后一位是小数点后一位,如图读数是:2019.6kW·h。
3、电能的计量:用户在某短时间内消耗多少电能,等于计数器上前后两次读数之差。
4、电能表的参数:(1)220V:额定电压,指家用电器正常工作时,两端所加的电压为220V;(2)10A(20A):10A指该电能表的标定电流,是正常工作时允许通过的最大电流,20A指额定最大电流,是短时间允许通过的最大电流;(3)2500r/kW·h:指转动惨数,即电路中电器每消耗1kW·h电能时,电能表转盘将转动2500转;(4)50Hz:指交流电的频率是50Hz。
5、电路允许接入的最大总功率:P=UI(U:220V ,I:额定最大电流)6、电能表转过的转数与消耗的电能之间的关系式:nWN=(n:一定时间内转过的转数,N是转动参数)7、利用电能表计算电功率:用电器在t时间内单独工作,电能表转过了n转,则用电器的功率nPNt =。
一、中考题型分析中考中,有关电能表的考题比较多,主要考查电能表的读数方法、电费的计算、电能表参数的认识、计量电能原理、利用电能表计算用电器的电功率等,主要以选择、填空、计算题型出现。
二、典例精析★考点一:电能表读数、电能的计量:◆典例一:(2019·广东)如图所示,电能表的示数为kW•h,在某段时间内。
转盘转过1800圈,则此段时间内用了度电。
选择、实验题(10+2)定时训练(四)(限时:40分钟)一、单项选择题(共7小题,每小题4分,共28分)1.(2021·湖南永州市第三次模拟)伽利略在研究力和运动的关系的时候,采用两个平滑对接的斜面,一个斜面固定,让小球从斜面上滚下,小球又滚上另一个倾角可以改变的斜面,斜面倾角逐渐减小直至为零,如图1所示。
关于这个理想斜面实验,下列说法正确的是()图1A.如果没有摩擦,小球运动过程中机械能守恒B.如果没有摩擦,小球将在另一斜面上运动相同的路程C.如果没有摩擦,小球运动到另一斜面上最高点的高度与释放时的高度不同D.如果没有摩擦,小球运动到水平面时的机械能小于释放时的机械能答案A解析如果没有摩擦,小球运动过程中只有重力做功,机械能守恒,选项A正确,D错误;如果没有摩擦,小球机械能守恒,小球运动到另一斜面上最高点的高度将与释放时的高度相同,选项B、C错误。
2.(2021·湖南永州市第三次模拟)如图2所示,某同学疫情期间在家锻炼时,对着墙壁练习打乒乓球,球拍每次击球后,球都从同一位置斜向上飞出,其中有两次球在不同高度分别垂直撞在竖直墙壁上,不计空气阻力,则球在这两次从飞出到撞击墙壁前()图2A.在空中飞行的时间可能相等B.飞出时的初速度竖直分量可能相等C.撞击墙壁的速度大小可能相等D.飞出时的初速度大小可能相等答案D解析将乒乓球的运动逆过程处理,即为平抛运动,两次的竖直高度不同,两次运动时间不同,A项错误;在竖直方向上做自由落体运动,因两次运动的时间不同,故初速度在竖直方向的分量不同,B项错误;两次水平射程相等,但两次运动的时间不同,则两次撞击墙壁的速度不同,C项错误;竖直速度大的,其水平速度就小,根据速度的合成可知飞出时的初速度大小可能相等,D项正确。
3.(2021·北京顺义区第二次统练)如图3所示为某同学设计的电吹风电路图,a、b、c、d为四个固定触点。
可动的扇形金属触片可绕P点转动,能同时接触两个触点。
选考部分要点提炼1.热学基本概念和规律(1)分子动理论与内能①分子动理论a.物体是由大量分子组成的:油膜法测分子直径d=V S 。
b.分子的热运动:分子永不停息的无规则运动。
证据:扩散现象、布朗运动。
c.分子间存在相互作用力,如图1所示。
②温度和温标a.热平衡定律:如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡。
一切达到热平衡的系统都具有相同的温度。
b.摄氏温度t与热力学温度T的关系:T=t+273.15 K③内能a.分子动能温度是分子热运动平均动能的标志。
b.分子势能:如图2所示c.内能:是对于物体而言。
物体中所有分子的热运动动能与分子势能的总和,叫做物体的内能。
(2)气体状态方程①玻意耳定律(等温):p 1V 1=p 2V 2。
②查理定律(等容):p 1T 1=p 2T 2。
③盖—吕萨克定律(等压):V 1T 1=V 2T 2。
④理想气体状态方程:p 1V 1T 1=p 2V 2T 2。
(3)固体、液体、液晶 ①固体 a .晶体形状规则,有固定熔点。
单晶体:各向异性的性质;多晶体:各向同性。
有的物质在不同条件下能够生成不同的晶体。
那是因为组成它们的微粒能够按照不同规则在空间分布。
例如均由碳原子组成的石墨和金刚石。
b .非晶体无确定几何形状,物理性质各向同性,无固定熔点。
同种物质也可能以晶体和非晶体两种不同的形态出现。
物质是晶体还是非晶体,并不是绝对的,是能够相互转化的,例如天然水晶和石英玻璃。
②液体a .表面张力:使液体表面积收缩到最小。
b .浸润和不浸润:是分子力作用的表现。
一种液体是否浸润某种固体,与这两种物质的性质都有关系。
如图3所示。
水可以浸润玻璃,但水不能浸润蜂蜡和石蜡;水银不浸润玻璃,但水银浸润铅。
c .毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象。
d .液晶:具有液体的流动性;具有晶体的光学各向异性。
e .饱和汽与饱和气压饱和汽:与液体处于动态平衡的蒸汽。
高考物理二轮(通用)选练(10)及解析一、选择题1、(2018·广东五校联考)如图所示,物体A、B用细绳与弹簧连接后跨过滑轮.A 静止在倾角为45°的粗糙斜面上,B悬挂着.已知质量m A=3 m B,不计滑轮摩擦,现将斜面倾角由45°减小到30°,那么下列说法中正确的是()A.弹簧的弹力不变B.物体A对斜面的压力将减小C.物体A受到的静摩擦力将减小D.弹簧的弹力及物体A受到的静摩擦力都不变解析:设m A=3m B=3m,对物体B受力分析,受重力和拉力,由二力平衡得弹簧的弹力不变,A正确,再对物体A进行受力分析,受重力、支持力、弹簧的弹力和静摩擦力,如图所示.刚开始由于m A gsin45°=322mg>m B g=mg,所以摩擦力沿斜面向上,斜面倾角变为30°以后摩擦力仍然沿斜面向上.根据平衡条件得到F f+F T-3mgsinθ=0,F N-3mgcosθ=0,解得F f=3mgsinθ-F T=3mgsinθ-mg,F N=3mgcosθ.当θ减小时,物体A受到的静摩擦力F f将减小,物体A对斜面的压力F N 增大,故C正确,B、D错误.答案:AC2、(2018·汕头质检)建设房屋时,保持底边L不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速无摩擦的运动.下列说法正确的是()A.倾角θ越大,雨滴下滑时的加速度越大B.倾角θ越大,雨滴对屋顶压力越大C.倾角θ越大,雨滴从顶端O下滑至屋檐M时的速度越大D.倾角θ越大,雨滴从顶端O下滑至屋檐M时的时间越短解析:设屋檐的底角为θ,底边为L,注意底边长度是不变的,屋顶的坡面长度为x,雨滴下滑时加速度为a,对雨滴做受力分析,只受重力mg和屋顶对雨滴的支持力F N,垂直于屋顶方向:mgcosθ=F N,平行于屋顶方向:ma=mgsinθ,雨滴的加速度为:a=gsinθ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力:F′N=F N=mgcosθ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cosθ,由x=12gsinθ·t2可得:t=2Lgsin2θ,可见当θ=45°时,用时最短,D错误;由v=gsinθ·t可得:v=gLtanθ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.答案:AC3、如图所示,滑雪者由静止开始沿斜坡从A点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A、B两点间的水平距离为L.在滑雪者经过AB段运动的过程中,克服摩擦力做的功()A.大于μmgL B.小于μmgLC.等于μmgL D.以上三种情况都有可能解析:设斜坡与水平面的交点为C ,BC 长度为L 1,AC 水平长度为L 2,AC与水平面的夹角为θ,如图所示,则滑雪者在水平面上摩擦力做功W 1=-μmgL 1,在斜坡上摩擦力做功W 2=-μmgcos θ·L 2cos θ=-μmgL 2,所以在滑雪者经过AB 段过程中,摩擦力做功W =W 1+W 2=-μmg(L 1+L 2)=-μmgL.所以滑雪者克服摩擦力所做的功为μmgL.故选项C 正确.答案:C4、(2018·四川资阳二诊)如图所示,平行板电容器与电动势为E 的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略,一带负电的油滴被固定于电容器中的P 点,现将平行板电容器的上极板竖直向下平移一小段距离,则下列说法正确的是() A .平行板电容器的电容将减小B .带电油滴的电势能将减少C .静电计指针的张角变小D .若将上极板与电源正极断开后,再将下极板左移一小段距离,则带电油滴所受的电场力不变解析:由C =εr S 4πkd知,将平行板电容器的上极板竖直向下平移一小段距离,d 减小,C 增大,A 错误;U 不变,静电计指针的张角不变,C 错误;由E =U d 知,E 增大,则P 点与负极板间的电势差增大,P 点的电势升高,E p =φq,又油滴带负电,则带电油滴的电势能将减少,B 正确;若将上极板与电源正极的导线断开后再将下极板左移一小段距离,Q 不变,由C =εr S 4πkd知,S 减小,C 减小,由U =Q C 得,电压U 增大,场强E =U d增大,带电油滴所受的电场力增大,D 错误.答案:B5、如图所示,在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M、N两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法正确的是()A.带电粒子在磁场中飞行的时间可能相同B.从M点射入的带电粒子可能先飞出磁场C.从N点射入的带电粒子可能先飞出磁场D.从N点射入的带电粒子不可能比M点射入的带电粒子先飞出磁场解析:画轨迹草图如图所示,容易得出粒子在圆形磁场中的轨迹长度(或轨迹对应的圆心角)不会大于在正方形磁场中的,故A、B、D正确.答案:ABD6、(2018·湖南十三校联考)如图所示为光电管工作原理图,闭合开关,当有波长(均指真空中的波长,下同)为λ的光照射阴极K时,电路中有光电流,则()A.换用波长为λ1(λ1>λ)的光照射阴极K时,电路中一定没有光电流的光照射阴极K时,电路中一定有光电流B.换用波长为λ2(λ2<λ)C.增大电路中电源两端电压,电路中的光电流一定增大D.将电路中电源的极性反接,电路中一定没有光电流解析:因为λ1>λ,则ν1<ν,所以用波长为λ1的光照射阴极K,不一定发生光电效应,A错误;因为λ2<λ,则ν2>ν,所以用波长为λ2的光照射阴极K,一定发生光电效应,B正确;饱和光电流的大小与入射光的强度有关,与电压无关,所以只增大电路中电源两端的电压,光电流不一定增大,C错误;将电路中的电源反接,若电压小于遏止电压,仍然会有光电流产生,D错误.答案:B二、非选择题1、(2018·河北省两校高三年级模拟考试)质量为m=2 kg的物块静置于水平地面上,现对物块施加水平向右的力F,力F随时间变化的规律如图所示,已知物块与地面间的动摩擦因数μ=0.2,设最大静摩擦力等于滑动摩擦力,g取10 m/s2,求:(1)4 s后撤去力F,物块还能继续滑动的时间t;(2)前4 s内,力F的平均功率.解析:(1)物块与地面之间最大静摩擦力Ff m=μmg=4 N,在第1 s内物块静止不动第1~3 s内,物块做匀加速直线运动,根据牛顿第二定律a1=F1-μmgm=2 m/s23 s末,物块的速度v1=a1t1=2×2 m/s=4 m/s第3~4 s内,物块做匀速直线运动, 4 s后撤去外力物块做匀减速运动,加速度大小为a2=μg=2 m/s2则物块继续滑行时间t=v1a2=2 s(2)设第1~3 s内与第3~4 s内物块的位移分别为x1、x2x1=12a1t21=4 mx2=v1t2=4 m前4 s内,力F做功的大小为W=F1x1+F2x2=48 J前4 s内,力F的平均功率P=Wt总=12 W答案:(1)2 s (2)12 W2、(2018·河北沧州模拟)(1)(10分)两位同学用两面平行的玻璃砖做“测定玻璃的折射率”实验.①甲同学在量入射角和折射角时,由于没有量角器,在完成了光路图以后,以O点为圆心,OA为半径画圆,交OO′延长线于C点,过A点和C点作垂直于法线的线段分别交法线于B点和D点,如图所示.测量有关线段长度,可得玻璃的折射率n=________.(用图中线段表示)②乙同学在画界面时,不小心将两界面ab和cd间距画得比玻璃砖宽度大些,下界面与实际相同,如图所示.若操作无误,则他测得的折射率比真实值________(填“偏大”“偏小”或“不变”).(2)(15分)如图所示,一列波沿x轴传播,t=0时刻的波形如实线所示,t=0.5 s时刻的波形如虚线所示,t=0时刻位于x=4 m处的质点P正沿y轴正向运动.(ⅰ)若从t=0到t=0.5 s这段时间内,质点P运动的路程为 1 m,则这列波的波速为多少?(ⅱ)若3T<0.5 s<4T,则这列波的波速为多少?解析:(1)①题图甲中AO为入射光线,OO′是折射光线,设光线在玻璃砖上表面的入射角为i,折射角为r,则由几何知识得到sini=ABAO,sinr=CDOC,又AO=OC,则折射率n=sinisinr=ABCD.②“测定玻璃砖折射率”的实验原理是折射定律n =sini sinr,如图所示,右边实线表示实际的光路图,左边虚线表示作图光路图,由图可看出,画图时的入射角不变、折射角比实际的折射角变大,由折射定律可知,测出的折射率变小.(2)(ⅰ)从t =0到t =0.5 s 这段时间内,质点P 运动的路程为s =1 m则s =n ×4A得n =1.25即1.25T =0.5 s得T =0.4 s波速为v =λT =80.4m/s =20 m/s(ⅱ)由于t =0时刻位于x =4 m 处的质点P 正沿y 轴正向运动,由此可以判断波沿x 轴正向传播,因此有0.5 s =14+n T由于3T<0.5 s<4T因此234<n<334,取n =3解得T =213s波传播的速度v =λT =52 m/s.答案:(1)①ABCD ②变小(2)(ⅰ)20 m/s(ⅱ)52 m/s。