(完整版)高中物理磁场部分难题专练(非常好)

  • 格式:doc
  • 大小:779.03 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.如图所示,带正电的物块A放在不带电的小车B上,开始时都静止,处于垂直纸面向里的匀强磁场中.t=0时加一个水平恒力F向右拉小车B,t=t1时A相对于B开始滑动.已知地面是光滑的.AB间粗糙,A带电量保持不变,小车足够长.从t=0开始A、B的速度﹣时间图象,下面哪个可能正确()

A.B.C.D.

解答:解:分三个阶段分析本题中A、B运动情况:

开始时A与B没有相对运动,因此一起匀加速运动.A所受洛伦兹力向上,随着速度的增加而增加,对A根据牛顿第二定律有:f=ma.即静摩擦力提供其加速度,随着向上洛伦兹力的增加,因此A与B之间的压力减小,最大静摩擦力减小,当A、B之间的最大静摩擦力都不能提供A的加速度时,此时AB将发生相对滑动.

当A、B发生发生相对滑动时,由于向上的洛伦兹力继续增加,因此A与B之间的滑动摩擦力减小,故A的加速度逐渐减小,B的加速度逐渐增大.

当A所受洛伦兹力等于其重力时,A与B恰好脱离,此时A将匀速运动,B将以更大的加速度匀加速运动.

综上分析结合v﹣t图象特点可知ABD错误,C正确.故选C.

3.如图所示,纸面内有宽为L水平向右飞行的带电粒子流,粒子质量为m,电量为+q,速率为v0,不考虑粒子的重力及相互间的作用,要使粒子都汇聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的

形状及对应的磁感应强度可以是哪一种()(其中B0=,A、C、D选项中曲线均为半径是L 的圆弧,B 选项中曲线为半径是的圆)

A.B.C.D.

解答:解:由于带电粒子流的速度均相同,则当飞入A、B、C这三个选项中的磁场时,它们的轨迹对应的半径均相同.唯有D选项因为磁场是2B0,它的半径是之前半径的2倍.然而当粒子射入B、C两选项时,均不可能汇聚于同一点.而D选项粒子是向上偏转,但仍不能汇聚一点.所以只有A选项,能汇聚于一点.

故选:A

4.如图所示,匀强磁场的方向竖直向下.磁场中有光滑的水平桌面,在桌面上平放

着内壁光滑、底部有带电小球的试管.试管在水平拉力F作用下向右匀速运动,带电

小球能从管口处飞出.关于带电小球及其在离开试管前的运动,下列说法中正确的是

()

A.小球带负电

B.洛伦兹力对小球做正功

C.小球运动的轨迹是一条抛物线

D.维持试管匀速运动的拉力F应增大

解答:解:A、小球能从管口处飞出,说明小球受到指向管口洛伦兹力,根据左手定则判断,小球带正电.故A 错误.

B、洛伦兹力总是与速度垂直,不做功.故B错误.

C、设管子运动速度为v1,小球垂直于管子向右的分运动是匀速直线运动.小球沿管子方向受到洛伦兹力

的分力F1=qv1B,q、v1、B均不变,F1不变,则小球沿管子做匀加速直线运动.与平抛运动类似,小球运动的轨迹是一条抛物线.故C正确.

D、设小球沿管子的分速度大小为v2,则小球受到垂直管子向左的洛伦兹力的分力F2=qv2B,v2增大,则

F2增大,而拉力F=F2,则F逐渐增大.故D正确.故选CD.

5.如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场.已知OP之间的距离为d,则带电粒子()

A.在电场中运动的时间为

B.在磁场中做圆周运动的半径为 d

C.入磁场至第二次经过x轴所用时间为

D.自进入电场至在磁场中第二次经过x轴的时间为

解答:解:根据题意作出粒子的运动轨迹,如图所示:

A、粒子进入电场后做类平抛运动,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,

所以v==v x=v0tan45°=v0沿x轴方向有:x=所以

OA=2OP=2d在垂直电场方向做匀速运动,所以在电场中运动的时间为:t1=,故A正确;

B、如图,AO1为在磁场中运动的轨道半径,根据几何关系可知:

AO1=,故B错误;

C、粒子从A点进入磁场,先在第一象限运动个圆周而进入第四象限,后经过半个圆周,第二

次经过x轴,

所以自进入磁场至第二次经过x轴所用时间为t2=,故C错误;

D、自进入电场至在磁场中第二次经过x轴的时间为t=t1+t2=,故D正确.故选

AD

6.如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A 点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°).求:

(1)电子进入圆形磁场区域时的速度大小;

(2)0≤x≤L区域内匀强电场场强E的大小;

(3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式.

解答:

解:(1)电子在电场中作类平抛运动,射出电场时,如图1所示.

由速度关系:解得

(2)由速度关系得在竖直方向解得

(3)在磁场变化的半个周期内粒子的偏转角为60°,根据几何知识,在磁场变化的半个周期内,粒子在x轴方向上的位移恰好等于R.粒子到达N点而且速度符合要求的空间条件是:2nR=2L

电子在磁场作圆周运动的轨道半径解得(n=1、2、3…)

若粒子在磁场变化的半个周期恰好转过圆周,同时MN间运动时间是磁场变化周期的整数倍时,可使粒子到达N点并且速度满足题设要求.应满足的时间条件:

解得T的表达式得:(n=1、2、3…)

7.如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调的匀强磁场.M、N为两块中心开有小孔的距离很近的极板,板间距离为d,每当带电粒子经过M、N板时,都会被加速,加速电压均为U;每当粒子飞离电场后,M、N板间的电势差立即变为零.粒子在电场中一次次被加速,动能不断增大,而绕行半径R 不变.当t=0时,质量为m、电荷量为+q的粒子静止在M板小孔处.(1)求粒子绕行n圈回到M板时的速度大小v n;

(2)为使粒子始终保持在圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时磁感应强度B n的大小;(3)求粒子绕行n圈所需总时间t总.

解答:

解:(1)粒子绕行一圈电场做功一次,由动能定理:

即第n次回到M板时的速度为:

(2)绕行第n圈的过程中,由牛顿第二定律:得

(3)粒子在每一圈的运动过程中,包括在MN板间加速过程和在磁场中圆周运动过程.

在MN板间经历n次加速过程中,因为电场力大小相同,故有:

即加速n次的总时间

而粒子在做半径为R的匀速圆周运动,每一圈所用时间为,由于每一圈速度不同,所以每一圈所需时间也不同.

第1圈: