第三章电介质习题
- 格式:ppt
- 大小:125.50 KB
- 文档页数:8
习题13-1. 如图为半径为的介质球,试分别计算下列两种情况下球表面上的极化面电荷密度和极化电荷的总和.已知极化强度为P (沿x 轴).(1);(2).解:(1)由于介质被均匀极化,所以(2)在球面上任取一个球带2043P R π= 13-2. 平行板电容器,板面积为,带电量,在两板间充满电介质后,其场强为,试求 :(1)介质的相对介电常数 (2)介质表面上的极化电荷密度.解:(1)(2)13-3. 面积为S 的平行板电容器,两板间距为,求:(1)插入厚度为,相对介电常数为的电介质,其电容量变为原来的多少倍?(2)插入厚度为的导电板,其电容量又变为原来的多少倍?解:(1)(2)插入厚度为的导电板,可看成是两个电容的串联13-4. 在两个带等量异号电荷的平行金属板间充满均匀介质后,若已知自由电荷与极化电荷的面电荷密度分别为与(绝对值),试求:(1)电介质内的场强;(2)相对介电常数.解:(1)(2)13-5. 电学理论证明:一球形均匀电介质放在均匀外电场中会发生均匀极化.若已知此极化介质球的半径为,极化强度为.求极化电荷在球心处产生的场强.解:球面上极化电荷的面密度球面上极化电荷元在球心处产生的场强由对称性可知只有场强的分量对球心处的电场有贡献把球面分割成许多球带,它在球心处产生的场强13-6. 一圆柱形电容器,外柱的直径为,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度大小为.试求该电容器可能承受的最高电压.解:0=drdU13-7. 一平行板电容器,中间有两层厚度分别为和的电介质,它们的相对介电常数为.和,极板面积为S ,求电容量.解:21210r r d d S U Q C εεε+== 13-8. 计算均匀带电球体的静电能,设球体半径为, 带电量为.解:13-9. 半径为的导体外套有一个与它同心的导体球壳,球壳的内外半径分别为和.当内球带电量为时,求:(1)系统储存了多少电能?(2)用导线把壳与球连在一起后电能变化了多少?解:(1)球与球壳之间的电能球壳外部空间的电能系统储存的电能 51218.210W W W J -=+=⨯(2)球与球壳内表面所带电荷为0外表面所带电荷不变13-10. 球形电容器内外半径分别为和,充有电量.(1)求电容器内电场的总能量;(2)证明此结果与按算得的电容器所储电能值相等。
电磁学第三章例题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--物理与电子工程学院注:教案按授课章数填写,每一章均应填写一份。
重复班授课可不另填写教案。
教学内容须另加附页。
总结:1、E P χε0=(1)极化率χ各点相同,为均匀介质(2)τ∆=∑ip P各点相同,为均匀极化2、极化电荷体密度 ()τρ∆⋅-='⇒⋅-='⋅='⎰⎰⎰⎰SSSd P S d P q d S d P q(1)对均匀极化的介质:0='='ρq(2)特例:仅对均匀介质,不要求均匀极化,只要该点自由电荷体密度0000q ρρ''===,则:, (第5节小字部分给出证明)3、极化电荷面密度 ()nP P ˆ12⋅-='σ 2P、1P 分别为媒质2、1的极化强度,nˆ为界面上从2→1的法向单位矢。
当电介质置于真空(空气中)或金属中:n P n P =⋅='ˆ σ n P:电介质内的极化强度 n ˆ:从电介质指向真空或金属的法向单位矢。
例(补充):求一均匀极化的电介质球表面上极化电荷的分布,以及极化电荷在球心处产生的电场强度,已知极化强度为P。
--z解:(1)求极化电荷的分布,取球心O 为原点,极轴与P平行的球极坐标,选球表面任一点A (这里认为置于真空中),则:A nP ˆ⋅=' σ 由于均匀极化,P 处处相同,而极化电荷σ'的分布情况由A nˆ与P的夹角而定,即σ'是θ的函数(任一点的nˆ都是球面的径向r ˆ) A A A P n P θσcos ˆ=⋅='任一点有: θσcos P ='所以极化电荷分布:()()()14023003022Pθσθσθθπσππθθσ⎧'>⎪⎪'<⎪⎨'===⎪⎪⎛⎫'===⎪ ⎪⎝⎭⎩右半球在、象限,左半球在、象限,左右两极处,,最大上下两极处,,最小 (2)求极化电荷在球心处产生的场强由以上分析知σ'以z 为轴对称地分布在球表面上,因此σ'在球心处产生的E '只有z 轴的分量,且方向为z 轴负方向。
一、填 空 题1、电介质的极化分为 ,和 。
答案内容:位移极化,取向极化。
2、如图,有一均匀极化的介质球,半径为R ,极化强度为P ,则极化电荷在球心处产生的场强是 。
答案内容:3ε-P ;3、0C C r ε=成立的条件是 。
答案内容:介质为均匀介质;4、通常电介质的极化分为两类,其中无极分子的极化称为 有极分子的极化称为 。
答案内容:位移极化;取向极化;5、如图所示,水平放置的平行电容器,极板长为L ,二极板间距为d ,电容器两极板间加有电压,据板右端L 处放置一个荧光屏S 。
有一个质量为m ,电量为q 的粒子,从电容器左端的中央以速度0v 水平射入电场,粒子穿过电容器后(两板间距离d 的大小能满足粒子穿过电容器),要求以水平速度打在荧光屏S 上,则加在电容器两极板间电压的大小应为 。
答案内容:2mgd/q ;6、如图所示,平行板电容器的极板面积为S ,间距为d ,对此电容器充电之后,拆去电源,再插入相对介电常数为r ε,厚度为/2d 的均匀电介质板,设为插入介质前,两极板间的电场为0E ,插入介质后,介质内外的电场分别为1E 和2E ,则:10/__________E E =,20/__________E E = 。
答案内容: 1/r ε;1.7、有一平板电容器,用电池将其充电,这时电容器中储存能量为W 0,在不断开电池的情况下,将相对介电常数为r ε的电介质充满整个电容器,这时电容器内存储能量W= W 。
答案内容:r ε ;PzR8、在平行板电容器之间放入一电介质板,如图所示,则电容器电容将为 ,设未放介质时电容为C 0 。
答案内容:021r rC εε+ ;单选择题 11、如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比:( )(A)增多; (B )减少; (C )相同; (D )不能比较。
答案内容:A ;2、内外半径为21R R 和的驻极体球壳被均匀极化,极化强度为PP ;的方向平行于球壳直径,壳内空腔中任一点的电场强度是: ( C )(A )3ε=P E ; (B)0=E;(C)3ε-=P E;(D)32ε=P E 。
第三章 静电场中的电介质 一、判断题1、当同一电容器部充满同一种均匀电介质后,介质电容器的电容为真空电容器的r ε1倍。
×2、对有极分子组成的介质,它的介电常数将随温度而改变。
√3、在均匀介质中一定没有体分布的极化电荷。
(有自由电荷时,有体分布) ×4、均匀介质的极化与均匀极化的介质是等效的。
×5、在无限大电介质中一定有自由电荷存在。
√6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
√7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
√8、在均匀电介质中,只有P为恒矢量时,才没有体分布的极化电荷。
P =恒矢量 0=∂∂+∂∂+∂∂z P y P x P zy x⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=zP y P x P z y x p ρ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。
√10、电位移矢量D 仅决定于自由电荷。
×11、电位移线仅从正自由电荷发出,终止于负自由电荷。
√12、在无自由电荷的两种介质交界面上,Pf E E 线连续,线不连续。
(其中,fE 为自由电荷产生的电场,pE为极化电荷产生的电场) √13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。
√14、在两种介质的交界面上,电场强度的法向分量是连续的。
× 15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。
× 16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。
√二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。
则下列说法中不正确的是:(A ) 介质中的场强为真空中场强的r ε1倍。
第三章 练习题一、选择题1、[ C ]关于D r的高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D r为零.(B) 高斯面上D r 处处为零,则面内必不存在自由电荷. (C) 高斯面的D r通量仅与面内自由电荷有关.(D) 以上说法都不正确.2、[ D ]静电场中,关系式 0D E P ε=+r r r(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质. (D) 适用于任何电介质.3、[ B ]一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为:(A)0E ε. (B) E ε. (C) r E ε . (D) 0()E εε- .4、[ A ]一平行板电容器中充满相对介电常量为r ε的各向同性的线性电介质.已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为:(A)0σε'. (B) 0r σεε'. (C) 02σε'. (D) rσε'. 5、[ B ]一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E r ,电位移为0D r,而当两极板间充满相对介电常量为r ε的各向同性的线性电介质时,电场强度为E r ,电位移为D r,则(A) 00,r E E D D ε==r rr r . (B) 00,r E E D D ε==r r r r.(C) 00,r r E E D D εε==r r r r . (D) 00,E E D D ==r r r r.6、 [ C ]一空气平行板电容器,两极板间距为d ,充电后板间电压为U 。
然后将电源断开,在两板间平行地插入一厚度为d/3的与极板等面积的金属板,则板间电压变为(A )3U . (B)13U . (C) 23U . (D U .7、[ B ]一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑.8、[ B ]真空中有“孤立的”均匀带电球体和一“孤立的”的均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 9、[ B ]如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.10、[ D ]图示为一均匀极化的各向同性电介质圆柱体,已知电极化强度为P ϖ,圆柱体表面上束缚电荷面密度0σ'=的地点是图中的(A) a 点. (B) b 点. (C) c 点. (D) d 点.二、填空题1、分子的正负电荷中心重合的电介质叫做无极分子电介质,在外电场作用下,分子的正负电荷中心发生相对位移,电介质的这种极化形式叫:____ __极化。
第一章 电介质的极化1.什么是电介质的极化?表征介质极化的宏观参数是什么?若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。
这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。
为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的电容量C与真空时的电容量C 0的比值为该电介质的介电系数,即0r C C=ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。
2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电场。
电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。
退极化电场:00εεσPE d -='-= 平行宏观电场:)1(0-=r PE εε充电电荷产生的电场:)1()1(0000000-=+-=+===+=r r r d PP P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-⨯,计算氧原子的电子位移极化率按式304r πεα=代入相应的数据进行计算。
240310121056.2)1032.1()1085.8(14.34m F ∙⨯≈⨯⨯⨯⨯⨯=---α4.在标准状态下,氖的电子位移极化率为2101043.0m F ∙⨯-。
试求出氖的相对介电常数。
单位体积粒子数253231073.24.221010023.6⨯=⨯⨯=Ne r N αεε=-)1(0 12402501085.81043.01073.211--⨯⨯⨯⨯+=+=∴εαεer N 5.试写出洛伦兹有效电场的表达式。
适合洛伦兹有效电场时,电介质的介电系数r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。
第一章什么是电介质的极化?表征介质极化的宏观参数是什么? 什么叫退极化电场?如何用极化强度 P 表示一个相对介电常数为的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷 所产生的电场。
氧离子的半径为1.32 10 J0m ,计算氧的电子位移极化率。
在标准状态下,氖的电子位移极化率为0.43 10J0F m 2。
试求出氖的相 对介电常数。
试写出洛伦兹有效电场表达式。
适合洛伦兹有效电场时,电介质的介电 常数;和极化率「有什么关系?其介电常数的温度系数的关系式又如何 表示。
若用E 1表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电场 中巳=0时的情况。
试述K - M 方程赖以成立的条件及其应用范围有一介电常数为;的球状介质,放在均匀电场E 中。
假设介质的引入 不改变外电场的分布,试证:E e如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温度 系数的数学表达式列举一些介质材料的极化类型,以及举出在给中不同的频率下可能发生 的极化形式。
什么是瞬间极化、缓慢式极化?它们所对应的微观机制各代表什么?设一原子半径为R 的球体,电子绕原子核均匀分布,在外电场E 作用下, 原子产生弹性位移极化,试求出其电子位移极化率。
答案参考课本简原子结构 模型中关于电子位移极化率的推导方法。
1.11.2 1.31.4 1.5 1.6 1.71.8 1.91.10 1.111.121.13 一平行板真空电容器,极板上的自由电荷密度为「现充以介电系数为的介质。
若极板上的自由电荷面密度保持不变,则真空时:平行板电容器的场强E = ________,电位移D二_______ ,极化强度P _______ ;充以介质时:平行板电容器的场强E二_________ ,电位移D二________ ,极化强度P _____ ,极化电荷所产生的场强________ 01.14 为何要研究电介质中的有效电场?有效电场指的是什么?它由哪几部分组成?写出具体的数学表达式。