圆柱圆锥知识点总结
- 格式:docx
- 大小:78.81 KB
- 文档页数:6
第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。
本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。
一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。
圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。
以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。
2. 圆柱体的两个底面圆半径相等。
3. 圆柱体的侧面积等于底面周长乘以高度。
4. 圆柱体的体积等于底面积乘以高度。
二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。
公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。
3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。
体的高度。
4. 体积公式:圆柱体的体积等于底面积乘以高度。
公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。
三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。
圆锥体的底面是一个圆,其顶点与底面圆的中心相连。
以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。
2. 圆锥体的侧面积等于底面周长乘以母线长。
3. 圆锥体的体积等于底面积乘以高度除以3。
四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。
公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。
3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。
公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。
4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。
《圆柱和圆锥》知识点总结1.圆柱:以长方形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体底面2.名词:圆柱的高:两个底面之间的距离叫做高(高有无数条)。
圆柱的底面:圆柱的两个圆面叫做底面(又分上底和下底)。
圆柱的侧面:圆柱有一个曲面,叫做侧面;(展开图是长方形,正方形或平行平行四边形)。
3.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高 V柱=Sh=πr2·h圆柱的高=体积÷底面积 h=V柱÷S=V柱÷(πr2)圆柱的底面积=体积÷高 S=V柱÷h4.圆柱的侧面积:圆柱的侧面积=底面的周长×高, S侧=Ch(注:c为πd)5.圆柱的表面积=两个底面积+一个侧面积 S表=2πr2+Ch6.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2横切切面竖切b.柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh6.圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
7.考试常见题型:a.已知圆柱的底面半径和高,求圆柱的侧面积,表面积,体积,底面周长;C=2πr S侧=2πrh S表=2πr2+2πrh V=πr2·hb.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;S侧=Ch S表=2π(C÷π÷2)2+ Ch V=π(C÷π÷2)2h S底=π(C÷π÷2)2c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;h=V÷(C÷π÷2)2先求h=V÷(C÷π÷2)2 再求 S侧=Ch先求h=V÷C÷π÷2)2再求 S表=2π(C÷π÷2)2+ ChS底=π(C÷π÷2)2d.已知圆柱的底面直径和高,求圆柱的侧面积,表面积,体积;S侧=πdh S表=2π(d÷2)2+πdh V=π(d÷2)2he.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
圆柱和圆锥知识点总结
圆柱和圆锥是几何学中的两个重要概念。
下面是关于圆柱和圆锥的一些知识点总结。
圆柱:
1. 圆柱是由一个长方形和两个平行于长方形边的圆所组成的立体。
2. 圆柱有三个重要的元素:底面、高和侧面。
3. 底面是圆柱的两个平行圆所围成的区域。
4. 高是连接底面的两个圆心的线段,垂直于底面。
5. 圆柱的侧面是连接底面两个圆周上的点的曲面。
6. 圆柱的体积可以通过底面的面积乘以高来计算:体积 = 底面面积×高。
7. 圆柱的表面积可以通过底面的周长乘以高再加上两个底面的面积来计算:表面积 = 2πr^2 + 2πrh。
圆锥:
1. 圆锥是由一个圆形底面和一个尖顶的点组成的立体。
2. 圆锥也有三个重要的元素:底面、高和侧面。
3. 底面是圆锥的底部圆形区域。
4. 高是连接底面圆心和尖顶的线段,垂直于底面。
5. 圆锥的侧面是连接底面圆周上的点和尖顶的曲面。
6. 圆锥的体积可以通过底面的面积乘以高再除以3来计算:体积 = (底面面积×高) / 3。
7. 圆锥的表面积可以通过底面的周长乘以斜高再加上底面的面积来计算:表面积 = πr(l + r),其中l为斜高。
总结:
圆柱和圆锥都是由圆形底面和侧面组成的立体,它们的特点和计算公式有一些相似之处,但也有一些不同之处。
了解圆柱和圆锥的知识点,可以帮助我们解题时更加准确地计算体积和表面积。
长方体里削出最大的圆柱、圆锥:圆柱、圆锥底面直径等于宽(宽﹥高),圆柱、圆锥高等于长方体高。
4.浸物体积问题(排水法测不规则物体的体积):水面上升部分的体积就是浸
入水中物品的体积,等于盛水容器的底面积乘上升的高度。
也就是变化的水的体积。
主要类型:①盛满水,浸物溢水;②浸物水面上升;③取物水面下降。
5.等体积转换问题:圆锥体沙堆铺路;长方体钢材熔铸成圆柱或圆锥;橡皮泥
改变形状;圆柱中的溶液倒入圆锥……都是体积不变的问题。
解决此类问题,最好列出体积相等公式,再代入数据进行计算。
圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
圆柱圆锥知识点总结要紧内容圆柱和圆锥的熟悉、圆柱的表面积考点分析一、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
二、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的极点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开取得一个长方形,那个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积 = 底面周长×高五、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例一、(圆柱和圆锥的特点)圆柱和圆锥别离有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除底面是平面图形(圆)例二、求下面立体图形的底面周长和底面积。
半径3厘米直径10米分析与解:依照圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)底面积 3.14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31.4(米)底面积 3.14 ×(10÷2)²= 78.5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要依照圆的周长和面积计算公式进行计算。
例3、判定:圆柱和圆锥都有无数条高。
错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的极点到底面圆心的距离是圆锥的高。
极点和底面圆心都是唯一的点,因此圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就取得一个长方形。
那个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。
圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。
b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。
c.圆柱的体积等于底面圆的面积乘以母线的长度。
2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。
b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。
3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。
b.圆柱的垂直截面是一个矩形。
4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。
b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。
二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。
圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。
b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。
c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。
2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。
b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。
3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。
b.圆锥的垂直截面是一个等腰三角形。
4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。
b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。
总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。
它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。
深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
4、圆柱的侧面积二底面周长X高5、圆柱的表面积=侧面积+底面积X 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面圆柱圆锥底面两个底面完全相同,都是圆形。
一个底面,是圆形。
侧面曲面,沿高剪开,展开后是长方形。
曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高两个底面之间的距离,有无数条。
顶点到底面圆心的距离,只有一条。
例2、求下面立体图形的底面周长和底面积。
分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱: 底面周长 3.14 X 3 X 2 = 18.84 (厘米)圆锥:底面积 3.14 X 3 2 = 28.26 (平方厘米)底面周长 3.14 X 10 = 31.4 (米)底面积 3.14 X (10+ 2)2 = 78.5 (平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
例3、判断:圆柱和圆锥都有无数条高。
错误解法:正确正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高。
例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解圆柱有无数条高,圆锥只有一条高。
分析与解:直径10米底面周长沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。
这个长方形的长等于圆 柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方 形的面积,即圆柱的侧面积。
解答:3.14 X 5 X 12 = 188.4 (平方厘米) 答:它的侧面积是188.4平方厘米。
点评:圆柱的侧面是个曲面,不能直接求出它的面积。
推导出侧面积的计算公式也用到了转化 的思想。
把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面 积就是这个圆柱的侧面积。
例5、(圆柱的表面积)做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。
点评:这里不能用四舍五入法取近似值。
因为在实际生活中使用的材料要比计算得到的结果多一些。
因此这儿保留整数,十分位上虽然是 4,但也要向个位进1。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。
做这样一个水桶,至少需用铁皮6123平方厘米。
分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。
在计算铁皮面积时只要用圆柱的 侧面积加上一个底面的面积。
解答:底面积:3.14 X ( 30 - 2) 2 = 706.5 (平方厘米)侧面积:3.14 X 30 X 50 = 4710 (平方厘米) 表面积:706.5 + 4710 = 5416.5 (平方厘米)答:做这样一个水桶,至少需用铁皮5416.5平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长 15.7厘米的正方形。
这个圆柱的表面积是多少平方厘米?分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。
根据圆柱的底面周长可以算出底面积。
解答:底面半径:15.7 - 3.14 - 2 = 2.5(厘米)底面积:3.14 X 2.5 2 = 19.625 (平方厘米) 侧面积:15.7 X 15.7 = 246.49 (平方厘米)表面积:19.625 X 2 + 246.49 = 285.74 (平方厘米)答:这个圆柱的表面积是 285.74平方厘米。
例& (考点透视)一个圆柱形的游泳池,底面直径是 10米,高是4米。
在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?分析与解:要求水泥的质量,先要求水泥的面积。
在圆柱形的游泳池的四周和底部涂水泥,涂 水泥的面积是一个底面积加上侧面积。
解答: 侧面积:3.14 X 10 X 4 = 125.6 (平方米)底面积:3.14 X (10十2 ) 2 = 78.5 (平方米) 涂水泥的面积:125.6 + 78.5 = 204.1 (平方米)水泥的质量:204.1十5 = 40.82(千克)答:共需40.82千克水泥。
例9、(考点透视)把一个底面半径是 2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱解答:底面积:侧面积: 表面积: 答:至少需要铁皮3平方米。
3 (平方米)3.14 X3.14 X 0.2826形木头,表面积增加了多少平方分米?分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。
锯成三段,要锯两次, 每锯一次增加两个面,锯了两次增加了四个面。
3.14 X 2 2 X 4 = 50.24 (平方分米)答:表面积增加了 50.24平方分米。
点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个 面。
但切的方式不同,增加的面也不同。
如果是沿着底面直径把圆柱切成相同的两个部分, 增加的面就是以底面直径和高为两邻边的长方形。
模拟试题k 看图选填“(在方謳冋填序号〕2”选一选*〔把合适答秦的字母填在括号里)F 面( )图形旋转会形成圆柱。
3、在下图中,以直线为轴旋转,可以得出圆锥的是(4、求下列圆柱体的侧面积(3) 底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
面 一划-一司喘高侧庚 ©②③①汉、(1) 底面半径是3厘米,高是4厘米。
(2) 底面直径是4厘米,高是5厘米。
(2)底面直径是6厘米,高是12厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
(21你逝样的材料鬧成的水桶靑闻枳是爭少平方分米?&一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥 20千克,一共要用多少千克水泥?圆柱、圆锥的体积圆柱体积公式: 圆锥体积公式:模拟试题、圆柱体积1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米门】伙洗择的材料县C[号和(* rM2彤KJ 丿P②(2)底面半径是3厘米,高是5厘米。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克, 截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?1、圆锥体积1、选择题。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()1① -a立方米②3a立方米③9立方米3(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米① 6 立方米② 3 立方米③ 2 立方米2、判断对错。
(1 )圆柱的体积相当于圆锥体积的3倍......... ()( 2) 将一个圆柱体木料加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1 .............................. ()(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米............ ()3、填空(1)一个圆柱体积是18 立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2)一个圆锥的体积是18 立方厘米,与它等底等高的圆柱的体积是()立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144 立方厘米。
圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
4、求下列圆锥体的体积。
( 1 )底面半径4 厘米,高6 厘米。
( 2)底面直径6 分米,高8 厘米。
3)底面周长31.4 厘米,高12 厘米。
5、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1 .8吨。
这堆沙约重多少吨?6、一个近似圆锥形的麦堆,底面周长12.56米,高1.2 米,如果每立方米小麦重750 千克,这堆小麦重多少千克?7、一个长方体容器,长5 厘米,宽4 厘米,高3 厘米,装满水后将水全部倒入一个高6 厘米的圆锥形的容器内刚好装满。
这个圆锥形容器的底面积是多少平方厘米?。