不等式证明的若干方法
- 格式:doc
- 大小:735.00 KB
- 文档页数:23
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
2022考研数学:不等式证明的7种方法总结
不等式证明的7种方法总结
1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;
2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;
3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;
4. 利用函数最大值、最小值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;
5. 利用函数取到唯一的极值证明不等式。
把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;
6. 用柯西中值定理证明不等式;
7. 利用曲线的凹凸性证明不等式。
证明不等式几种的方法1.1比较法(作差法)[1]在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得ab b a ≥+2. 1.2作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<b a 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1).例2 设0>>b a ,求证:a b b a b a b a >.证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a , 故 a b b a b a b a >.1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:15175+>+.证明 要证15175+>+,即证1521635212+>+,即15235+>,1541935+>,16154<,415<,1615<.由此逆推即得 15175+>+.1.4放缩法[5]在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例4 求证:01.0100009999654321<⨯⨯⨯⨯ . 证明 令,100009999654321⨯⨯⨯⨯= p 则 ,10000110001111000099991431211000099996543212222222222222<=-⨯⨯-⨯-<⨯⨯⨯⨯= p所以 01.0<p .1.5函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例5 设R x ∈,求证:812sin 32cos 4≤+≤-x x . 证明 81243sin 2sin 3sin 21sin 32cos )(22+⎪⎭⎫ ⎝⎛--=+-=+=x x x x x x f 当43sin =x 时, ;812)(m ax =x f 当1sin -=x 时, .4)(m in -=x f故 812sin 32cos 4≤+≤-x x . 1.6单调函数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调上升;若0)(≤'x f ,则)(x f 单调下降.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可. 例 6 证明不等式x e x +>1,.0≠x证明 设,1)(x e x f x --=则.1)(-='xe xf 故当0>x 时,f x f ,0)(>'严格递增;当f x f x ,0)(,0<'<严格递减.又因为f 在0=x 处连续,则当0≠x 时, ,0)0()(=>f x f从而证得.0,1≠+>x x e x 1.7中值定理法利用中值定理:)(x f 是在区间],[b a 上有定义的连续函数,且可导,则存在ξ,b a <<ξ,满足))(()()(a b f a f b f -'=-ξ来证明某些不等式,达到简便的目的.例7 求证:y x y x -≤-sin sin .证明 设 x x f sin )(=,则ξξcos )(n si )(sin sin y x y x y x -='-=-故 y x y x y x -≤-≤-ξcos )(sin sin .1.8利用拉格朗日函数例 8 证明不等式,)111(331abc cb a ≤++- 其中c b a ,,为任意正实数. 证明 设拉格朗日函数为对).1111(),,,(rz y x xyz z y x L -+++=λλ 对L 求偏导数并令它们都等于0,则有02=-=x yz L x λ, 02=-=y zx L y λ, 02=-=x xy L z λ, .01111=-++=rz y x L λ由方程组的前三式,易的.111μλ====xyz z y x 把它代入第四式,求出.31r =μ从而函数L 的稳定点为.)3(,34r r z y x ====λ 为了判断3)3()3,3,3(r r r r f =是否为所求条件极小值,我们可把条件rz y x 1111=++看作隐函数),(y x z z =(满足隐函数定理条件),并把目标函数),(),(),,(y x F y x xyz z y x f ==看作f 与),(y x z z =的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:,22xz z x -=,22y z z y -= ,2xyz yz F x -=,2y xz xz F y -= ,2,232233xy z x z y z z F xyz F xy xx +--== .233yxz F yy = 当r z y x 3===时,,3,6r F F r F xy yy xx ===.02722>=-r F F F xy yy xx由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式).1111,0,0,0()3(3rz y x z y x r xyz =++>>>≥ 令,,,c z b y a x ===则,)111(1-++=cb a r 代入不等式有 31])111(3[-++≥cb a abc 或 ).0,0,0()111(331>>>≤++-c b a abc c b a。
马行软地易失蹄,人贪安逸易失志。
对待生命要认真,对待生活要活泼。
以下是为您推荐初中数学知识点:不等式证明的六大方法。
1、比较法:包括比差和比商两种方法。
2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。
3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的
条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。
目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。
二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。
三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。
四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。
五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。
六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。
七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。
以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。
不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
`学科分类号110本科毕业论文题目不等式证明的若干方法姓名朱虹霞学号51院(系)数学与计算机科学学院专业数学与应用数学年级 2011级指导教师晟职称副教授二○一五年五月师学院本科毕业论文诚信声明本人重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业论文作者签名:年月日目录摘要 (1)Abstract (2)1 常用的不等式证明方法 (3)1.1 作差比较法 (3)1.2 作商比较法 (4)1.3 分析法 (5)2 假设法证明不等式 (5)2.1 反证法 (5)2.2 数学归纳法 (6)3 构造法证明不等式 (7)3.1 代换法 (7)3.2 构造复数 (8)4 利用微分中值定理证明不等式 (9)4.1 利用拉格朗日中值定理 (9)4.2 利用柯西中值定理证明不等式 (10)4.3 利用泰勒展开式证明不等式 (11)5 利用积分定理证明不等式 (12)5.1 利用定积分定义证明不等式 (12)5.2 利用定积分性质证明不等式 (13)6 一题多解 (14)结语 (17)参考文献 (18)致 (19)摘要不等式是数学学习过程当中一个根本的问题,它浸透于数学研究的各个方面,因而不等式证明在数学中有着至关重要的作用和地位。
在本文中,我主要从不同方面总结了一些证明不等式的方法。
尤其是在初等数学中不等式证明,经常会使用到比较法,假设法,反证法等等。
在高等数学中还会用到中值定理、积分定理等等。
于是,一个更完美的不等式的证明,有助于我们进一步的探索研究。
经过去掌握这些证明方法,可能会帮助我们去解决一些数学题目。
关键词:比较法;中值定理;积分定理AbstractInequality is the mathematical learning process is a fundamental issue, it soaked in all aspects of mathematical research, which proves inequality has a crucial role and position in mathematics. In this article, I mainly summarizes some different aspects to prove inequality. Especially proving inequalities in elementary mathematics, is often used to compare methods, assumptions law, reductio ad absurdum, and so on. Higher Mathematics will be used in the mean value theorem, integral theorem and so on. Thus, a more perfect proof of inequality, helping us to further exploration and research. After prove to master these methods may help us to solve some math problems.Keywords: Comparative Law; value theorem; integral theorem引言在数学学习过程中,不等式是基本的数学关系,不等式的证明也证明了它是数学领域一个非常重要的容,然而,这些容在初等数学与高等数学中又有一个很好的体现。
到17世纪之后,它已经逐渐发展为不等式理论,成为数学基础的一个重要要组成部分。
在不等式证明之前,要根据其结构特点,往往需要对其部结构进行分析,来采取适当的,熟悉各种证据推理方法,并要掌握相应的环节,技术和语言特点,揭示问题的本质特点,使得难解的问题变动为可解性问题。
黄冬梅在《关于不等式证明的若干方法的探究》中提到过,利用“对称和均分”的观点。
根据微积分的知识,通过一些例子来探讨不等式证明在初等数学中应用。
东洪平在《利用二次求导确定函数单调性证明一些不等式》中涉及到,根据利用二阶导数方法来证明函数的单调性,通常用一个函数来求导确定,因此,某些函数的单调性不能确定的时候,对这些函数进行二次求导来确定其单调函数.忠彦在《用数学归纳法证明一类不等式的技巧》中提到,对于一边是常数的数列不等式,不妨借助于数学归纳法,直接证明概括往往有一定的困难,如果使用不等式的传递性、可加性,通过增强命题,比例常数和其他技能,就可以成功完成了归纳过渡。
1 常用的不等式证明方法比较法是不等式数学证明中最基本、最根本的方法,主要有作差法和作商法。
1.1 作差比较法作差比较法:要证不等式()->-<即可。
比较a b a b><,只要证()a b a b00法包括以下几个步骤:作差、变形、判断的符号(正或负)、得出结论。
例1 实数,a b 为正数,求证22222a b a b ++≥+。
分析:两个多项式大小的比较通常是用作差比较法。
解:()22222a b a b ++-+()()222121a a b b =-++-+()()22110a b =-+-≥小结:作差:要比较两个数(或式子)作差的大小;变形:对差值进行因式分解或几个数(或式子)的完全平方和; 判别:结合变形和题设前提下判断差的符号。
1.2 作商比较法商比较:在一般情况下,当,a b 均为正数时,借助1a b >或1a b <,来表示它的大小,一般步骤为:作商——变形——判别(大于1或小于1)。
例2 设,a b R +∈,求证:()2a ba b a b ab +≥。
分析:关于一些含有幂指数类型的题通常都用作商比较法。
证明:()2222a b a b b a a b a b a b a a b b ab ---+⎛⎫=⋅= ⎪⎝⎭, 又指数函数的性质,当a b =时,21a b a b -⎛⎫= ⎪⎝⎭;当0a b >>时,1a b >,02a b ->,21a b a b -⎛⎫> ⎪⎝⎭;当0b a >>时,01a b <<,02a b -<,21a b a b -⎛⎫> ⎪⎝⎭; 即2a b a b a b ab +≥.注:作商法通常适用于含“幂”、“指数”比较类型的式子。
1.3 分析法分析法是从结论开始,一步步的向上推导,探索下去,然而证明已知的题目中设条件,在证明的过程中,推导的每一步都要可逆。
例3 已知:c b a ,,为互不相等的实数,求证:ca bc ab c b a ++>++222.证明:要证ca bc ab c b a ++>++222成立,即证明0222>---++ca bc ab c b a需要证022*******>---++ca bc ab c b a即()()()0222>-+-+-a c c b b a因为c b a ≠≠,所以()()()0,0,0222>->->-a c c b b a .由此逆推,即可证明。
2 假设法证明不等式2.1 反证法反证法是证明与命题相对立的结论,可以先来假设一个错误的结论,应用到以往所学的知识来证明假设是错误的。
理论依据:命题“p ”与命题“非p ”一真、一假。
例4 已知10,10,10<<<<<<c b a ,求证:()()()a c c b b a ---1,1,1至少有一个小于等于41。
分析:“小于等于”的反面是“大于”,可以考虑用反证法。
证明:假设()()()a c c b b a ---1,1,1都大于41,则10,10,10<<<<<<c b a∴01,01,01>->->-c b a根据平均值不等式,有()()2141121=>-≥+-b a b a同理()()2121,2121>+->+-ac c b ,∴()()()23212121212121=++>+-++-++-a c c b b a2323>∴.显然矛盾,所以结论成立。
注:反证法适合用于证明一些“存在性的问题、唯一性的问题”,“至少有一个”或“至多有一个”等类型的数学问题。
2.2 数学归纳法一般地,证明一个与正整数n 有关的命题,即按下列步骤进行:()1证明当n 取第一个值1=n 时命题成立;()2一个命题,证明了命题的假设命题进行()*0,n k k n k N =≥∈证明,建立当1n k =+时,命题也成立。
综上所述,建立了所有的自然数都成立。
例5 nn n n n 212111211214131211+++++=--++-+- 。
证明:()1当1n =时,左11122=-=,右12=,一个命题成立。
()2假设当n k =时,命题成立, 即k k 211214131211--++-+- kk k 212111+++++= . 那么当1n k =+时, 左边221121211214131211+-++--++-+-=k k k k 221121212111+++++++++=k k k k k 2211213121++++++++=k k k k 上式表明当1n k =+时,命题也成立。
由()()12知,命题对一切正整数均成立。
注意:(1)数学归纳法证明命题,步骤严谨,务必严格按步骤进行。
(2)归纳推理是难点,要仔细看准再变形。
3 构造法证明不等式构造法是利用已知条件为前提,把条件进行变换和替代或模型结构的条件下,复杂等,来实现不等式的证明过程的简单化。
3.1 代换法提取一个式子作为一个整体,一个变量来代替它,使问题得以简单化,称为代换法。
还原转化的本质,关键在于构建元素和组元,理论原由是基于等效替代,这样的非标准化的问题,复杂的问题。
例7 计算下面的算式()()()()7.88 6.77 5.669.3110.98107.88 6.77 5.66109.3110.98++⨯++-+++⨯+ 解: 令7.88 6.77 5.66a =++,9.3110.98b =+, 则原式()()1010a b a b =⨯+-+⨯ ()()1010ab a ab b =+-+ 1010ab a ab b =+-- ()10a b =⨯-()107.88 6.77 5.669.3110.98=⨯++-- 100.02=⨯ 0.2=注意:在解题过程中,往往要根据解题的需要,通常把较大的数字或者复式的式子用字母来代替,这样才会使式子中的复杂的关系更加简单明了,简化或计算过程也会简便些。