有关泰勒公式的证明及其推广应用研究
- 格式:doc
- 大小:21.50 KB
- 文档页数:2
摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。
它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。
本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。
关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用绪论随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。
泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。
泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。
它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。
泰勒公式的证明及其应用课题意义怎么写泰勒公式是数学中一个重要的公式,可以用来展开一个函数在某一点处的函数值,从而得到该点处的函数表达式。
证明泰勒公式及其应用是一个复杂的数学问题,下面将给出一些介绍:一、泰勒公式的证明设$f(x)$在点$x_0$处具有$n$阶导数$f'(x_0)$,则在该点附近可以表示为:$$f(x) = f(x_0) + f'(x_0)(x-x_0) +frac{f''(x_0)}{2!}(x-x_0)^2 + frac{f'''(x_0)}{3!}(x-x_0)^3 + cdots + frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x)$$其中$R_n(x)$为余项,它只与前$n-1$个项有关。
余项$R_n(x)$可以表示为:$$R_n(x) = frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} - frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$其中$c$是$x$和$x_0$之间的某个数。
泰勒公式的证明思路可以看作是将$f(x)$展开成一个多项式,并根据多项式的阶数和系数确定余项$R_n(x)$。
二、泰勒公式的应用泰勒公式在许多领域都有广泛的应用,包括:1. 数值计算:泰勒公式可以用来将一个复杂的函数逼近一个数值值,从而进行数值计算。
2. 数学分析:泰勒公式可以用来证明函数的连续性,并在微积分中应用。
3. 物理学:泰勒公式可以用来描述函数在时间和空间上的分布,从而研究物理系统的运动状态。
4. 统计学:泰勒公式可以用来估计一个函数的自变量取值范围,从而进行统计学推断。
泰勒公式是一个数学工具,它的证明和应用具有很高的实用价值。
泰勒公式在数学分析解题中的应用探讨胡汉章(嘉应学院数学学院,广东梅州514015)一、引言泰勒公式是数学分析中微积分部分的重要内容。
泰勒公式就是用简单的多项式近似表达较复杂的函数,在解决函数极限、不等式证明、近似计算等问题上有着广泛应用。
数学分析或高等数学教材对泰勒公式在解题中的应用内容涉及偏少,缺乏相关方面解题技巧的系统性阐述。
泰勒公式的严格陈述如下:定理1(泰勒公式)设函数f (x )在区间(a ,b )上n +1阶连续可导,且x 0∈(a ,b ),则对任何x ∈(a ,b ),有:f (x )=f (x 0)+f′(x 0)(x-x 0)+12!f″(x 0)(x-x 0)2+…+1n !f (n )(x 0)(x-x 0)n+R n (x ),(1.1)其中R n (x)称为余项,取如下形式之一:(1)佩亚诺余项:R n (x )=o ((x-x 0)n );(2)拉格朗日余项:R n (x )=f (n+1)(ξ)(n+1)!(x-x 0)n +1,其中ξ在x 与x 0之间;(3)积分余项:R n(x )=1n !∫x x 0f (n )(t )(x-t )t dt ;(4)柯西余项:R n (x )=f(n +1)(ξ)n !(x-x 0)(x-ξ)n 其中ξ在x 与x 0之间。
注:当x 0=0时,(1.1)被称为麦克劳林公式。
在应用中,(1.1)经常取如下两种不同形式:(a )泰勒展开:f (x )=∞n =0∑1n !f (n )(x 0)(x-x 0)n;(b )泰勒近似:f (x )≈∞n =0∑1n !f (n )(x 0)(x-x 0)n .二、泰勒公式在求极限中的应用例1求极限lim x →0sin x-xx 2sin x分析:上面求的极限是0型,这时直接用洛必达法则求极限比较得杂.由于分子是两个无穷小量的差,直接用等价无穷小替换变成:lim x →0x-xx3(),这样与lim x →0sin x-xx 2sin x()不等价,而会计算出错.这时可用带佩亚诺余项的泰勒公式求解。
浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。
泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。
本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。
关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。
利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。
当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。
例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。
解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。
24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。
泰勒定理及带有拉格朗日余项泰勒公式的应用探讨 【摘要】泰勒定理是把函数用多项式近似表示的重要依据,是数学分析课程的重要内容。
给出了泰勒定理的证明,泰勒定理是拉格朗日中值定理的推广,相应地泰勒公式也是拉格朗日中值公式的推广. 泰勒公式在数学以及其他学科当中有着广泛的应用,本文讨论了带有拉格朗日余项的泰勒公式之间的关系,从纯数学的方面说明了泰勒公式的应用,以及在近似计算、求极限、求导数、积分计算、判断级数收敛性、证明一些等式和不等式等方面的应用。
【关键词】泰勒定理; 泰勒公式; 拉格朗日型余项一、泰勒定理及证明定理1: 若函数f ( x) 在[a,b ]上存在直至n 阶的连续导涵数,在( a ,b ) 内存在(n + 1) 阶导数,则对任意给定的x ,x 0∈[a ,b ],至少存在一点ξ∈( a ,b ) ,使得121'"+!1nn nn fx ff x f x x x f x x x x x x n n 。
证明: 作辅助函数',!nnftF tf x f x f tx tx tn1n G tx t所要证明的定理式即为11.1!1!n n fF x fF xG x n G x n 。
或。
,,,,x x F t G t x x x x 不妨设。
则与在。
上连续,在。
内可导且1',!n nftF t x tn'10.nG t n x t0,F x G x又因所以由柯西中值定理证得1','1!n F x F x F xF fG x G x G xG n 。
,,.x xa b 其中。
二、带有拉格朗日余项的泰勒公式若函数f( x) 在[a,b ]上存在直至n 阶的连续导涵数,在( a ,b ) 内存在(n + 1)阶导数,则对任意给定的x ,x 0∈[a ,b ],至少存在一点ξ∈( a ,b) ,使得121'"+!1nn nn fx ff x f x x x f x x x x x x n n 。
泰勒公式的证明及应用(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(泰勒公式的证明及应用(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为泰勒公式的证明及应用(1)的全部内容。
一.摘要 (3)前言 (3)二、泰勒公式极其极其证明…………………… ……。
.3(一)带有皮亚诺型余项的泰勒公式 (3)(二)带有拉格朗日型余项的泰勒公式 (4)(三)带有柯西型余项的泰勒公式 (5)(四)积分型泰勒公式 (6)(五)二元函数的泰勒公式.......................................。
.7三、泰勒公式的若干应用 (8)(一)利用泰勒公式求极限 (8)(二)利用泰勒公式求高阶导数 (9)(三)利用泰勒公式判断敛散性 (10)(四)利用泰勒公式证明中值定理 (12)(五)利用泰勒公式证明不等式 (13)(六)利用泰勒公式求近似和值误差估计 (15)(七)利用泰勒公式研究函数的极值 (16)四、我对泰勒公式的认识 (16)参考文献 (17)英文翻译 (17)Taylor 公式的证明及应用【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用.在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。
在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。
并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数1、常见Taylor 公式定义及其证明我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式.定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。
泰勒公式在计算及证明中的应用
泰勒公式是微积分中重要的概念,在计算及证明中有着重要的应用。
该公式可用于求解复杂问题,有助于精准估算复杂函数的数值,使科学家可以把精力集中在推到一个有用的结论上面。
要利用泰勒公式进行计算,首先要弄清楚相关知识点,包括洛必达法则、泰勒展开形式、多项式函数和复杂函数的局部性原理等。
在理解基本的过程之后,就可以开始愉快的使用泰勒公式。
例如,当我们需要证明一个复杂函数的拐点是一个最小值时,可以使用泰勒公式。
首先明确该复杂函数应当属于什么形式,然后将该函数用它的二阶泰勒展开形式表示,再利用洛必达法则求出该函数的拐点,最后由有限域的初等函数的固有性质,可以得出该函数的拐点是一个最小值的最终结论。
泰勒公式是常加以使用的一种数学方法,它的应用广泛,无论是在做实际的运算,还是在证明复杂的数学问题,均有着重要作用。
在帮助人们更快更有效地做出准确的判断、可靠的结论,尤其是在计算和证明复杂函数时,泰勒公式都发挥着重要作用。
不同余项型泰勒公式的证明与应用一、不同余项型泰勒公式的证明$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$其中$f(x)$是需要展开的函数,$f'(x)$是$f(x)$的一阶导数,$f''(x)$是$f(x)$的二阶导数,$f^{(n)}(x)$是$f(x)$的$n$阶导数,$R_n(x)$是余项。
证明不同余项型泰勒公式的关键是对余项$R_n(x)$的估计。
根据拉格朗日中值定理,存在$x$在$x$和$a$之间,使得$f(x)$的$n$阶导数$f^{(n)}(x)$等于$f^{(n)}(a)$和$f^{(n)}(x)$之间的差值。
即存在一个$\xi$满足$a < \xi < x$,使得$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$这里用到了泰勒公式的剩余项的拉格朗日型余项。
二、不同余项型泰勒公式的应用1.近似计算函数值不同余项型泰勒公式可以用于近似计算复杂函数在其中一点处的函数值。
通过泰勒展开,我们可以用函数的高阶导数来逐步逼近函数的真实值,使得计算更加简化。
尤其是在计算机数值计算中,利用不同余项型泰勒公式进行近似计算可以大大提高计算效率和精度。
例如,在计算$\sin(x)$时,我们可以通过泰勒展开将其逼近为一系列多项式函数的和,计算复杂度大幅减少。
2.证明其他重要结论不同余项型泰勒公式也可以用于证明其他数学中的重要结论。
例如,在证明函数的极限或导数存在时,我们可以通过利用泰勒展开,并将余项$R_n(x)$进行估计,从而得到极限或导数的正确表达式。
这在实分析学中经常应用,可以大大简化证明的步骤。
另外,不同余项型泰勒公式也可以用于证明函数的逼近性质。
泰勒公式的证明及推广应用泰勒公式是一种用于近似计算函数的工具,它将函数表示为无穷级数的形式。
这个公式是由英国数学家布鲁诺·泰勒(Brook Taylor)在18世纪提出的。
在本文中,我们将简要介绍泰勒公式的证明,并探讨一些关于泰勒公式的推广应用。
证明泰勒公式的一种常用方法是使用数学归纳法。
我们可以根据函数的导数逐次展开来得到一般形式的泰勒公式。
假设函数f(x)的n次导数在区间[a,b]内连续,以及f(x)的(n+1)次导数在区间[a,b]内存在。
我们可以得到以下泰勒公式的一般形式:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x)其中,Rⁿ(x)是余项,它可以表示为(fⁿ⁺¹(z)(x-a)ⁿ⁺¹)/(n+1)!,其中a<z<x。
余项Rⁿ(x)可以用于估计泰勒级数的误差,并在实际应用中对所得近似值进行修正。
泰勒公式可以应用于各种数学和物理问题中。
下面是一些泰勒公式的推广应用的例子:1.近似计算:泰勒公式可以用于近似计算复杂函数的值。
通过截断级数,我们可以得到一个有限项的泰勒多项式,用于计算函数在其中一点的近似值。
2.数值积分:通过将函数展开为泰勒级数,并对级数进行求和,我们可以将函数的积分转化为级数的求和。
这种方法广泛应用于数值积分的算法中。
3.近似求解微分方程:很多微分方程难以找到解析解,但可以使用泰勒公式来近似求解。
通过将微分方程转化为泰勒级数,并截断级数至有限项,我们可以得到一个逼近解。
4.反函数的泰勒展开:泰勒公式不仅适用于函数的展开,也适用于反函数的展开。
通过将函数和它的逆函数展开为泰勒级数,并对级数进行求和,我们可以得到函数的反函数的泰勒展开。
在实际应用中,泰勒公式的推广应用不仅局限于以上几个领域。
它可以使用在各种数学和物理问题中,包括信号处理、金融工程、计算机图形学等。
有关泰勒公式的证明及其推广应用研究
摘要:对于泰勒公式而言,由于其淋漓尽致地体现了逼近法的精髓,因而在各个领域中的各个方面均有着十分重要的应用。
本文重点就泰勒公式的几种证明形式进行了分析,并就其在不等式、函数极限等方面的推广及应用情况进行了研究。
关键词:泰勒公式;证明;应用
中图分类号:o172 文献标识码:a 文章编号:1674-7712 (2013)04-0166-01
泰勒公式是数学分析过程中的重要公式之一,因而在数学中占有极为重要的地位。
通常而言,一般性的数学分析教材中均采用的是柯西中值定理来对泰勒公式进行证明,此种方法也广为人知,但是,其实泰勒公式还可以采用其他多种证明形式进行证明。
鉴于此,本文采用多种形式对泰勒公式进行了证明,并就其在多个领域中的应用推广进行了研究。
(一)采用完全归纳法对泰勒公式进行证明
定理:对于任何函数f(x)而言,只要其在a点处存在着直到n 阶为止的导数,则a点附近的f(x)就可采用如下公式进行表达:(二)采用积分法对泰勒公式进行证明
采用积分法不仅可以巧妙地证明泰勒公式,还可以得出几个结论,其定理如下所示:
定理:假设[a,b]区间内函数f(x)具有直到n阶的连续导数,而在(a,b)内也存在着n+1阶的导数,此时,对于任意一个给定
的x而言,x0∈(a,b),则f(x)可以表示为一个余项所得结论如下:其他的余项中只知ξ∈(a,b),此时有xn→x0(n→+∞);由公式(1)可知,重积分型余项可推出皮亚诺型余项,因此,也可推出其他各类余项公式的形式。
以上所述两种方法主要是以不同角度对泰勒公式进行了证明,虽然其形式发生了改变,但是总体内涵保持不变,因而体现了变化中求思想精髓的基本证明思路,因而较容易被理解。
二、泰勒公式的应用推广
(一)采用带有皮亚诺型余项的泰勒公式可进行函数极限的求取(二)采用泰勒公式可对积分等式进行证明
除此以外,对于判断级数的收敛性、近似值的求解、行列式的求解等等多个方面均需要借助于泰勒公式进行计算和求解,由此可见,泰勒公式具有十分广泛的应用,本文重点就上述几个常见领域的应用及推广进行了分析,由于泰勒公式多个领域均有应用,这里就不再进行一一叙述了。
参考文献:
[1]潘红,储亚伟.关于泰勒(taylor)公式的几点应用[j].科技资讯,2010(18):247-250.
[2]刘瑜.泰勒公式在n阶行列式计算中的应用[j].内江师范学院,2011(8):222-224.。