UT超声检测法
- 格式:docx
- 大小:18.63 KB
- 文档页数:2
无损检测 (UT)是一种非破坏性测试方法,用于检测材料中的缺陷、裂缝和不连续性。
UT 在广泛的行业中具有广泛的应用,包括:
航空航天: * 检查飞机机身、机翼和发动机组件中的腐蚀、裂缝和缺陷
汽车: * 检测铸件、锻件和焊接接头中的裂缝、孔洞和夹杂物 * 评估刹车盘和轮辋的完整性
建筑: * 评估桥梁、大楼和混凝土结构中的缺陷、空洞和裂缝 * 检测钢筋腐蚀和混凝土劣化
能源: * 检查管道、锅炉和压力容器中的腐蚀、裂缝和缺陷 * 评估风力涡轮机叶片和海上平台的完整性
制造: * 检测金属铸件、锻件和焊接件中的缺陷 * 评估管道、棒材和板材的完整性
船舶: * 检查船体、甲板和机械组件中的腐蚀、裂缝和缺陷 * 评估焊缝、管道和压力容器的完整性
铁路: * 检测轨道、车轮和轴承中的缺陷、裂缝和磨损 * 评估桥梁和隧道中混凝土结构的完整性
其他应用:
•医疗成像(超声波)
•食品工业(超声波检测)
•艺术品修复(X 射线和超声波)
•考古学(地质雷达)
•安全和检查(X 射线和金属探测器)。
四种常规无损检测方法的比较无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。
常用的无损检测方法:超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)及X射线检测(RT)。
超声波检测(UT)1、超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
2、超声波工作的原理:主要是基于超声波在试件中的传播特性。
声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
3、超声波检测的优点:a.适用于所有金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。
4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
超声波无损检测概述超声波无损检测一、超声波无损检测基本介绍超声检测(UT)是利用其在物质中传播、界面反射、折射(产生波型转换)和衰减等物理性质来发现缺陷的一种无损检测方法,应用较为广泛。
按其工作原理不同分为:共振法、穿透法、脉冲反射法超声检测;按显示缺陷方式不同分为:A型、B型、C型、3D型超声检测;按选用超声波波型不同分为:纵波法、横波法、表面波法超声检测;二、超声波的产生(发射)与接收(1)超声波的物理本质:它是频率大于2万赫兹的机械振动在弹性介质中的转播行为。
即超声频率的机械波。
一般地说,超声波频率越高,其能量越大,探伤灵敏度也越高。
超声检测常用频率在0.5~10 MHZ。
(2)超声波的产生机理——利用了压电材料的压电效应。
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。
(3)超声波的发射与接收①发射——在压电晶片制成的探头中,对压电晶片施以超声频率的交变电压,由于逆压电效应,晶片中就会产生超声频率的机械振动——产生超声波;若此机械振动与被检测的工件较好地耦合,超声波就会传入工件——这就是超声波的发射。
②接收——若发射出去的超声波遇到界面被反射回来,又会对探头的压电晶片产生机械振动,由于正压电效应,在晶片的上下电极之间就会产生交变的电信号。
将此电信号采集、检波、放大并显示出来,就完成了对超声波信号的接收。
可见,探头是一种声电换能元件,是一种特殊的传感器,在探伤过程中发挥重要的作用3.超声波检测方法的分类(1)按原理分类:超声波探伤方法按原理分类,可分为脉冲反射法、穿透法和共振法。
超声波UT 检测方案1..1 工作范围本方案适用于余热锅炉、汽机中低压管道项目的对接焊口、钢结构型材对接焊缝、板材及板材对接焊缝和钢锻件的超声波探伤检验。
1..2 材料准备1..2.1 仪器根据工程项目现场的具体情况,使用脉冲反射式超声波探伤仪。
1..2.2 仪器的技术要求仪器和探头的组合灵敏度、衰减器精度、水平线性和垂直线性等各种性能指标应符合 JB/T10061《A 型脉冲反射式超声波探伤仪通用技术条件》及 JB/T10062《超声波探伤用探头性能测试方法》的规定。
a.仪器和探头的组合灵敏度:在达到所检工件最大声程时,其灵敏度余量应≥10dB。
b. 衰减器精度:任意相邻 12 dB 误差在±1dB 以内,最大累计误差不超过 1dB 。
c. 水平线性:水平线性误差不大于 1%。
d. 垂直线性:在荧光屏满刻度的 80%范围内线性显示,垂直线性误差不大于 5%。
1..2.3 探头1)晶片有效面积除另由规定外一般不应超过 50mm2,且任意一长边不大于 25 mm 。
2)单斜探头声束轴线水平偏离角不应大于 2 度,主声束垂直主方向不应有明显双峰。
3)直探头的远场分辨力应大于或等于 30 dB ,斜探头的远场分辨力应大于或等于 6dB4)仪器和探头的系统性能应按 ZBJ04001 和 JB/T10062 的规定进行测试(检验周期见表 2)。
5)探头和检验面应该紧密接触,必要时探头楔块应进行修磨使其与检验面吻合。
修磨后探头应该重新测定入射点和折射角。
表1 探头折射或 K 值选择1..2.4试块a. 试块应采用与被检工件相同或相近似声学性能的材料制成,直探头标准试块为CBI、CBII 试块;斜探头标准试块采用 CSK-IA、CSK-IIIA 试块。
b. 试块的制造要求应符合 ZBJ04001 和 JB/T10062 的规定进行测试。
c. 现场检测时,也可采用其它形式的等效试块。
.1..3检测准备1...3.1 检测表面1) 检测面的确定必须保证检查到工件被检部分的整个体积,即应检查到整条焊缝,检验区域的宽度为是焊缝本身再加上焊缝两侧各 10mm 区域(热影响区)。
文件名称 超声波检测(UT)作业指引 发布时间超声波检测(UT)作业指引编制人: 日期:审核人: 日期:批准人: 日期:修订记录日期修订状态修改内容修改人审核人批准人文件名称 超声波检测(UT)作业指引 发布时间1.质量控制流程图文件名称 超声波检测(UT)作业指引 发布时间2.检测人员超声波检测人员必须持有中国船级社(CCS)颁发的资格证书,并在有效期范围内;签发报告、资料审核人员,必须持有国家技术监督局颁发的超声波探伤Ⅱ级或Ⅲ级资格证书,并在有效期内。
3.探伤仪、探头和系统性能3.1.探伤仪:采用A型脉冲反射式超声波探伤仪,其工作频率范围为1~5MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。
探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。
水平线性误差不大于1%,垂直线性误差不大于5%,其余指标应符合ZBY230的规定。
3.2.探头:3.2.1.本工程超声波检测使用的探头有单直探头、单斜探头等,具体划分应符合ZBY344的规定。
3.2.2.晶片有效面积一般不应超过50mm2,且任一边长不应大于25mm。
3.2.3.单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显的双峰。
3.3.超声探伤仪和探头的系统性能:3.3.1.在达到所探工件的最大检测声程时,其有效灵敏度与量应大于或等于10dB。
3.3.2.仪器和探头的组合频率与工称误差不得大于±10%。
3.3.3.仪器和直探头组合的始脉冲宽度:对于频率为5MHz的探头,其占宽不得大于10mm;对于频率为2.5MHz的探头,其占宽不得大于15mm。
3.3.4.直探头的远场分辨力应大于或等于30dB,斜探头的远场分辨力应大于或等于6dB。
3.3.5.仪器和探头的系统性能应按ZBJ04001和ZBJ231的规定进行测试。
超声波UT 检测方案1..1 工作范围本方案适用于余热锅炉、汽机中低压管道项目的对接焊口、钢结构型材对接焊缝、板材及板材对接焊缝和钢锻件的超声波探伤检验。
1..2 材料准备1..2.1 仪器根据工程项目现场的具体情况,使用脉冲反射式超声波探伤仪。
1..2.2 仪器的技术要求仪器和探头的组合灵敏度、衰减器精度、水平线性和垂直线性等各种性能指标应符合 JB/T10061《A 型脉冲反射式超声波探伤仪通用技术条件》及 JB/T10062《超声波探伤用探头性能测试方法》的规定。
a.仪器和探头的组合灵敏度:在达到所检工件最大声程时,其灵敏度余量应≥10dB。
b. 衰减器精度:任意相邻 12 dB 误差在±1dB 以内,最大累计误差不超过 1dB 。
c. 水平线性:水平线性误差不大于 1%。
d. 垂直线性:在荧光屏满刻度的 80%范围内线性显示,垂直线性误差不大于 5%。
1..2.3 探头1)晶片有效面积除另由规定外一般不应超过 50mm2,且任意一长边不大于 25 mm 。
2)单斜探头声束轴线水平偏离角不应大于 2 度,主声束垂直主方向不应有明显双峰。
3)直探头的远场分辨力应大于或等于 30 dB ,斜探头的远场分辨力应大于或等于 6dB4)仪器和探头的系统性能应按 ZBJ04001 和 JB/T10062 的规定进行测试(检验周期见表 2)。
5)探头和检验面应该紧密接触,必要时探头楔块应进行修磨使其与检验面吻合。
修磨后探头应该重新测定入射点和折射角。
表1 探头折射或 K 值选择1..2.4试块a. 试块应采用与被检工件相同或相近似声学性能的材料制成,直探头标准试块为CBI、CBII 试块;斜探头标准试块采用 CSK-IA、CSK-IIIA 试块。
b. 试块的制造要求应符合 ZBJ04001 和 JB/T10062 的规定进行测试。
c. 现场检测时,也可采用其它形式的等效试块。
.1..3检测准备1...3.1 检测表面1) 检测面的确定必须保证检查到工件被检部分的整个体积,即应检查到整条焊缝,检验区域的宽度为是焊缝本身再加上焊缝两侧各 10mm 区域(热影响区)。
三种常规无损检测方法的比较无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。
常用的无损检测方法:超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)。
超声波检测(UT)1、超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
2、超声波工作的原理:主要是基于超声波在试件中的传播特性。
声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。
3、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。
4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
五大常规无损检测技术之一:超声检测(UT)的原理和特点超声检测(Ultrasonic Testing),业内人士简称UT,是工业无损检测(Nondestructive Testing)中应用最广泛、使用频率最高且发展较快的一种无损检测技术,可以用于产品制造中质量控制、原材料检验、改进工艺等多个方面,同时也是设备维护中不可或缺的手段之一。
超声检测主要的应用是检测工件内部宏观缺陷和材料厚度测量。
按照不同特征,可将超声检测分为多种不同的方法:(1)按原理分类:超声波脉冲反射法、衍射时差法(Time of Flight Diffraction,简称TOFD)等。
(2)按显示方式分类:A型显示、超声成像显示(B、C、D、P扫描成像、双控阵成像等)。
A型显示的超声波脉冲反射法是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)、涡流检测(Eddy Current Testing)。
超声检测原理超声检测,本质上是利用超声波与物质的相互作用:反射、折射和衍射。
(1)什么是超声波?我们把能引起听觉的机械波称为声波,频率在20-20000Hz之间,而频率高于20000Hz的机械波称为超声波,人类是听不到超声波的。
对于钢等金属材料的检测,我们常用频率为0.5~10MHz的超声波。
(1MHz=10的六次方Hz)(2)如何发出和接收超声波?超声检测用探头的核心元件是压电晶片,其具有压电效应:在交变拉压应力的作用下,晶体可以产生交变电场。
当高频电脉冲激励压电晶片时,发生逆压电效应,将电能转换成声能(机械能),探头以脉冲的方式间歇发射超声波,即脉冲波。
当探头接受超声波时,发生正压电效应,将声能转换成电能。
超声检测所用的常规探头,一般由压电晶片、阻尼块、接头、电缆线、保护膜和外壳组成,一般分为直探头和斜探头两个类别,后者的话通常还有一个使晶片与入射面成一定角度的斜锲块。
超声波检测讲义(UT)超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。
与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大、对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。
但也存在缺陷评定不直观、定性定量与操作者的水平和经验有关、存档困难等缺点。
在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。
超声波检测主要用于探测试件的内部缺陷。
1、超声波:频率大于20KH Z的声波。
它是一种机械波。
探伤中常用的超声波频率为0.5~10MHz,其中2~2.5MHz被推荐为焊缝探伤的公称频率。
机械振动:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振幅A、周期T、频率f。
波动:振动的传播过程称为波动。
C=λ*f2、波的类型:(1)纵波L:振动方向与传播方向一致。
气、液、固体均可传播纵波。
(2)横波S:振动方向与传播方向垂直的波。
只能在固体介质中传播。
(3)表面波R:沿介质表面传播的波。
只能在固体表面传播。
(4)板波:在板厚与波长相当的薄板中传播的波。
只能在固体介质中传播。
3、超声波的传播速度(固体介质中)(1) E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,波速也不一样。
(2)在同一介质中,纵波、横波和表面波的声速各不相同 C L>C S>C R钢:C L=5900m/s, C S=3230m/s,C R=3007m/s4、波的迭加、干涉、衍射⑴波的迭加原理当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。
几列波相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其它波一样,这就是波的迭加原理,又称波的独立性原理。
⑵波的干涉两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现象。
无损检测
——UT 超声检测一、超声检测的定义:
通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
二、超声检测的基本原理:
超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用
的最为广泛.一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交
界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关.脉冲反射式超声波探伤仪就是根据这个原理设计的.
目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值.譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造
成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位臵就会显示出来一个反射波的波形,横坐标的这个位臵就是缺陷在被检测材料中的深度.这个反射波的高度和形状因不同的缺陷而不同,
反映了缺陷的性质.
三、超声检测的优点:
a.适用于金属、非金属和复合材料等多种制件的无损检测;
b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;
c.缺陷定位较准确;
d.对面积型缺陷的检出率较高;
e.灵敏度高,可检测试件内部尺寸很小的缺陷;
f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
四、超声检测的局限性:
a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;
b.对具有复杂形状或不规则外形的试件进行超声检测有困难;
c.缺陷的位臵、取向和形状对检测结果有一定影响;
d.材质、晶粒度等对检测有较大影响;
e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。
五、超声检测的适用范围:
a.从检测对象的材料来说,可用于金属、非金属和复合材料;
b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;
c.从检测对象的形状来说,可用于板材、棒材、管材等;
d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;
e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。
✓无损检测
✓无损检测——RT射线检测
✓无损检测——MT磁粉检测
✓无损检测——PT渗透检测。