安全社区建设论文
- 格式:doc
- 大小:29.00 KB
- 文档页数:5
社会治安论文:构建和谐社区保障居民平安摘要作为群众最关注的问题之一,社会治安与和谐社会建设息息相关。
可以说和谐莱钢、和谐社区的构建,稳定是基础,平安是保证。
自2010年以来,金鼎公司围绕创建“平安社区、平安小区”的活动主题,积极开展各项活动,倡导“小区是我家,我要爱护她”的团队意识,并充分依靠广大职工的智慧和力量,调动一切积极因素,利用一切可以利用的条件,认真做好治安综合治理工作,通过召开座谈会、现场调查、个别走访等形式,比较全面、深入地了解了现阶段莱钢社区社会治安防范机制方面的情况。
关键词社会治安和谐社会平安社区一、莱钢社区基本情况莱钢本部共有6个社区、27个小区,常驻人口7万余人。
其中,全封闭的小区有20个,未封闭、半封闭的小区有7个;安装视频监控系统的小区有10个;安装门禁系统的小区有3个。
各小区共有大小门口44个。
最大的小区为金鼎花园(北区),常驻户2216户,居住人口8000余人。
最小的小区是黄羊山小区,住户290户,居住人口800余人。
二、目前我们在治安防范上所做的工作(一)充分发挥人防的根本性作用,完善了专业防范、群防群治防范机制一是在社区、小区等各基层成立了相应的社会治安综治领导小组,从而在组织上保证了综治工作的运行,确保了管理文件、案件通报及基层情况的下传上达及时到位。
二是居住生活区和社区警务室联合,各派出所与社区、公司保卫部及时通报各种情况,加强了管段警与群众的联系。
三是充分发挥百户治保员和门卫的作用,在社区形成了以社区管委会为主导,以辖区居民共联防的群防群治体系。
在工作中严格按要求进行管理,认真对照“标准住宅小区”创建标准,做好小区的各项工作,在各小区实施了“全天候”机动巡逻,要求门卫、百户治保员看好门户,严禁闲杂人员进出园区,看到可疑人员随时进行观察、盘问,每天晚上0点—5点,各小区安排治保员进行夜间巡逻,和警务室巡逻人员一起加强了对主要街道、重点部位和易发案小区的巡逻密度,小区也通过宣传栏、走家窜户、温馨提示等向居民宣传防范知识,提醒居民做好安全防范工作,提高居民的警惕性,形成了“五位一体”的管理模式,从而保证了社区内居民财产与人身的安全,进一步提高了小区居民的安全感。
共建安全社区构筑平安家乡共建安全社区构筑平安家乡社区安全是每个人居住的基本需求,也是社会稳定和谐的重要保障。
为了共建安全社区,构筑平安家乡,我们需要关注和解决以下几个方面的问题。
一、加强社区治理,提高整体安全感社区治理是构筑安全社区的基石。
我们需要建立一个高效、透明的社区管理机制,提高社区居民的参与度和获得感。
首先,设立统一的社区管理机构,明确职责和权责,建立健全的管理制度。
其次,加强社区巡逻和治安巡查,提高安全预警和应急响应能力。
再次,建立社区党员、志愿者服务队伍,积极开展社会公益活动,增强社区凝聚力和共同安全意识。
二、加强安全教育,提升居民安全意识安全教育是共建安全社区的重要环节。
我们需要通过多种形式和途径,提高社区居民的安全意识和自我保护能力。
首先,开展常识普及活动,向居民宣传各类安全事项和预防措施。
例如,火灾逃生、防盗防骗、交通安全等。
其次,组织安全培训和演练,让居民了解应急处理方法和技巧。
再次,加强在线安全教育,提醒和引导居民合理使用互联网,防范网络安全威胁。
三、构建安全信息化体系,提升环境监测与预警能力安全信息化是构筑安全社区的重要手段。
我们需要建立一个多层次、全方位的安全信息化体系,提升社区环境监测与预警能力。
首先,安装高清摄像头和监控设备,建立视频监控系统,实现对社区区域的全面监控。
其次,建立环境监测传感器网络,实时监测空气质量、噪音污染、水质安全等方面的数据动态。
再次,建立应急短信、微信群推送等信息发布渠道,及时发布安全预警信息,提醒居民自我保护。
四、加强社区警务合作,提高治安防控能力警务合作是共建安全社区的关键环节。
我们需要加强社区警务单位与居民、社区组织之间的合作与沟通,共同推进治安防控工作。
首先,建立警务微信群或短信通报机制,加强警民沟通和信息互通。
其次,定期开展联合行动,加强社区巡逻和治安整治力度。
再次,建立一套奖励机制,鼓励居民积极参与社区治安管理,提供线索和信息。
总之,共建安全社区、构筑平安家乡是我们每个人的责任和使命。
毕业论文(关于社区建设)(精选5篇)第一篇:毕业论文(关于社区建设)浅谈社区建设的现状及对策本文关键词:社区建设、现状、对策社区发展作为提高人们生活质量,推进社会全面进步的重要途径,越来越成为当今各国政府所瞩目的焦点。
社区是城市的细胞,社区建设是城市社区服务深化发展的产物,它随着我国城市社会经济的飞速发展应运而生。
在新的形势下,大力推进社区建设,是解决城市发展中诸多社会问题的有效途径。
随着经济体制改革的不断深入,城市经济社会发展中各种新情况、新矛盾、新问题不断涌现:一是随着改革的不断深入,越来越多的企事业单位开始走向市场,广大职工和离退休人员也开始从“单位人”向“社会人”转变。
伴随着这种情况的持续发展,试图继续依靠“单位”来实现社会整合已不大可能,唯一的选择只能把“单位”承担的一部分整合职能向城市社区转移,是社区成为实现社会整合的基地。
二是随着国有企业改革力度的加大和企业市场竞争的加剧,使大批下岗人员流向社区。
如何把解决下岗人员的管理、教育、生活安排、再就业和社会保障与社会建设有机结合,已成为迫切需要解决的新课题。
三是随着城市化步伐的加快和城市户籍制度改革的深化,大量的农村富余劳动力涌入城市,城市外来流动人口急剧增加。
社区能否把城市流动人口管理好,事关城市的繁荣安定。
四是在社会发生变革的过程中,由于人们各种思想观念以及利益之间的相互冲撞,社会现实中不断出现着大量的人民内部矛盾,青少年犯罪呈上升趋势,盗窃等各种社会治安问题时有发生,社会不安定因素增加,而要解决这些问题,单靠哪一个部门、单位是做不到的,只有形成合力,抓好基层社区建设,才能使社会矛盾得到有效缓解。
大力推进社区建设,是加快城市现代化进程的必然要求。
近年来,我社区居民群众对社区环境、社会服务、社会治安等都提出了越来越高的要求。
从这个意义上说,社区建设也是人民物质文化生活水平提高的表现和需求。
井湾社区自2002年村改居后,现部分人员移民至井泉小区以及大三景东区、荣成花园,在原井湾仍然居住8个居民组的居民。
安全社区论⽂范⽂3篇地震住房安全社区建设论⽂1“地震安全社区”建设的基本原则1.1政府是主导,积极调动社会参与“地震住房安全社区”建设的根本是维系我国⼈民经济利益为本,保护⼈⾝安全、财产安全。
在政府的主要领导下,凭借科学的统计分析、法律制度的严谨维护、⼈民群众积极拥护,进⾏积极预防和最⼤限度地减少震灾对⼈民群众的危害。
同时,全⾯调动⼈民群众的积极性,结合政府的主导⽅向,组成强有⼒的抵抗震灾的团体。
1.2以预防为主,利⽤资源整合正如治病不如防病的道理⼀样,地震造成的危害结果远远⼤于灾后重建的成本,同时其带来的⼈精神伤害更是⽆以弥补的,因此,本着预防为主的原则,将防与补救结合是防震减灾⼯作必须长期坚持的基本⽅针。
在整个地震预防过程中,即:灾前、灾中、灾后期间,利⽤科学知识,进⾏系统的规划、决策以及管理,将资源充分整合,采取科学的减灾⾏动,⽤最低的成本实现最⼤的减灾实效。
1.3加⼤宣传⼒度随着⼈们对震灾带来的危害的⽇益关注,我们应将“地震安全社区建设”⼀起推⼴,加强社区群众的防震减灾宣传教育,采取简单易懂、具备吸引⼒的宣传⽅式,普及防震减灾科普知识,从⽽提⾼社区群众的安全意识和⾃我救助能⼒。
2根据福建省尤溪县的实际情况制定“地震住房安全社区”建设⽅法福建省尤溪县本着提⾼社区⼈民⽣活⽔平,保障⼈民需求的⽬的,在政府的领导下,防震减灾部门通过⼴泛宣传,统⼀筹划、全⾯推⼴“地震住房安全社区”的建设思路。
本县地震安全社区建设标准如下:2.1建⽴组织机构、制定⼯作制度“地震安全社区”的建设关乎到整个尤溪县⼈民群众的切⾝利益,因此,如果要将地震安全⼯作做好,就要在所建设的社区内制订相应的⼯作制度,并安排相关⼈员落实⼯作。
本县组织机构拟以建设社区的社区党⽀部和社区居委会为主体,划分出地震安全保障⼩组,社区内部⼴泛吸纳地震安全助理⼈员;社区组织机构的领导⼩组主要负责地震安全社区⼯作的组织、实施、检查,地震安全助理⼈员主要负责地震安全的具体⼯作的实施。
推进安全社区建设工作的思考随着城市的发展和社会的进步,安全问题已经逐渐成为人们关注的焦点,特别是在社区建设中,安全问题无疑是最为重要的一环。
因此,推进安全社区建设工作已经成为社区建设的重要任务之一。
本文将从多个角度出发,探讨推进安全社区建设的思路和方法。
安全意识的提升对于安全社区建设来说,提升居民的安全意识是首要的任务。
在社区中,应该广泛开展安全知识宣传活动,让居民了解基本的安全知识和措施。
此外,还应该积极推动居民参与到社区安全志愿者的工作当中来,通过开展“我是安全巡逻员”的活动以及其他的志愿者活动,加强居民的安全意识,提高社区在安全防范方面的能力。
完善安全管理机制安全社区建设的核心是完善社区的安全管理机制。
在社区中应建立健全的安全管理机构,明确各类安全责任人的职责和任务,制定各种应急预案,确保在突发事件发生时,能够做出迅速反应和有效处置。
此外,还应该从安全防范的角度,对社区的基础设施进行改造升级,提高设施的智能化程度,提高设施的性能和安全性,保障社区安全。
切实加强安全防范措施推进安全社区建设的该做任务之一是加强社区安全防范体系的建设。
具体包括:加强物理防范加强社区的物理防范工作,包括安装闭路电视监控、门禁系统、防盗门窗等设施,提高社区的安全性能,减少安全隐患。
此外,还应该加强环境治理,清理社区内的废品、垃圾等杂物,确保社区整洁有序,减少安全隐患。
加强网络安全在网络安全方面,社区应该积极推广智能化生活,探索建立集中管理和服务的智慧社区系统,做好社区平台的安全保护工作,加强社区内部网络系统的安全防范,保护居民信息安全。
加强消防安全消防安全是社区安全的关键,社区管理部门要切实履行自己的职责,加强日常的消防巡查,加强社区内消防设施的建设和维护,保障社区消防安全。
引导居民积极参与安全社区建设需要社区居民的广泛参与,把安全建设和社区发展紧密结合,让居民在参与建设中充分体会到社区建设的成果和安全的重要性。
具体来说,可以考虑通过开展道德讲堂、志愿者活动、文化活动等方式,激发居民的积极性,引导居民共同协力推进安全社区的建设。
和谐社区建设:我的社区安全工作实践探析和谐社区建设:我的社区安全工作实践探析2023年,社区建设一直是我们国家具有重要意义的事业,每个社区的和谐发展以及居民的幸福感都离不开社区的安全保障工作。
在我所居住的社区,我们一直在积极探索安全工作的规范化、科学化和专业化。
经过多年的努力,我们的社区安全工作已经取得了显著的成效。
一、确立“人防、技防、物防”三位一体的社区安全保障机制人防、技防、物防是社区安全工作的三个重要方面,只有三者相互结合才能形成全面的社区安全保障机制。
在我社区,我们成立了社区安保委员会,聘请安保公司为社区提供安保服务,专业的保安人员在社区门口、楼道、小区周界等重点区域设立了警戒岗位,一定程度上解决了社区的人防问题。
我们还利用先进的科技手段,配备了智能化门禁系统和视频监控系统,实现了社区技术防范的目的。
这些设备能够实时监控门口、电梯、地下车库、小区围墙等重点部位,记录下进出的人员和车辆信息,并及时向保安人员监控中心发出警报,将安全隐患源头消灭在萌芽状态。
物防方面,我们完善了社区防盗措施,修建了加固防盗门,按照合理的设计布置小区绿化,增加了小区内突出建筑物,突出了环境安全保障力度。
通过人防、技防、物防三个方面的配合,社区安全保障机制得以完善,而社区居民的安全感也更加增强。
二、开展多元化的社区安全宣传教育,增强居民自我防范意识社区安全宣传教育是社区安全工作的重要一环,加强居民的安全教育,提高居民的防范意识和自我保护能力,是加强社区安全工作的重要手段。
我们针对居民群众的需求,采取多种形式举办社区安全宣传教育活动。
例如我们开展了“五小德、四大戒”安全提示,着重强调如何防范刑事犯罪、火灾、意外伤害、防范骗局等社会安全问题。
同时,我们还组织了防范电信诈骗、防范入室盗窃、防止燃气事故等专项安全教育活动。
我们还邀请了市局专业的技术人员来讲解社区安全防范技术,让居民及时了解新型安全防范设备的使用和维护保养等知识。
安全社区创建管理方案范文近年来,随着城市化进程的不断推进,社区安全问题日益凸显。
为了提升社区安全水平,创造一个安全、和谐的社区环境,建立一个高效、科学的社区管理体系势在必行。
因此,本文将就安全社区的创建和管理方案进行详细阐述。
一、安全社区创建方案1. 制定社区安全目标:在创建安全社区的初期,社区管理者应明确社区安全建设的目标,如提高社区居民的安全感、减少犯罪事件发生等。
明确目标有助于形成统一的行动方向。
2. 安全环境评估:通过对社区安全环境的评估,了解社区安全现状和存在的问题。
可以进行安全巡逻、犯罪数据分析等方式,全面掌握社区安全情况,为后续的安全管理提供有力支持。
3. 制定安全管理计划:依据安全环境评估的结果,制定一份包含具体可行的安全管理计划。
计划应包括明确的目标、具体的措施、责任人和时间节点等要素,以确保实施的科学性和可操作性。
4. 强化物理防护措施:安全社区的创建离不开物理防护措施的加强,包括安装监控摄像头、增加照明设施、设置门禁系统等,以提供有效的警示和防护作用。
5. 加强社区治安力量建设:社区治安力量是安全社区的重要组成部分,应加强对保安人员的培训和管理,提高他们的业务水平和工作素质。
同时,可以引入社区警务协助员、志愿者等,扩大社区治安力量的覆盖面。
6. 加强社区居民安全教育:通过组织安全知识讲座、开展安全演练等形式,加强社区居民的安全意识和应急能力,提高他们对安全问题的警觉性,形成良好的安全文化。
二、安全社区管理方案1. 健全社区管理机构:建立完善的社区管理机构,明确管理职责和权限。
社区管理机构应形成规范化、集中化、科学化的管理模式,确保管理的权威性和高效性。
2. 建立信息化管理系统:利用现代信息技术手段,建立安全社区的信息化管理系统。
该系统可以整合社区安全设备、人员信息、犯罪数据等各个方面的信息,提高管理效率和信息共享性。
3. 优化社区巡逻机制:加大巡逻力度,增加巡逻频次,提高巡逻效果。
大连市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CD B .AD ∥BC C .∠B =∠D D .∠1=∠22.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)3.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为( )A .10°B .15°C .30°D .35°4.下列图形可由平移得到的是( )A .B .C .D .5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 6.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-7.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 8.下列运算正确的是( ) A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm 10.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-二、填空题11.多项式2412xy xyz +的公因式是______.12.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________. 13.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.14.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.15.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.16.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 17.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____. 18.计算212⎛⎫= ⎪⎝⎭______. 19.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.20.分解因式:ab ﹣ab 2=_____.三、解答题21.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).22.计算:(1)2x3y•(﹣2xy)+(﹣2x2y)2;(2)(2a+b)(b﹣2a)﹣(a﹣3b)2.23.计算:(1)(12)﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2;(3)(x+5)2﹣(x﹣2)(x﹣3);(4)(2x+y﹣2)(2x+y+2).24.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S=1+2+22+23+24+…+22009则2S=2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.25.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)26.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)计算20+21+22+⋯+22019.27.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.28.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB ∥DC(内错角相等,两直线平行).故选A .【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;故选:D .【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.3.B解析:B【解析】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B4.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A5.D解析:D【详解】解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确;②∵∠3=∠4,∴BC ∥AD ,故本选项错误;③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确;④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确.故选D.6.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l 1∥l 2,故本小题正确;②∵∠2+∠4=180°,∴l 1∥l 2,故本小题正确;③∵∠4=∠5,∴l 1∥l 2,故本小题正确;④∠2=∠3不能判定l 1∥l 2,故本小题错误;⑤∵∠6=∠2+∠3,∴l 1∥l 2,故本小题正确.故选B .【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.8.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.9.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.10.A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.m <2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m <2故答案为:m <2.此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.13.20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴14ab=⎧⎨=⎩,33ab=⎧⎨=⎩,52ab=⎧⎨=⎩,71ab=⎧⎨=⎩.a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.15.【分析】根据题意先给a取任意两个值,然后代入,得到关于x、y的二元一次方程组,解之得到x、y的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a值可任意取两个值,解析:41 xy=⎧⎨=⎩【分析】根据题意先给a取任意两个值,然后代入,得到关于x、y的二元一次方程组,解之得到x、y的值,再代入原方程验证即可.【详解】∵无论a取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键. 16.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.17.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.18.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.19.84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得解析:84【分析】设原两位数的个位上的数字为x,则十位上的数字为2x,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x,则十位上的数字为2x,由题意,得10×2x+x-(10x+2x)=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.20.ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式解析:ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab ﹣ab 2=ab (1﹣b ).故答案为:ab (1﹣b ).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.三、解答题21.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,EN ,FN 分别平分MEB ∠和DFM ∠,112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.22.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a2+b2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.23.(1)2;(2)7a4+4a6+a2;(3)15x+19;(4)4x2+4xy+y2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可;(4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2,=7a4+4a6+a2;(3)原式=x2+10x+25﹣(x2﹣3x﹣2x+6),=x2+10x+25﹣x2+3x+2x﹣6,=15x+19;(4)原式=(2x+y)2﹣4,=4x2+4xy+y2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.24.2021 514-【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.25.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.26.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.27.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.28.(1)-8a+12,16;(2)x 2+3,139【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案; (2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a 2-4a-(a 2-2a+6a-12)=a 2-4a-(a 2+4a-12)=a 2-4a-a 2-4a+12=-8a+12 把12a =-代入得:原式=-8×(1-2)+12=16; (2)原式=x 2+4x+4+4x 2-1-4x 2-4x=x 2+3 把13x =代入得:原式=(13)2+3=139. 【点睛】本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.。
社区安全保障优秀社区的和谐与安宁社区是城市发展的基石,而社区的和谐与安宁是人们安居乐业的基础。
为了保障社区的安全,各地政府和社区管理者需要采取一系列措施,建立起安全保障体系,推动优秀社区的建设。
本文将从社区安全建设的重要性、社区安全保障的措施以及优秀社区的建设等方面,探讨社区安全保障对建设和谐安宁社区的必要性。
社区安全建设的重要性社区是我们居住的地方,社区的安全状况直接关系到居民的安宁感和生活质量。
社区安全建设是保障居民人身、财产安全的基础。
一个安全的社区能够减少犯罪事件的发生,提高居民的生活品质和幸福感,同时也为社区发展提供了更好的环境。
因此,社区安全建设是推动社会稳定和谐发展,保障人民生命财产安全的重要举措。
社区安全保障的措施(1)加强社区治安力量建设。
建立健全社区巡逻、巡警体系,增加巡逻巡警人员数量,提高社区治安力量的专业化水平。
同时,与社区居民建立紧密的联系,加强沟通交流,在治安问题上形成共治共管的局面。
(2)完善社区监控系统。
安装摄像头、监控设备,建立起覆盖整个社区的监控系统,有效监控社区内的活动情况,预防犯罪行为的发生。
(3)推广智能化安防措施。
利用科技手段,将智能化安防设备引入社区,如智能门禁、智能烟感报警系统等,提高社区居民的安全防范能力。
(4)组织开展社区安全教育。
通过开展安全知识培训、演练活动等,提高社区居民的安全意识和自我防范能力,增强居民的安全保护意识。
(5)建立社区安全信息共享机制。
社区管理者、居民和相关部门之间建立起信息互通的机制,实时掌握社区安全状况,及时采取应对措施。
优秀社区的建设社区的安全建设是优秀社区建设的重要组成部分。
除了安全保障措施外,还应重视以下几方面的建设:(1)社区环境整治。
加强对社区环境的管理,保持社区的整洁美观,建立绿化、垃圾分类等机制,提升居民的生活品质。
(2)加强社区文化建设。
通过组织文艺演出、开展文化活动等形式,促进社区居民之间的交流和融合,营造和谐的社区文化氛围。
摘要:本文简要论述了国内外安全社区建设的发展状况,介绍了世界卫生组织安全社区的认可标准及其有关指标。
作者提出了中国安全社区建设若干建议和对策 , 尽快制定我国安全社区建设标准及其考核管理办法, 将安全社区建设作为全面小康社会建设的重要组成部分, 把安全社区建设作为公共安全、事故预防体系、应急救援体系和安全文化建设的基石, 积极开展安全社区建设的跨学科合作研究,开展城市安全社区与农村安全社区的建设试点工作。
关键词:安全社区,伤害预防,安全管理2.国内外安全社区建设和发展现状为预防和减少伤害的发生,探讨伤害预防的模式和途径, 1989年在瑞典斯德哥尔摩举行的第一届世界事故和伤害预防会议上, 提出了安全社区的概念, 来自 50个国家的代表共同发表了“ 安全社区” 宣言,强调全人类在保持自身健康及安全方面均享有平等权利。
世界卫生组织积极倡导通过安全社区和安全促进活动开展伤害预防工作。
实现安全健康的目标需要个人、组织和社区共同努力来实现,并在不同的社会层面展开,包括国际、国家、部门、地方和社区。
目前, 国际上对安全社区还没有一个确切的定义, 安全社区可理解为已建立一套组织机构和程序, 社区有关机构、志愿者组织、企业和个人共同参与伤害预防和安全促进工作, 持续改进地实现安全健康目标的社区 [5]。
安全社区的基本思想是强调针对所有的伤害预防 , 包括所有年龄的人员、各种环境和条件 , 强调社区内人人参与全方位的预防工作,形成持续改进的工作机制。
建设安全社区的目的是整合社区内各类组织的资源, 群策群力, 调动一切积极因素开展各类伤害预防和安全促进活动, 以提高人民在安全及健康方面的生活质量。
安全促进是为达到和保持理想的安全水平向人群提供所必需的保障条件的过程。
世界卫生组织社区安全促进合作中心认为, 安全社区并非以社区的安全水平为评判的唯一标准, 安全社区可以是一个城市、一个县或一个区域, 开展了包括所有不同年龄、性别和区域的安全促进和伤害、暴力、自杀预防工作,同时是获得国际认可的安全社区网络的组成部分。
安全社区建设持续改进实践与思考
一、安全社区建设的概念与理念
“安全社区”概念是1989年在第一届世界事故与伤害预防大会上提出来的。
社区是聚居在一定地域范围内的人们所组成的社区共同体。
安全社区是是指建立了跨部门合作的组织机构和程序,联络社区内相关单位和个人共同参与事故与伤害、控制和安全促进工作,持续改进地实现安全目标的社区。
安全社区基本特征是资源整合、全员参与、持续改进。
安全社区基本理念是安全、健康、和谐,强调针对所有类别的安全和伤害进行预防和控制,包括所有年龄的人群、环境和条件。
安全社区建设要以科学发展观为统领,坚持“整合资源、全员参与、持续改进”的原则,全力做好安全社区持续改进工作。
二、安全社区建设的风险辨识与影响因素
正如人类社会是不断变化发展的一样,安全社区建设也是一个不断变化发展的过程。
安全社区建设是一个动态的不断发展的过程,周而复始,持续改进,不断完善和落实促进措施。
安全安全社区建设通过建立健全组织机构与职责,开展事故与伤害调查,特别是“两高一脆弱”、“三重一需求”进行事故与伤害风险辨识,制定事故与伤害预防目标及计划,开展安全促进项目等,来消除影响和危及人们生命财产的各种隐患和不利因素,最大限度地减少事故与伤害,实现人人都享受安全和健康的权利。
依据前三年的事故与伤害记录,分析研判存在的主要隐患和危险因素,进行风险辨识,有针对性地制定安全促进项目,是安全社区建设的重要途径。
风险辨识受主要以下几个因素的影响:一是风险辨识人员的专业素质,人员的专业水平越高、工作责任心越强,分析研判就接近实际,在安全社区建设中,开展风险辨识可以聘请专业技术人员或专家学者来做,尽量减少不必要的工作,以最少的资金发挥最大的效益;二是事故与伤害发生的概率,事故与伤害地发生在理论上与
概率成正比关系,根据美国著名安全工程师海因里希提出的300∶29∶1法则,也称海因里希法则。
这个法则意思是说,当一个企业有300个隐患或违章,必然要发生29起轻伤事故或故障,在这29起轻伤事故或故障当中,有一起重伤、死亡或重大事故。
但是概率大的不一定发生或发生的事故与伤害可能少于概率小的,这就可能导致我们把次要因素作为主要因素,在制定安全项目中忽略主要因素,然而在实施项目过程中或结束后,概率大的因素可能导致更多的事故与伤害,这就要求我们不断地修改和完善安全促进项目;三是环境因素,事物是不断发展变化的,因环境因素的变化,致使事故与伤害的原有隐患或因素可能消失,新的安全隐患可能产生,或者次要因素变为主要因素,导致新的事故与伤害不断发生,例如农村道路安全,过去由于道路等级低、路况差,车辆行驶速度很慢,影响安全的主要因素是道路质量,现在修了水泥路或油路后,影响安全的主要因素可能变为超速或超载。
三、安全社区建设的监督与监测
这个过程既不全面也不完善,还需要在项目实施过程中不断地进行监督与监测,及时发现问题,纠正干预措施持续改进,使促进项目达到最佳效果。
安全社区建设的过程就是不断改进、不断创新、不断完善的过程,一个好的安全社区就是持续不断地改进安全促进项目,纠正偏差,达到最佳预防和控制事故与伤害的目的。
在实施安全促进项目中,要建立监测制度,跟踪、评估项目效果。
如城市道路交通安全:对于人口稠密、街道狭窄、车辆拥挤、学校和单位众多、乱穿乱行等突出的老城区,可以设置红绿灯、减速带、人行隔离护栏、斑马线等措施,防止车辆和行人乱穿乱行,能有效减少事故与伤害。
然而在安全促进项目的跟踪监测中,对事故与伤害监测数据,发现交通事故的呈明显增多态势,根据事故与伤害分析、可能原因是:随着城市的汽车、摩托车越来越多,成为人们的主要交通工
具时,由于停车泊位不足,车辆乱停乱放突出,摩托车乱穿乱行等,这就要在街道合理设置一些停车泊位和摩托车临时停放点,加大对摩托车的治理、加强对车辆的疏导、分流等措施,改善城市道路交通状况,减少事故与伤害的发生。
实现安全社区建设持续改进,根据实际情况,可以有多种方法:一是事故与伤害监测法,可根据治安、交警、消防、医院、学校、社区等事故和伤害监测记录进行统计分析、对安全促进项目实施的效果进行检验、评估,如每周对学校学生伤害进行统计,每月对在学校发生的事故与伤害进行分析,就该项目就能作出较为准备的评估、检验促进项目的效果;二是走访调查法,可走访当地干部群众,听取群众对安全促进项目的意见和建议,依据合理法意见和建议对促进项目进行修改,使安全促进项目更符合实际、更有切实效果;三是专家论证法,聘请安全专家、学者、教授等对安全促进项目进行论证,听取专家、学者、教授等的意见和建议,及时进行纠正。
四、实现安全社区创建可持续改进的对策
安全社区创建的目的并不是在于创建本身,而是要充分发挥政府统筹协调各方面资源的优势,通过创建推动安全社区长效机制的建设,实现全面协调和可持续发展。
要实现安全社区的持续改进,必须加大创建资金投入,在组织机构联动协调、地区品牌创新、资源优化整合、安全知识普及上下功夫。
(一)增强组织联动协调,加大制度落实力度
按照安全社区的概念和标准,有一个高效的跨界组织机构持续地促进社区居民的安全及健康是安全社区创建的关键。
而安全社区的创建不是靠哪一个部门的单打独斗,需要组织机构各部门间的相互联动和协调,保证安全促进项目有计划、有实施、有检查、有纠正。
要成立了跨部门的安全促进组织,并且制定了相关的工作职责及制度,要增强跨界组织各部门的工作协调,定期召开专项工作例会,及时掌握
工作开展情况,调整促进项目工作安排,形成一套行之有效的工作方法和制度机制,切实保障跨界组织持续地推进社区安全建设。
社区应在现有制度的基础上,建立健全各级岗位安全责任制、事故与伤害风险辨识及评价等各项管理制度。
同时采取长期、定期、制度化地对安全社区创建工作进行记录、整理和归档,为安全社区的持续改进提供完备的数据资料支持,真正使安全社区工作每年有推动。
(二)优化整合各类资源,拓展宣传教育渠道
实现安全社区持续改进的基础是加大对社区单位和居民的安全宣传教育,进一步提高全民的参与意识。
应注重抓好以下工作:一是利用传统方式进行宣传教育。
充分各种宣传资源,开辟安全知识专栏,长期、不间断地采取居民互动的形式入户宣传;利用宣传栏、宣传画册、板报、音像制品、讲座等定期开展安全社区宣传教育和知识讲座;利用重大节日,有针对性开展消防、交通、居家安全等形式多样、内容丰富的安全教育活动。
二是请专家辅导、培训。
结合不同季节、不同环境下伤害发生的特点,邀请各个行业的专业人士开展灭火、逃生、自救等消防技能的培训和演练。
三是充分发挥社区文艺宣传队的作用。
针对不同时期、不同阶段居民价值观变化的特点,编写寓教于乐的安全健康知识剧本、小品、三句半等,适时到社区交流巡演或利用每年定期组织的广场文娱活动等,向居民传播安全健康知识。
四是抓好安全教育培训基地建设。
建立一个集科普、交通、消防、家居、健康、人防等方面为一体的多功能教育基地,形成安全社区宣传阵地,对居民普及安全知识,提高安全社区知识在社区群众中的知晓率。
(三)完善伤害监测机制,提升数据评估质量
伤害监测数据是伤害预防和控制的基础,是制定伤害干预措施、伤害预防与控制计划的重要依据。
要按照标准要求制定了覆盖范围广的伤害预防计划,协调有关卫生部门组建了社区居民伤害监测网络,成员应包括疾控制心、医院和卫生服务中心以及社区等。
伤害数据要
有上级大型医院的参与,使监测数据量与人口数相对具有科学性和准确性,确保对安全状况的准确把握和项目策划、实施的针对性、有效性。
(四)创新区域特色品牌,持续巩固创建成果
安全社区建设是国际先进理念的引进,也是结合本地区、本社区实际情况的创新。
由于各地区所处的地理位置不同,各社区的居民素质、所处的文化环境存在不同的差异,不能采取“一把揽”、“一刀切”的创建模式,必须抓好本区域的特色品牌。
安全社区持续改进的重点,应在特色品牌上有所创新,针对残疾人、老年人、儿童等弱势群体,挖掘社区潜能,把成功的特色项目在辖区内全面推广应用,并打造新的地区品牌,促使安全社区建设的持续性。