方波正弦波三角波转换器
- 格式:doc
- 大小:2.54 MB
- 文档页数:11
课程设计说明书课程设计名称:电子技术(模拟电路部分)课程设计题目:设计制作一个方波—三角波—正弦波的函数转换器学院名称:专业:班级:学号:姓名:评分:教师:20 年月日电子技术(模拟电路部分)课程设计任务书20 -20 学年第学期第周-周题目设计制作一个方波—三角波—正弦波的函数转换器内容及要求1 )输入波形频率范围为0.02Hz~20KHz且连续可调。
2 )正弦波幅值为±2V。
3 )方波幅值为±2V。
4 )三角波峰峰值为2V,占空比可调。
5 )设计电路所需的直流电源可用实验室电源。
进度安排第一周:设计电路图,参考文献,仿真,然后焊接。
第二周:调试装置,总结实验,完成实验报告。
学生姓名:指导时间:年月日至年月日指导地点:楼室任务下达年月日任务完成年月日考核方式 1.评阅□ 2.答辩□ 3.实际操作□ 4.其它□指导教师系(部)主任注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。
摘要函数信号发生器作为一种常用的信号源,是现代测试领域内应用最广泛的通用仪器之一,在研制生产测试和维修各种电子元件和部件都需要有信号源。
由于函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波,方波,三角波,锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数,所以信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信,广播,电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频),视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电容测量领域。
本次课程设计的目的:采用555集成芯片外界电容电阻来产生正弦波、方波、和三角波,先通过555芯片产生波形通过电容形成方波,接着经过两个电阻分别出现三角波和正弦波,经过仿真得出了三个波形的波形图,通过实验掌握电子系统的一般设计方法,培养综合应用所学知识来指导实践的能力,掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。
【multisim】正弦波-三角波-方波转换电路要实现从正弦波到三角波再到方波的转换电路,可以使用集成运算放
大器(Op-Amp)和滞回器电路。
以下是实现该转换电路的步骤:
1. 正弦波至三角波的转换:将正弦波输入到一个比较器电路中。
比较
器电路由一个集成运算放大器和两个电阻组成。
其中一个电阻连接到
一个固定电压源,另一个电阻连接到一个可调电压源,可调电压源的
输出与正弦波输入相连。
比较器电路会将正弦波与一个参考电压进行
比较,并根据比较结果输出高电平或低电平。
通过调节可调电压源的
电压,可以改变比较器的输出电平,从而实现正弦波至三角波的转换。
2. 三角波至方波的转换:之前得到的三角波接入一个滞回器电路中。
滞回器电路也由一个集成运算放大器和两个电阻组成。
其中一个电阻
连接到固定电压源,另一个电阻连接到滞回器电路的输出端。
滞回器
电路会将三角波的波峰和波谷进行限幅,输出一个具有较高/低电平的
方波信号。
需要注意的是,电阻值的选择以及比较器和滞回器电路的参数设置,
都会影响转换电路的性能和效果。
可根据具体需求进行调整。
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生:学号:指导教师:职称:2012年12 月 5 日....摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim..目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------13..5 实验总结--------------------------------------13辞、参考文献-----------------------------------14....一 设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数转换器专业班级:电信本学生姓名:学号:46指导教师:设计时间:01/05设计制作一个产生正弦波-方波-锯齿波函数转换器一、设计任务与要求1、?输出波形频率范围为0.02KHz~20kHz且连续可调;2、?正弦波幅值为±2V;3、?方波幅值为2V;4、?三角波峰-峰值为2V,占空比可调;5、?分别用三个发光二极管显示三种波形输出;??6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
二、方案设计与论证设计要求产生三种不同的波形分别为正弦波、方波、三角波。
正弦波可以通过RC桥式正弦波振荡电路产生。
正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。
各个芯片的电源可用直流电源提供。
方案一1、直流电源部分电路图如图1所示图1 直流电源2、波形产生部分方案一:LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相似的,只是选频网络采用LC电路。
在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。
方案二1、直流电源部分同上2、电路图如图2所示图2 正弦波—方波—三角波函数转换电路方案论证LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。
由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。
因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。
另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。
一设计的目的及任务1.1 设计目的1 掌握电子系统设计的一般方法。
2 培养综合应用理论知识指导实践的能力。
3 掌握电子元件的识别和测试。
4 了解电路调试的基本方法。
1.2 设计任务和要求1 设计一个能产生正弦波方波三角波的函数转换器。
2 能同时输出一定频率一定幅度的3种波形:正弦波、方波和三角波。
3 可以用±12V或±15V直流稳压电源供电。
1.3 课程设计的技术指标1输出波形频率范围0.02hz~20khz且能连续可调。
2 正弦波幅值为±2V。
3方波幅值为2V。
4三角波峰峰值为2V且占空比可调。
二方案比较与论证2.1方案一方案一采用LC正弦波振荡电路、电压比较器、积分电路,构成正弦波-方波-三角波函数转换器。
LC正弦波振荡电路具有容易起振、振幅大、频率调节范围宽等特点,但是输出波形较差。
LC正弦波振荡电路电压比较器积分电路图2.1.1 方案一原理框图2.2方案二方案二采用石英晶体正弦波振荡电路产生正弦波,石英晶体正弦波振荡电路具有振荡频率稳定度高的优点,但其频率调节性能较差且受环境温度影响大。
石英晶体正弦波振荡电路电压比较器积分电路图2.2.1 方案二原理框图2.3方案三方案三首先用一个RC振荡电路产生正弦波,然后在用一个电压比较器产生方波,最后在方波基础上利用积分电路产生三角波。
电路框图如图2.3.1所示。
RC正弦波振荡电路电压比较器积分电路图2.3.1 方案三原理框图综上三种方案,方案一虽然对频率的调节性能好,但输出波形较差;方案二振荡频率稳定性好,但频率不易调节,且受环境影响大,对电子元件要求也较高;方案三能实现频率的连续可调,具有简单容易操作等优点,而且对电子元件的要求也不高,都为常用元件。
综上所述,方案三为最佳方案。
三 系统组成及工作原理3.1正弦波发生电路的工作原理3.1.1 产生正弦波的振荡条件所谓正弦振荡,是指在不加任何输入信号的情况下,由电路自身产生一定频率、一定幅值的正弦波电压输出。
方波正弦波三角波转换器 The Standardization Office was revised on the afternoon of December 13, 2020毕业论文综合实践报告第一章、系统的组成及工作原理系统组成本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。
图1—1 方波三角波发生电路三角波正弦波转换电路由滤波电路完成。
题目设计制作一个产生方波-三角波-正弦波函数转换器内容及要求1 输出波形频率范围为~20kHz 且连续可调;2 正弦波幅值为±2V ;3 方波幅值为2V ;4 三角波峰-峰值为2V ,占空比可调;5 设计电路所需的直流电源可用实验室电源。
摘要波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。
随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。
为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。
图1—2 正弦波发生电路工作原理本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。
角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波的峰峰值R 5调节三角波的占空比。
三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节.第二章、电路方案设计方案一:方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。
、方波—三角波转换电路如图所示。
该电路由同相滞回比较电路和积分电路组成。
滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。
课程设计说明书课程设计名称:模拟电子课程设计课程设计题目:设计制作一个方波-三角波-正弦波函数转换器学院名称:信息工程学院专业:通信工程班级:090422学号:******** 姓名:龙敏丽评分:教师:欧巧凤、张华南20 11 年 3 月23 日模拟电路课程设计任务书20 10 -20 11 学年第2 学期第1 周- 2 周题目设计制作一个方波-三角波-正弦波函数转换器内容及要求①输出波形频率范围为0.02Hz~20KHz且连续可调;②正弦波幅值为±2v;③方波幅值为±2v;④三角波峰-峰值为2v,占空比可调。
能根据题目的要求,综合所学知识,进行资料查询、系统设计、选用合适的元器件,先仿真通过后,用万能板/实验箱制作调试和进行结果分析,按学院要求的格式写出总结报告进度安排1. 布置任务、查阅资料、选择方案,领仪器设备: 3天;2. 领元器件、制作、焊接:3天3.调试: 3.5天4. 验收:0.5天学生姓名:龙敏丽指导时间:2011年2月24日—3月3日指导地点: E-508 室任务下达2011年 2月22日任务完成2011 年 3 月 3 日考核方式 1.评阅□√ 2.答辩□ 3.实际操作□√ 4.其它□√指导教师欧巧凤系(部)主任付崇芳摘要当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。
由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。
信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
常用超低频信号发生器的输出只有几种固定的波形,有方波、三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
课程设计(论文)说明书题目:方波、三角波、正弦波发生器院(系):专业:学生姓名:学号:指导教师:职称:2012年12 月 5 日摘要本文通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在显示器上观察波形及数据,得到结果。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键词:电源、波形、比较器、积分器、MultisimAbstractThis paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result.A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal.NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulationKey words: power, waveform, comparator, an integrator, a converter circuit, Multisim目录1 设计任务---------------------------------------11.1 电路设计任务------------------------------11.2 电路设计要求------------------------------12正弦波、方波发生器的组成------------------------12.1 原理框图----------------------------------12.2 原理分析----------------------------------12.3 放大器功能及管脚图------------------------23 系统中各模块设计--------------------------------23.1方波-三角波-正弦波-------------------------23.1.1方波形仿真图-----------------------------43.1.2三角波仿真电路图以及仿真图---------------43.1.3正弦波仿真图-----------------------------63.1.4实验设计电路图---------------------------63.1.5实验电路PCB图---------------------------73.1.6参数设计---------------------------------73.2元器件型号---------------------------------94 电路调试---------------------------------------104.1 安装正弦波、方波发生器- ------------------134.2调试正弦波、方波发生器---------------------134.3调试结果展示------------------------------134.3.1方波实验波形图--------------------------114.3.2三角波实验波形图------------------------114.3.3正弦波实验波形图------------------------124.3.4实际电路图及实物图展示------------------124.4性能指标测量与误差分析--------------------135 实验总结--------------------------------------13谢辞、参考文献-----------------------------------14一设计任务1.1 任务设计制作一个方波-三角波-正弦波发生器。
【multisim】正弦波-三角波-方波转换电路正弦波-三角波-方波转换电路是一种电路设计,可以将输入的正弦波
信号转换为三角波信号或方波信号。
以下是一个简单的示例电路设计:材料:
- 电源供应
- 运算放大器
- 电阻
- 电容
- 开关
步骤:
1. 将电源供应连接到运算放大器的正极和负极。
2. 将一个电阻连接到运算放大器的负极,并将另一个电阻连接到运算
放大器的输出端。
3. 将这两个电阻连接到一个开关上。
4. 将一个电容连接到运算放大器的输出端,另一端连接到运算放大器
的负极。
5. 将开关设置为关闭状态。
6. 连接输入的正弦波信号到运算放大器的正极。
7. 连接示波器或者峰值检测器到运算放大器的输出端,以输出转换后
的波形。
工作原理:
当开关关闭时,输入的正弦波信号通过电阻和电容组成的RC网络,经
过滤波后形成三角波信号。
当开关打开时,电容的充电和放电过程,
使输出信号变为方波信号。
通过控制开关的打开和关闭状态,可以在
正弦波、三角波和方波之间切换。
以上是一个简单的示例电路设计,实际的电路设计可能会根据具体的
需求和材料进行调整和改进。
使用电路设计软件(如Multisim)可以
帮助进行电路模拟和优化。
模拟电路提高性实验学院:科目:指导老师:学生:学号:班级:波形发生及转换器一、实验任务要求用面包板搭建一个波形发生及转换器,测试满足要求后,在电路板上焊接出来。
指标要求如下:1.±12V直流电源供电,输出3路波形:正弦波、方波和三角波.2.信号频率1kHz,3种波形幅度均为±4V.3.信号频率和幅度连续可调,尽量减小波形失真.二、方案论证产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本实验采用先产生正弦波,再将正弦波转换为方波,最后将方波转换为三角波的电路设计方法首先,±12V直流电源供电给运放,产生正弦波,本实验使用文氏振荡电路作为第一级电路,通过调节50kΩ的电位器将部分输出电压叠加反馈到输入电路;第二级使用滞回比较器将正弦波转换为方波,同时通过10kΩ和20kΩ的电阻串联取出部分电压反馈到输入,但本级电路无法调节输出的方波幅度;第三级为反相求和运算电路,使得输入的方波幅度可调;第四级通过一个积分运算电路将方波转变为三角波,取第三级的输出为输入,并通过50kΩ的电位器调节三角波的幅度。
本实验中除了第一级的两个200kΩ的可调电位器用来调节幅度外,其余50kΩ的电位器均是用来调节幅度,使得正弦波、方波、三角波三种波形的幅度可调范围较大,而且本电路均引入反馈,尽量减小波形失真。
三、实验电路图及说明说明:第一级为RC桥式正弦波振荡电路,两个200kΩ的电位器接入电路的电阻相同,作用为调节正弦波的频率;50kΩ的电位器的作用是调节幅度。
第二级为滞回比较器(正弦波->方波),输出方波,但幅度不可调节。
第三级为反相求和运算电路,通过50kΩ的电位器调节方波的幅度。
第四级为积分运算电路,将输入的方波转变为三角波,同时也通过50kΩ的电位器调节三角波的幅度。
毕业论文综合实践报告
第一章、系统的组成及工作原理
1.1系统组成
本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。
图1—1 方波三角波发生电路
三角波正弦波转换电路由滤波电路完成。
题目
设计制作一个产生方波-三角波-正弦波函数转换器
内容及要求
1 输出波形频率范围为0.02Hz~20kHz 且连续可调;
2 正弦波幅值为±2V ;
3 方波幅值为2V ;
4 三角波峰-峰值为2V ,占空比可调;
5 设计电路所需的直流电源可用实验室电源。
摘要
波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。
随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。
为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。
同相滞回比较电路
积分电路
三角波
图1—2 正弦波发生电路
1.2工作原理
本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。
角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波
的峰峰值R 5调节三角波的占空比。
三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节.
第二章、电路方案设计
方案一:
方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。
2.1、方波—三角波转换电路如图
3.1所示。
该电路由同相滞回比较电路和积分电路组成。
滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。
此后,积分电路进行正向积分,u 0呈线性上升,当u 0上升到滞回比较器的阈值电压+U T 时即t 2时刻,u 01从-Uz 又跃变回到+Uz ,即返回第一暂态,电路又开始反向积分。
如此周而复始,产生振荡。
三角波
滤波电路
正弦波
图 2.1
2.2、三角波—正弦波转换电路如图2.2所示。
将三角波展开为傅里叶级数可知,它含有基波和3次 5次等奇次谐波,因此通过低通滤波器去除基波,滤除高次谐波,可将三角波转换成正弦波。
这种方法适用于固定频率或频率变化很小的场合。
电路框图如下左图所示。
输入电压和输出电压的波形如下右图所示,U0的频率等于UI基波的频率。
将三角波按傅里叶级数展开
UI(wt)=8/(π*π)Um(sin wt-1/9sin 3wt+1/25sin 5wt-…) 其中Um是三角波的幅值。
图2.2
方案二:
方案二的方波—三角波转换电路与方案一相同,三角波—正弦波转换电路采用折线近似法,电路图如图3.3所示。
图2.3
方案论证:我选的是第一个方案,上述两个方案都能实现三种波形的产生和转
换。
但是,可以明显的看出方案二的电路比方案一的电路复杂,需要较多的元件。
方案一电路比较简单利于焊接,需要的元器件也比较少,但是也有一点缺陷,在调节波形的频率时有一定的限度,在使用R2、R3调节波形的频率时会影响正弦波的幅值。
第三章、元件设计
3.1、方波—三角波转换电路元件
设计要求方波的幅值为±2V ,则可令稳压管的稳压值为2V 且R1为100K Ω的电位器。
三角波的幅值为±1V ,则
)1()12(1
)64(1
t Uo t t Uz C R R Uo +-+-
=
其中R6=0.5R5,可令电容C=1uf ,根据所求结果可令R4、R5均为1K Ω的电位器,因为要求三角波的占空比可调,所以R4和R5之间用两个二极管以相反的方向连接。
设计要求最终输出的信号为0.02Hz~20KHz 。
1)64(2
321C R R R R T f +≈= 可求得R2=50K Ω,R3=1Ω。
3.2、三角波—正弦波转换电路元件
通过仿真为使正弦波的幅值可大范围调节可令R6为100K Ω的电位器,而R7=R8=1K Ω,电容C 的大小为1uf 。
第四章、实验分析
4.1、安装与调试
先在电路板上做好布局,然后进行焊接。
焊接好电路到实验室进行调试,初次调试无法出现波形,且过一段时间后芯片开始发热,检查后发现是电源连接方法错误,调整后出现波形,但幅值和频率没有达到要求,调节变位器R1使输出方波的峰峰值为4V左右,调节变位器R2、R3改变信号的频率使其达到要求,然后通过改变R4的阻值使三角波的峰峰值为2V左右,最后调节R6的阻值使正弦波的峰峰值为4V 左右。
调节R5的阻值可以改变三角波的占空比。
4.2、性能测试及分析
4.2.1、方波三角波
方波
测试结果要求误差峰峰值(V) 4.19V 4V 0.0475 频率0.6KHz~11KHz 0.2KHz~20KHz
三角波
测试结果要求误差峰峰值(V) 1.44V 2V -0.28 频率0.6KHz~11KHz 0.02Hz~20KHz
5.2.2、正弦波
测试结果要求误差峰峰值(V) 3.82 4 -0.045 频率0.6KHz~11KHz 0.02Hz~20KHz
误差分析:
1、参数设计有点问题并不完美;
2 、测量仪器本身有问题导致所测数据不能满足要求;
3 、焊接电路时焊点处有电阻被忽略,连接的线路也有电阻;
4 、调试时间过长电路温度升高,使得一些元件的电阻发生变化;
第六章、结论与心得
结论:本实验还可以用555芯片来产生方波,其电路结构比现在所用的更简单。
通过这次课程设计,学会了如何设计电路,熟练了电路焊接方法以及掌握调试方法与测试参数,同时还提高了我们的动手能力和测试技术能力。
在设计过程中也遇到一些困难,比如一些元件实验室中没有,只能用其他元件代替,有的元件的参数稍有偏差,导致许多参数达不到要求。
电位器R3在调整方波—三角波的输出频率时,不会影响输出波形的幅度。
心得:
1 在学习中要学会合理利用身边的资源来帮助自己学习提升。
感谢我以前的老同学、我现在的同事们。
当然还有以老师们为主导的耐心讲解和辅导!
2 多天的努力结果并不是想象的那么完美,整个过程也是如我所料的一波三折。
在设计初始阶段,少不了查阅大量的相关文献资料,请教不少身边的老师同学,才敲定了此次设计的最基本原理及模拟电子图的绘制。
在接下来的电子元件的选型也少不了大量复杂专业的计算。
焊接是一个技术活,耐心和细心是最基本的要求。
应为平时动手机会不多,对焊接技术掌握不熟练,导致几次降电子元件损坏,不得不重新来过。
最后通过反复的调试,结果虽说差强人意但心理还是有一点小小的成就感,必定这是自己通过努力,一步一个脚印走过来的结果。
相信自己今后还会更加努力,做出更好的作品。
参考文献:
1、童诗白华成英 .模拟电子技术基础. 高等教育出版社
2、物理与电子信息学院 . 基础电路实验指导书.
3、谢自美 .电子线路设计.
4.毕满清编 .电子技术实验与课程设计. 机械工业大学出版社
5. 李万臣主编.模拟电子技术基础与课程设计.哈尔滨工程大学出版社
6..电子线路设计应用手册.张友汉主编,福建科学技术出版社(2000)
7. .电子技术基础实验研究与设计.陈兆仁主编,电子工业出版社
附录
1、总原理图
2、芯片管脚图
3、元件清单
元件名称型号参数数量
电位器0.1K 3
50KΩ 1
100KΩ 2 电阻1KΩ 2
电容1uf 2
芯片LM324 2
二极管IN4007 4
稳压管BZV55-C6稳压值=2V 4
万能版中号 2
导线若干
姓名:余竹
2016年4月16日
11。