一道直线和圆的参数方程问题解析
- 格式:doc
- 大小:81.50 KB
- 文档页数:1
考点透视解析几何问题通常较为复杂,且解题过程中的计算量大,出错率高.利用参数方程解答解析几何问题,不仅可以使方程中的变量减少,还能够减小计算量,达到化繁为简的效果.参数方程是曲线或直线的一种重要表示形式.一般地,过定点A()x0,y0,倾斜角为θ的直线的参数方程可以表示为{x=x0+t cosθ,y=y0+t sinθ,其中t为参数,||AB=t;若⊙O的圆心O为()m,n,半径为r,则⊙O的参数方程可表示为{x=m+r cosα,y=n+r sinα,α为参数,表示任意点与圆心O连线段的旋转角度;若椭圆C的中心位于坐标原点O,长轴与短轴分别为a与b,焦点位于x轴,则椭圆的参数方程可表示为{x=a cosα,y=b sinα,α为参数,表示动点T()x,y的离心角.在解答解析几何问题时,我们可根据题意设出或写出直线或曲线的参数方程,并将直线或曲线上的点用参数表示出来,便可将其看作为定点或已知的点,将其坐标代入点到直线的距离公式、弦长公式、两点间的距离公式、韦达定理、直线的斜率公式、直线的方程、圆锥曲线的方程中进行运算,从而将问题转化为三角函数求值、最值问题来求解.最后根据三角函数的性质、公式、图象即可求得问题的答案.例1.(2021全国新高考卷一,第21题)已知点F1()-17,0,F2()17,0,点M满足||MF1-||MF2=2.记点M的轨迹为C.(1)求C的方程;(2)设点T在直线x=12上,过T的两条直线分别交C于A,B,P,Q,且||TA∙||TB=||TP∙||TQ,求直线AB与PQ的斜率之和.解:(1)C的方程为x2-y216=1()x>0;(2)设Tæèöø12,m,直线AB的倾斜角为θ1,直线PQ的倾斜角为θ2,且θ1,θ2∈[0,π),则直线AB的参数方程为ìíîïïx=12+t cosθ1,y=m+t sinθ2,t为参数.将其代入x2-y216=1()x>0中,得()16cos2θ1-sin2θ1t2+()16cosθ1-2m sinθ1t-()m2+12=0.由题意知16cos2θ1-sin2θ1≠0,则||TA·||TB=-()m2+1216cos2θ1-sin2θ1,同理可得||TP∙||TQ=-()m2+1216cos2θ2-sin2θ2,又||TA∙||TB=||TP∙||TQ,所以-()m2+1216cos2θ1-sin2θ1=-()m2+1216cos2θ2-sin2θ2,则16cos2θ1-sin2θ1=16cos2θ2-sin2θ2,化简得cos2θ1=cos2θ2.因为直线AB与PQ为不同的直线,则cosθ1=-cosθ2,于是θ1+θ2=π,则k AB+k PQ=0.本题若采用常规方法,需将直线的方程与双曲线的方程联立,根据弦长公式和韦达定理求解,解题过程中的计算量大,不易求出正确答案.而运用直线的参数方程,就能将直线上的点A、B、P、Q用倾斜角表示出来,直接利用直线参数方程的几何意义即可求得||TA∙||TB、||TP∙||TQ的表达式,进而通过三角恒等变换,建立直线AB和PQ倾斜角之间的关系,快速求得问题38的答案.例2.在矩形ABCD 中,AB =1,AD =2,点P 在以C为圆心的圆上,该圆与BD 相切.若 AP =λ AB +μAD ,则λ+μ的最大值为().A.3B.225解:以A 为原点,DA 、BA 为坐标轴建立如图所示的平面直角坐标系,由AB =1,AD =2可得A ()0,0,B ()1,0,C ()1,2,D ()0,2,则以C 为圆心的圆的方程为()x -12+(y -22=45,设P æèçöø÷1+θ,2θ,由 AP =λ AB +μ AD ,得ìíîïïïïλ=1θ,2μ=2+θ,则λ+μ=1+θ+1θ=2+sin (θ+ϕ)≤3,其中tan ϕ=2,当θ+ϕ=π2时,λ+μ取得最大值3.先根据题目条件画出相应的图形,并建立平面直角坐标系,便可通过数形结合的方式,将题目中的几何关系以直观的形式表示出来;然后根据圆的参数方程设出圆上的动点P ,并建立关于参数θ的关系式,即将问题转化为三角函数最值问题;再利用三角函数的辅助角公式和正弦函数的有界性进行求解,这样可使得解题中的计算量大大减小,轻松获得问题的答案.例3.已知A ,B 是椭圆x 2a 2+y2b2=1()a >b >0的左、右顶点,P ,Q 是该椭圆上异于顶点的两点,直线AP 与QB ,PB 与AQ 分别交于点M ,N .(1)求证:MN ⊥AB .(2)若弦PQ 过椭圆的右焦点F 2,求直线MN 的方程.(1)证明:由椭圆的参数方程{x =a cos α,y =b sin α,可设P ()a cos α,b sin α,Q ()a cos β,b sin β,则AP :y =b sin αa +a cos α(x +a ),AQ :y =b sin βa +a cos β(x +a ),BP :y =b sin α-a +a cos α(x -a ),BQ :y =b sin β-a +a cos β(x -a ),联立直线AP 与BQ 的方程,得x M +a a +a cos αb sin α=x M -a-a +a cos βb sin β,解得x M =sin ()α+β-sin α+sin βsin α+sin β+sin ()β-αa =cos α+β2cos α-β2a ,同理可得,x N =sin ()α+β+sin α-sin βsin α+sin β+sin ()α-βa =cos α+β2cos α-β2a ,故x M =x N ,则MN ⊥AB .(2)解:由(1)得PQ :y -b sin αb sin α-b sin β=x -a cos αa cos α-a cos β,设直线PQ 经过()c ,0,则c a =cos α+sin α()cos α-cos βsin β-sin α=sin ()α-βsin α-sin β=cosα-β2cosα+β2,可得x M =x N =a 2c,故直线MN 的方程为x =a 2c.解答本题,需根据椭圆的参数方程,将椭圆上的点用参数形式表示出来,列出四条直线的方程,通过联立方程求得到点M 、N 的横坐标,进而根据直线的斜率公式建立关系式,从而求得MN 的方程.利用椭圆的参数方程,不仅可使题目中的变量统一,还可以使最终的直线形式简洁、美观,便于计算.可见,在解答解析几何问题时,巧妙利用直线或曲线的参数方程,能使问题中的几何关系以更加简洁的形式呈现,还能简化运算过程,能大大提高解题的效率.但在运用直线或曲线的参数方程解题时,要多关注参数的取值范围和几何意义,这是获得正确答案的有力依据,能为我们解题带来很大的便利.基金项目:基于核心素养下的南充市高中课堂教学研究——以数学学科为例,西华师范大学纵向科研项目,项目编号468020.(作者单位:西华师范大学数学与信息学院)考点透视39。
..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。
高二数学授课教案学生姓名授课教师班主任上课时间9 月 23 日时—时科目数学课题第1课时平面解析几何——直线与圆的方程学习目标1.回顾、加强空间坐标系、直线与圆的方程基础知识.2.巩固直线、圆的方程的主要求解方法.(重点)3.能够解决综合性解析几何问题.(难点)教学过程教学设计一、主干知识梳理1.直线方程的五种形式(1)点斜式:y-y1=k(x-x1)(直线过点P1(x1,y1),斜率为k,不包括y轴和平行于y轴的直线).(2)斜截式:y=kx+b(b为直线l在y轴上的截距,且斜率为k,不包括y轴和平行于y轴的直线).(3)两点式:y-y1y2-y1=x-x1x2-x1(直线过点P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:xa+yb=1(a、b分别为直线的横、纵截距,且a≠0,b≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax+By+C=0(其中A,B不同时为0).设直线方程的一些常用技巧:1.知直线纵截距b,常设其方程为y kx b=+;2.知直线横截距x,常设其方程为x my x=+(它不适用于斜率为0的直线);3.知直线过点00(,)x y,当斜率k存在时,常设其方程为00()y k x x y=-+,当斜率k不存在时,则其方程为x x=;4.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 5.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
2.直线的两种位置关系当不重合的两条直线l1和l2的斜率存在时: (1)两直线平行l1∥l2⇔k1=k2. (2)两直线垂直l1⊥l2⇔k1•k2=-1.提醒:当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离:|AB |= x 2-x 1 2+ y 2-y 1 2. (2)点到直线的距离:d =|Ax 0+By 0+C |A 2+B2(其中点P (x 0,y 0),直线方程:Ax +By +C =0).(3)两平行线间的距离:d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0).提醒:应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等.4.圆的方程的三种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。
直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角α的范围是0180α<≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零例8. 与直线:23x y +(1,4)A -的'的方__________例9. 已知二直线8:1+y mx l 和2:2+my x l ,若21l l ⊥,m =_____,n =____.两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。
⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。
§2 直线和圆锥曲线的参数方程2.1 直线的参数方程 2.2 圆的参数方程1.直线的参数方程(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为 ⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)① 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM→的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ⎩⎪⎨⎪⎧x =x 1+λx 21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是动点M 分有向线段QP →的数量比QM MP .当λ>0时,M 为内分点;当λ<0且λ≠-1时,M 为外分点; 当λ=0时,点M 与Q 重合. 2.圆的参数方程(1)圆心在原点、半径为r 的圆的参数方程⎩⎨⎧x =r cos α,y =r sin α(α为参数).参数α的几何意义是OP 与x 轴正方向的夹角.(2)去掉圆与x 轴负半轴交点,圆心在原点、半径为r 的圆的参数方程.⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr 1+k 2(k 为参数)参数k 的几何意义是直线AP 的斜率.【思维导图】【知能要点】 1.直线的参数方程. 2.直线的参数方程的应用. 3.圆的参数方程及应用.题型一 直线的参数方程直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (α为参数)中,α,x 0,y 0都是常数,对于同一直线,选取的参数不同,会得到不同的参数方程.对于直线普通方程y =2x +1,如果令x =t ,可得到参数方程⎩⎨⎧x =t ,y =2t +1 (t 为参数);如果令x =t2,可得到参数方程⎩⎪⎨⎪⎧x =t 2,y =t +1(t 为参数).这样的参数方程中的t 不具有一定的几何意义,但是在实际应用中有时能够简化某些运算.例如,动点M 做匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,点M 从A 点(1,1)开始运动,求点M 的轨迹的参数方程.点M 的轨迹的参数方程可以直接写为⎩⎨⎧x =1+9t ,y =1+12t (t 为参数).【例1】 设直线的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =22t(t 为参数),点P 在直线上,且与点M 0(-4,0)的距离为2,若该直线的参数方程改写成⎩⎨⎧x =-4+t ,y =t (t 为参数),则在这个方程中点P 对应的t 值为________. 解析 由|PM 0|=2知t =±2,代入第一个参数方程,得点P 的坐标分别为(-3,1)或(-5,-1),再把点P 的坐标代入第二个参数方程可得t =1或t =-1. 答案 ±1【反思感悟】 直线参数方程的标准形式中的参数具有相应的几何意义,本题正是使用了其几何意义,简化了运算,这也正是直线参数方程标准式的优越性所在.1.已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)和点N (-2,6)的距离.解 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t(t 为参数). 因为3×5-4×4+1=0,所以点M 在直线l 上. 由1+45t =5,得t =5,即点P 到点M 的距离为5.因为点N 不在直线l 上,故根据两点之间的距离公式,可得|PN |=(1+2)2+(1-6)2=34.【例2】 已知直线l 经过点P (1,1),倾斜角α=π6, (1)写出直线l 的参数方程;(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.解(1)直线的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A ⎝ ⎛⎭⎪⎫1+32t 1,1+12t 1,B ⎝⎛⎭⎪⎫1+32t 2,1+12t 2.以直线l 的参数方程代入圆的方程x 2+y 2=4, 整理得到t 2+(3+1)t -2=0.①因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|P A |·|PB |=|t 1t 2|=|-2|=2.【反思感悟】 本题P 到A 、B 两点的距离就是参数方程中t 的两个值,可以充分利用参数的几何意义.2.已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t (t 为参数).(1)分别求t =0,2,-2时对应的点M (x ,y ); (2)求直线l 的倾斜角;(3)求直线l 上的点M (-33,0)对应的参数t ,并说明t 的几何意义.解(1)由直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)知当t =0,2,-2时,分别对应直线l 上的点(-3,2),(0,3),(-23,1).(2)法一 化直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)为普通方程为y -2=33(x +3),其中k =tan α=33,0≤α<π. ∴直线l 的倾斜角α=π6.法二由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数),这是过点M 0(-3,2),且倾斜角α=π6的直线,故π6为所求. (3)由上述可知直线l 的单位方向向量 e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12. ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e , ∴点M 对应的参数t =-4,几何意义为|M 0M →|=4, 且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).题型二 直线参数方程的应用利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.【例3】 过点P ⎝ ⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+12y 2=1交于点M ,N ,求|PM |·|PN |的最小值及相应的α的值. 解设直线为⎩⎨⎧x =102+t cos α,y =t sin α(t 为参数),代入曲线并整理得(1+11sin 2α)t 2+(10cos α)t +32=0. 则|PM |·|PN |=|t 1t 2|=321+11sin 2 α.所以当sin 2 α=1时,即α=π2,|PM |·|PN |的最小值为18,此时α=π2.【反思感悟】 利用直线的参数方程中参数的几何意义,将最值问题转化为三角函数的值域,利用三角函数的有界性解决.3.已知曲线的参数方程⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数),求曲线上一点P 到直线⎩⎨⎧x =2-3t ,y =2+2t(t 为参数)的最短距离. 解 P (3cos θ,2sin θ)直线:2x +3y -10=0 d =|6cos θ+6sin θ-10|13=|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|1362sin ⎝ ⎛⎭⎪⎫θ+π4-10∈[-62-10,62-10]∴|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|13∈⎣⎢⎡⎦⎥⎤10-6213,10+6213 ∴d min =10-6213.【例4】 如图所示,过不在椭圆x 2a 2+y 2b 2=1上的任一点P 作两条直线l 1,l 2分别交椭圆于A ,B 和C ,D 四点,若l 1,l 2的倾斜角为α,β且满足α+β=π.求证:A ,B ,C ,D 四点共圆. 证明 设P (x 0,y 0),直线l 1:⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (t 为参数),直线l 2:⎩⎨⎧x =x 0+p cos β,y =y 0+p sin β (p 为参数),分别代入椭圆方程得(b 2cos 2 α+a 2sin 2 α)t 2+2(b 2x 0cos α+a 2y 0sin α)t +b 2x 20+a 2y 20-a 2b 2=0; (b 2cos 2 β+a 2sin 2 β)p 2+2(b 2x 0cos β+a 2y 0sin β)p +b 2x 20+a 2y 20-a 2b 2=0.∵α+β=π,∴cos 2 α=cos 2 β,sin 2 α=sin 2 β,∴t 1t 2=p 1p 2,即|P A |·|PB |=|PC |·|PD |.由平面几何知识知,A ,B ,C ,D 四点共圆. 【反思感悟】 本题利用平面几何知识,要证四点A ,B ,C ,D 共圆,只需证|P A |·|PB |=|PC |·|PD |,又转化为距离问题,利用参数的几何意义计算即可.4.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A ,B 两点. (1)求弦长|AB |;(2)过P 0作圆的切线,求切线长; (3)求|P 0A |和|P 0B |的长; (4)求交点A ,B 的坐标.解 ∵直线l 通过P 0(-4,0),倾斜角α=π6, 所以可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,代入圆方程,得⎝ ⎛⎭⎪⎫-4+32t 2+⎝ ⎛⎭⎪⎫12t 2=7,整理得t 2-43t +9=0.(1)设A ,B 对应的参数分别为t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9, ∴|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=2 3. (2)设过P 0的切线为P 0T ,切点为T , 则|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.(3)解方程t 2-43t +9=0,得t 1=33,t 2=3, ∴|P 0A |=33,|P 0B |= 3.(4)将t 1=33,t 2=3代入直线参数方程⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,得A 点坐标为⎝ ⎛⎭⎪⎫12,332,B 点坐标为⎝ ⎛⎭⎪⎫-52,32. 题型三 圆的参数方程及其应用如果取半径绕原点O 逆时针旋转的转过的角度θ为参数,圆x 2+y 2=r 2对应的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.同理,圆(x -x 0)2+(y -y 0)2=r 2对应的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).圆的参数方程对于需要将圆上点的两个坐标分别表示,代入计算的问题比较方便. 【例5】 圆的直径AB 上有两点C 、D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.分析 本题应考虑数形结合的方法,因此需要先建立平面直角坐标系.将P 点坐标用圆的参数方程的形式表示出来,θ为参数,那么|PC |+|PD |就可以用只含有θ的式子来表示,再利用三角函数等相关知识计算出最大值.解 以AB 所在直线为x 轴,以线段AB 的中点为原点建立平面直角坐标系.因为|AB |=10,所以圆的参数方程为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数).因为|AC |=|BD |=4,所以C ,D 两点的坐标为C (-1,0),D (1,0).因为点P 在圆上,所以可设点P 的坐标为(5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2 +(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2 θ.当cos θ=0时,(|PC |+|PD |)max =52+52=226. ∴|PC |+|PD |的最大值为226.【反思感悟】 解题时将所求式子和图形联系起来,利用圆的参数方程表示P 点坐标,结合三角函数的值域进行计算.5.已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎨⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2. ∴x 2+y 2的最大值为11+62, 最小值为11-6 2.1.求直线l 1:⎩⎨⎧x =1+t ,y =-5+3t (t 为参数)和直线l 2:x -y -23=0的交点P 的坐标,及点P 与Q (1,-5)的距离.解 将⎩⎨⎧x =1+t ,y =-5+3t 代入x -y -23=0,得t =23,∴P (1+23,1),而Q (1,-5), 得|PQ |=(23)2+62=4 3.2.已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解 (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.3.已知椭圆的中心在原点,焦点在y 轴上且长轴长为4,短轴长为2,直线l 的参数方程为⎩⎨⎧x =t ,y =m +2t (t 为参数).当m 为何值时,直线l 被椭圆截得的弦长为6?解 椭圆方程为y 24+x 2=1,化直线参数方程⎩⎨⎧x =t ,y =m +2t 为⎩⎪⎨⎪⎧x =55t ′,y =m +255t ′ (t ′为参数). 代入椭圆方程得⎝ ⎛⎭⎪⎫m +255t ′2+4⎝ ⎛⎭⎪⎫55t ′2=4 ⇔8t ′2+45mt ′+5m 2-20=0.当Δ=80m 2-160m 2+640=640-80m 2>0, 即-22<m <22, 方程有两不等实根t ′1、t ′2,则弦长为|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=640-80m 28,依题意知640-80m 28=6,解得m =±455.[P 30思考交流]1.经过两点Q (1,1),P (4,3)的直线的参数方程.如果应用共线向量的充要条件来求,方程及参数的含义分别是什么?答 在直线PQ 上任取一点M (x ,y ),PM→=(x -1,y -1),QM →=(x -4,y -3),∵P 、Q 、M 三点共线,∴PM→∥QM →,∴PM →=tQM →,⎩⎪⎨⎪⎧x -1=t (x -4),y -1=t (y -3),化简为⎩⎪⎨⎪⎧x =1-4t 1-t,y =1-3t 1-t,此即为过P 、Q 两点的直线的参数方程.参数t 的含义是有向线段PM→、QM →的比值.2.比较直线的参数方程与普通方程体会各自的优势.答 直线的普通方程直观地反映了变量x、y 之间的关系,方程是唯一的. 直线的参数方程中反映了变量x 、y 分别随参数的变化而变化的规律.方程是不唯一的,随参数的选取而有所不同.[P 33思考交流]给定参数方程⎩⎨⎧x =a +r cos α,y =b +r sin α其中a 、b 是常数. 讨论下列问题:(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么?(2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?答 (1)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数α>(x -a )2+(y -b )2=r 2. 其中r 为常数,表示以(a ,b )为圆心,r 为半径的圆.(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数t >x -a y -b =tan α.整理得x -tan α·y +b ·tan α-a =0,其中a 、b 、tan α为常数.方程为过点(a ,b ),斜率为1tan α的直线.【规律方法总结】1.利用直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(α为参数)中参数的几何意义,在解决直线与曲线交点问题时,可以方便地求出相应的距离.2.直线的参数方程有不同的形式,可以允许参数t 没有明显的几何意义,在直线与圆锥曲线的问题中,利用参数方程有时可以简化计算.一、选择题1.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t(t 为参数),则直线的斜率为( ) A.23 B.-23C.32D.-32 解析 k =y -2x -1=-3t 2t =-32. 答案 D2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.答案 B3.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A.(3,-3)B.(-3,3)C.(3,-3)D.(3,-3)解析 ⎝ ⎛⎭⎪⎫1+12t 2+⎝⎛⎭⎪⎫-33+32t 2=16, 得t 2-8t +12=0,t 1+t 2=8,t 1+t 22=4, 中点为⎩⎪⎨⎪⎧x =1+12×4,y =-33+32×4,⇒⎩⎪⎨⎪⎧x =3,y =- 3. 答案 D4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14B.214C. 2D.2 2解析 直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0.圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22= 2.又圆C 的半径r =2,因此直线l 被圆C 截得的弦长为2r 2-d 2=2 2. 故选D.答案 D5.直线⎩⎨⎧x =t cos α,y =t sin α (t 为参数)与圆⎩⎨⎧x =4+2cos θ,y =2sin θ(θ为参数)相切,则直线的倾斜角为( )A.π6或5π6B.π4或5π6C.π3或2π3D.-π6或-5π6 解析 直线方程为y =tan α·x ,圆为:(x -4)2+y 2=4,利用图形可知直线的倾斜角为π6或56π.答案 A二、填空题6.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________. 解析 ∵x =2+22t ,∴22t =x -2,代入y =1+22t ,得y =x -1,即x -y -1=0.答案 x -y -1=07.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________. 解析 直线为x +y -1=0,圆心到直线的距离d =12=22,弦长d =2 22-⎝ ⎛⎭⎪⎫222=14. 答案 148.经过点P (1,0),斜率为34的直线和抛物线y 2=x 交于A 、B 两点,若线段AB 中点为M ,则M 的坐标为________.解析直线的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =35t (t 是参数),代入抛物线方程得9t 2-20t -25=0.∴中点M 的相应参数为t =12×209=109.∴点M 的坐标是⎝ ⎛⎭⎪⎫179,23. 答案 ⎝ ⎛⎭⎪⎫179,23 9.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t ,y =t +1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.解析 化极坐标方程为直角坐标方程,化参数方程为普通方程,联立直线l 和曲线C 的方程,求出交点A ,B 的坐标,利用两点间的距离公式求解.由ρ(sin θ-3cos θ)=0,得ρsin θ=3ρcos θ,则y =3x .由⎩⎪⎨⎪⎧x =t -1t ,y =t +1t ,得y 2-x 2=4. 由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4,可得⎩⎪⎨⎪⎧x =22,y =322或⎩⎪⎨⎪⎧x =-22,y =-322,不妨设A ⎝ ⎛⎭⎪⎫22,322,则B ⎝ ⎛⎭⎪⎫-22,-322, 故|AB |=⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5. 答案 2 5三、解答题10.直线过点A (1,3),且与向量(2,-4)共线.(1)写出该直线的参数方程;(2)求点P (-2,-1)到此直线的距离.解 (1)设直线上任意一点坐标为(x ,y ),则(x ,y )=(1,3)+t (2,-4). ∴直线的参数方程为⎩⎨⎧x =1+2t ,y =3-4t . (2)将参数方程化为普通方程为2x +y -5=0,则|-4-1-5|5=25, ∴点P (-2,-1)到此直线的距离是2 5.11.经过点A ⎝ ⎛⎭⎪⎫-3,-32,倾斜角为α的直线l 与圆x 2+y 2=25相交于B ,C 两点. (1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程;(3)当|BC |=8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程.解 取AP =t 为参数(P 为l 上的动点),则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α,代入x 2+y 2=25,整理,得t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立.∴方程必有相异两实根t 1,t 2,且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554.(1)|BC |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =9(2cos α+sin α)2+55.(2)∵A 为BC 中点,∴t 1+t 2=0,即2cos α+sin α=0,∴tan α=-2.故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0.(3)∵|BC |=9(2cos α+sin α)2+55=8, ∴(2cos α+sin α)2=1,∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0.(4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为⎩⎪⎨⎪⎧x =-3+32cos α(2cos α+sin α),y =-32+32sin α(2cos α+sin α)(0≤α<π), ∴⎩⎪⎨⎪⎧x +32=32⎝ ⎛⎭⎪⎫cos 2α+12sin 2α,y +34=32⎝ ⎛⎭⎪⎫sin 2α-12cos 2α.∴⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +342=4516.即点M 的轨迹是以⎝ ⎛⎭⎪⎫-32,-34为圆心,以354为半径的圆.。
高中数学:直线和圆的方程知识点总结1. 引言高中数学中,直线和圆的方程是重要的知识点。
理解直线和圆的方程能够帮助我们准确描述和解决几何问题。
本文将总结和介绍直线和圆的方程的相关知识点。
2. 直线的方程2.1. 点斜式方程直线的点斜式方程是直线方程的一种常见形式。
给定直线上一点P (x₁, y₁) 和直线的斜率 k,点斜式方程可以表示为:y - y₁ = k(x - x₁)其中,(x, y) 表示直线上任意一点。
点斜式方程可以方便地描述直线的位置和方向。
2.2. 截距式方程直线的截距式方程是直线方程的另一种常见形式。
给定直线与x轴和y轴的截距分别为 a 和 b,截距式方程可以表示为:x/a + y/b = 1截距式方程可以直观地描述直线与坐标轴的交点。
2.3. 一般式方程直线的一般式方程是直线方程的一种标准形式。
给定直线上任意一点的坐标 (x, y) 和直线的系数 A、B、C,一般式方程可以表示为:Ax + By + C = 0一般式方程可以用于判断两条直线的位置关系。
3. 圆的方程3.1. 标准方程圆的标准方程是圆的方程的常见形式。
给定圆心坐标 (h, k) 和半径 r,标准方程可以表示为:(x - h)² + (y - k)² = r²标准方程可以方便地描述圆的位置和形状。
3.2. 参数方程圆的参数方程是圆的方程的另一种常见形式。
给定圆心坐标 (h, k) 和半径 r,参数方程可以表示为:x = h + rcosθy = k + rsinθ其中,θ 是圆上任意一点的极角。
参数方程可以用于描述圆上的点的坐标。
3.3. 一般方程圆的一般方程是圆的方程的一种一般形式。
给定圆心坐标 (h, k) 和半径 r,一般方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E、F 是圆的参数。
一般方程可以用于推导标准方程或参数方程。
4. 总结直线和圆的方程是高中数学中的重要知识点。
一道直线和圆的参数方程问题解析
以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,5)-,点M 的极坐标为(4,)2π
,若直线l 过点P ,且倾斜角为3
π,圆C 以M 为圆心,4为半径。
(1)求直线l 的参数方程和圆C 的极坐标方程;
(2)试判定直线l 和圆C 的位置关系。
解:(1)由点M 的极坐标为(4,)2π
,根据极坐标与直角坐标互化公式,可得M 的直角坐标为(0,4),
直线l 的参数方程为1cos ,5sin x t y t θθ
=+⎧⎨=-+⎩,(t 为参数)。
圆C 的直角坐标方程为22(4)16x y +-=,极坐标方程为8cos(
)2πρθ=-即8sin ρθ=。
(2)直线l 的方程为51)y x +-50y --=,
圆C 的直角坐标方程为22(4)16x y +-=,
由圆心(0,4)到直线l 的距离942d +=
=>可知,直线和圆相离。