空速地速区别
- 格式:doc
- 大小:42.00 KB
- 文档页数:7
本章讲解驾驶舱仪表概要,并简单介绍几个基本动作。
1、驾驶舱仪表。
(1)姿态仪。
该仪表用于反映飞机的姿态变化(如俯仰角度及倾斜角度)。
在姿态仪中蓝色代表天,深色代表地面,中间的白线代表地平线。
当飞机上仰时,姿态仪中的小飞机(橘红色)向上移动,当小飞机处于人工地平线上方时,代表飞机的仰角为正,蓝色部分的小黑线表示俯仰角度,依次为5度、10度……当飞机向左倾斜时,小飞机会相对人工地平线左倾相同角度,姿态仪最上方的橘红色三角形指示位置即为倾斜角度(最中央白线为0度,向外依次表示5度、10度、15度、30度)。
(2)速度表。
该表显示的是指示空速,指示空速是由吹入动压空的气流压强和静压孔测得静态空气压强的差值得出的,当飞机处于标准海平面气压中指示空速就等于真空速。
指示空速的单位是节。
此外讲解以下几个速度的不同:1)指示空速(如上)2)真空速:飞机相对周围气体的速度,粗略数据可由指示空速换算得来。
3)地速:飞机相对地面的速度,可由真空速加上风速得出。
4)马赫数:真空速与相应条件下音速的比值。
再来了解下速度表上各速度的标示:1)最外圈白色范围表示进行襟翼操纵的速度范围,其中注意襟翼操纵范围的最小值也就是飞机在着陆形态下的最小可操纵速度Vso。
2)绿色部分表示在不放襟翼(或称光洁形态)时的操纵范围,其最小值就是飞机在光洁形态下的最小操纵速度Vs。
3)黄色部分表示超过正常巡航/操纵范围的速度,其与绿色部分大交点也就是正常巡航最大速度,称为Vno4)最后的红色部分表示飞机结构设计的极限速度Vne,在所有飞行中都不应超过该速度。
最后发现忘了说一点,速度表的单位是节!(3)高度表。
飞机上主要用的是气压高度表,该高度表通过测量飞机所在高度的气压与海平面气压的差值得出高度。
需要注意的是在飞行中需要依情况转换高度表修正值(海平面气压状态),例如当机场处修正海平面气压为29.83英寸汞柱时,就需转动高度表左下方的旋钮时表盘右侧的气压值窗口的示数达到29.83。
飞机是怎么确定⾼度和速度的?⾸先是⾼度,飞机测量⾼度利⽤的原理是⼤⽓压,初中地理就学过海拔越⾼⽓压越低,并且⾼度和⽓压是呈⼀定的线性关系的。
飞机上的⾼度表其实就是⼀个⽓压计,测得⽓压值后经过换算就能得到飞机的⾼度了。
不过现代的飞机基本上都使⽤⽆线电⾼度表来测量⾼度,它是现代飞机上必要的导航设备之⼀,⽆线电⾼度表要⽐⽓压⾼度表要精确许多。
⽆线电⾼度表原理是向地⾯发射雷达波,雷达波反射后重新被飞机接收,通过测量雷达波来回所⽤的时间来测算飞机的⾼度。
⽆线电⾼度表仅在飞机距地⾯750⽶以内⼯作,所以⼀般在飞机进近和着陆阶段使⽤。
再来说说飞机速度的测量。
飞机的速度有两个:空速和地速。
空速就是飞机相对空⽓运动的速度,地速就是飞机相对地⾯运动的速度。
所以理论上飞机的地速=空速+风速。
测量空速的系统由三部分组成。
第⼀部分叫空速管,也叫做⽪托管,它位于机头前部(如下图),向前伸出状。
飞机飞⾏时空⽓迎⾯吹过来流⼊⽪托管中,在管⼦的后部就可以感受到流⼊空⽓的全部压⼒。
这个压⼒由空⽓流⼊管内的动压和空⽓静⽌时内部的静压组成。
第⼆部分是静压孔,如下图。
静压孔是开在机⾝侧⽅不受⽓流⼲扰的⼀些⼩孔。
空⽓从这⾥缓慢流⼊孔内,这⾥的空⽓压⼒是静压。
第三部分是压⼒表,表的⼀端与空速管相连,另⼀端与静压孔相连。
全压与静压之差称之为动压,根据动压与空速的相关关系,就能将空速换算出来,这个关系有点复杂牵涉流体⼒学原理,这⾥就不作拓展了。
这⾥得到的空速叫做“指⽰空速”,也叫做表速,是换算到标准状态下的空速,并⾮飞机飞⾏的真空速,但却是关乎飞⾏安全的最重要的飞⾏数据之⼀。
飞机的真空速(也就是实际相对空⽓速度)会⼤于指⽰空速。
⾄于地速,可由机载多普勒导航雷达来测量,也可由地⾯基站的电影经纬仪、脉冲测量雷达来测定飞机的地速。
多普勒雷达的⼯作原理是以多普勒效应为基础的,是指当发射源和接收者之间有相对径向运动时,接收到的信号频率将发⽣变化。
电影经纬仪是在陆地固定站上使⽤,它是电影摄影机与经纬仪相结合的仪器,能测量⽬标的⽅位⾓和俯仰⾓,主要⽤于飞机、⽕箭和航天器轨迹测量和起飞、着陆与飞⾏实况记录。
1、导航的分类,各类导航方法简介;区域导航观测导航:早期的飞机利用观测地标,目前飞机上采用的气象雷达等实现的导航。
仪表导航:借助飞机上的各种仪表引导飞机航行。
天文导航:以天空中具有一定运动规律的星体为依据,利用机载六分仪等设备观测水平线和星体连线之间的夹角,作等高线,再求另一星体的等高线,取其交点来确定飞机的位置。
无线电导航:利用无线电的方法即通过对无线电信号某一电参量的测量来确定飞机的距离、距离差、方向和位置等导航几何参量,并引导飞机正确安全的飞行。
区域导航:在飞行航线上有若干航路点,在航路点安装各种导航设备用以引导飞机沿航路点飞行;但随飞行航线的不断增加使航路点增多,但有的地区航路点的地域环境不适合安装地面导航设备,而适合安装地面导航设备的地点又不在航路点上。
为此,采用航路点以外的导航设备,实现在该区域内引导飞机沿航路点飞行,即为区域导航。
2、航向分类基准线真子午线:真航向,基准线磁子午线:磁航向,基准线罗子午线:罗航向。
以三自由度陀螺罗盘的自转轴的水平位置为基准线:陀螺航向,飞机沿大圆航线飞行的航向:大圆航向。
3、方位角、相对方位角、相对方位角;方位角与航向角的关系:电台方位角 =飞机方位角+180O =相对方位角+飞机航向角4、地速、空速及风速间的关系地速:飞机在地面投影点移动的速度,即飞机相对于地面的水平运动速度。
空速:飞机相对于周围空气的运动速度。
风速:飞机当前位置处相对地面的大气运动速度。
地速=空速+风速5、位置线分类;定位方法;无线电导航系统的分类(位置线分类、他备式和自主式)位置线:直线,圆,双曲线定位方法:ρ—θ定位,θ—θ定位,ρ—ρ定位,双曲线定位分类:位置线分类:直线位置线系统,圆位置线系统,双曲线位置线系统,混合位置线系统。
系统中机载设备的独立程度分类:他备式导航系统,自主式导航系统6、ADF系统功用;导航台的识别信号发射方式;ADF的天线特点;ADF的定向误差分类及产生原因功用:测量飞机纵轴方向到地面导航台的相对方位角;利用ADF测出的相对方位角的变化判断飞机飞越导航台的时间;当飞机飞越导航台后,可利用ADF的方位指示保持飞机沿预定航线背台飞行。
名词解释空速
嘿,你知道啥是空速不?空速啊,就好比是飞机在空中飞行的速度一样重要!比如说,飞机飞得多快决定了它能多快到达目的地,空速对于很多东西来说也是至关重要的呢!
咱就拿化学反应来说吧,空速在这当中可有着大作用呢!它就像是化学反应这个大舞台上的一个关键指标。
想象一下,一个化学反应就像是一场精彩的演出,而空速就是控制这场演出节奏的那个“导演”。
如果空速太快,就好像导演催着演员拼命跑,可能很多细节就没法好好展现了,反应可能就不完全;但要是空速太慢呢,那这场演出就拖沓了呀,效率太低啦!
再看看工业生产,空速在这方面也是超级重要的呀!它就如同是生产线上的节拍器。
比如说在一个工厂里,空速决定了原料进入反应装置的速度,这可直接关系到产品的产量和质量呢!你想想,要是空速没调好,那不就像跳舞没踩准拍子一样,会乱套的呀!
空速还和很多其他领域息息相关呢!就像我们生活中的各种元素相互交织一样。
它不是孤立存在的,而是和其他因素一起共同作用,来决定最终的结果。
所以说啊,空速可真不是个简单的名词,它背后蕴含着好多重要的意义和影响呢!空速就是这样一个看似普通,实则超级关键的概念,
它在各个领域都发挥着不可或缺的作用,你说它重要不重要呢?我觉得它真的太重要啦!。
飞机常用的速度,你知道几个?
飞机上所用的常用速度有4种:指示空速(IAS),真空速(TAS),地速(GS),马赫数(Mach).
指示空速(IAS):飞机和空气相对的速度,也是空速表上显示的速度,有时简称为'表速''空速'。
真空速(TAS):经气压换算成海平面高度的指示空速。
地速(GS):飞机相对地面的速度。
可以通过地面导航台、GPS等测得。
马赫数(Mach):真空速和音速的比值。
飞行中各种速度的定义
VS Stalling speed 失速速度
VS1 特定构型下的失速速度
VS0 着陆形态下的失速速度
VREF Reference landingspeed 基准着陆速度通常是1.3*VS0 V1 Takeoff decisionspeed 起飞决断速度
V2 Takeoff climbspeed 起飞爬升速度,(起飞安全速度)
VAPP Final approachspeed 最后进近速度(进近速度)
VEF Engine failurespeed 发动机失效速度
VFE Maximum flap extended speed 最大带襟翼飞行速度
VLE Landing gear extended speed 起落架放出后的最大速度
VLO Landing gear operating speed 起落架操作速度,允许收放起落架的最大速度
VLOF Lift Off speed 离地速度。
空速、风速与地速空速、风速与地速任何⼀种飞⾏器,如普通直线风筝和盘旋类风筝,在天空飞⾏时都以速度来表⽰飞得快慢。
速度就是单位时间⾥所飞⾏的距离,⼀般以公⾥/⼩时为单位。
速度因飞⾏器的参考系(即通常所说的参照物)不同⽽分为空速和地速。
所谓空速,是以空⽓作为参考系,与飞⾏器作相对运动时的速度。
在飞机的仪表盘上,速度表所指⽰的就是空速。
只要拉⼒不变,飞⾏状态不变,不论当时处于什么风向和风速,其空速是不变的。
所谓地速,是以地⾯⽬标作为参考系,与飞⾏器之间作相对运动时的速度。
地速的⼤⼩,与空速的⼤⼩有关,与风向和风速也不⽆关系。
例如,在顺风飞⾏时,地速等于空速与风速之和(见图1)。
虽然空速未变,我们会感到飞得很快。
在逆风飞⾏时,地速等于空速与风速之差(见图2)。
虽然空速未变,我们会感到飞得很慢。
在90度侧风、顺侧风、逆侧风飞⾏时,因风向、风速不同,地速也不同(见图3、图4、图5)。
在实际飞⾏中,为了到达预定的⽬标,飞⾏员要根据途中遇到的不同风向和风速来修正航向,以免偏航。
我们在放飞风筝时,⼀般在逆风中放飞,即便在放飞过程中遇到侧风甚⾄风向调转180度,风筝也会⾃动随着风向飘移,始终保持逆风飞⾏状态,因⽽不⽤⼈为地调整。
盘旋类风筝属于运动风筝,在盘旋⼀周过程中,若以地⾯⽬标为参考系,就会出现逆风飞⾏、顺风飞⾏、侧风飞⾏等情况。
不论处在哪种情况,相对⽓流总是从风筝的前⾯流向后⾯,其空速是不变的。
我们说风筝始终是逆风飞⾏,就是以空⽓作为风筝运动的参考系⽽⾔的。
有的鸢友否认风筝逆风⽽飞,认为“明明放出⼏百⽶线,事实是顺风⽽⾏”,“ 风筝⽆法逆飞”。
这⾥所说的“放出⼏百⽶线”,指的是风筝爬升到⼀定⾼度后的放线。
殊不知,在放线之前,风筝是在逆风中靠收线爬升到⼀定⾼度后才放线的,怎么能说“风筝⽆法逆飞” 呢?⽽且,在放线过程中,随着牵引线的拉⼒由⼤变⼩,升⼒也逐渐减⼩。
当空速⼤于风速时,风筝是逆风飞⾏;当空速等于风速时,风筝在空中悬仃不动,风筝依然处于逆风飞⾏状态;当空速⼩于风速时,虽然风筝迎着风的来向,但对地标⽽⾔才是顺风飞⾏。
中文名指示空速外文名indicated airspeed缩写形式用符号Vi表示其他名称表速单位节或者马赫中文名称:指示空速英文名称:indicated airspeed缩写形式为(IAS),用符号Vi表示。
其他名称:表速分类:飞机上所用的常用速度有4种:指示空速(IAS),真空速(TAS),地速(GS),马赫数(Mach).指示空速:飞机和空气相对的速度,也是空速表上显示的速度,有时简称为"表速""空速".飞机上所用的常用速度有4种:指示空速(IAS),真空速(TAS),地速(GS),马赫数(Mach).指示空速:飞机和空气相对的速度,也是空速表上显示的速度,有时简称为"表速""空速".真空速:经气压换算成海平面高度的指示空速.地速:飞机相对地面的速度.可以通过地面导航台、GPS等测得。
马赫数:真空速和音速的比值.表速和真速的数值是不同的,主要原因是飞机空速管并不能测出飞机的飞行速度,而只能测量出q=0.5*ro*v*v(其中ro是空气密度,v是飞机相对于空气的速度),然后用q除以密度ro再除以0.5,将结果开方(通过电路或机构实现)即可得到飞行速度。
但除以密度时只能用海平面的密度值,而空气密度随着高度升高在减小,所以表速(仪表显示的速度)就和真速不一致,比真速要小,高度越高,差别越大。
在无风的状态下,真速和地速是一致的;有风的情况下,真速和地速是不一致的,真速和风速之和(矢量和)等于地速。
注意这种情况仅适用于平飞,如果你是在爬升或者下降状态,无风时地速不等于真速,种情况下地速只等于飞机真速的水平分量。
举例:一架飞机以相对地面速度为200M\S的速度向北水平飞行,这时飞机的地速为200M\S.若此时刮20M\S的正北风,则指示空速即表速为20+200=220M\S.此时海平面的声速为340M\S,所以马赫数为200\340=0.59定义:详细解释:飞行中的动压与飞行安全有着非常重要的关系。
模拟军校
飞行中的空速
=pingp=
Indicated Airspeed(IAS):这个是空速计测量出来外部动态气压(aerodynamic pressure)显示的速度值,只和压力有关,是最不准的也是最常用的。
Calibrated Aiespeed(CAS):修正速度。
人工修整了IAS误差,可以从飞行员手册上读出来,基本作用是来判定速度是否超过法定限制,特别是在低速下。
然后是一个公式:
V^2 = 2*q/p (q是空速计测出的动态空气压力,p是空气密度)。
不同高度的空气密度是不同的,所以以海平面空气密度p0为标准就得出Equivalent Airspeed(EAS):当量空速。
因为这里p0是固定的,所以EAS大小只和动态气压有关。
飞机机体结构强度限度基本上只受到空气压力的影响,所以关于飞机机体强度限度的速度值是用EAS。
最后是最精确的True Airspeed(TAS):
TAS^2 = 2*((q*T)/(p*T0)) = EAS^2 * (p0/p) * (T/T0)。
这里T是。