有理数基础知识讲解
- 格式:doc
- 大小:631.50 KB
- 文档页数:7
第一讲《有理数》《数轴》引言有理数是我们常见的一类数,包括整数和分数。
它们在数学中具有重要的地位,因为它们可以覆盖我们日常生活中的绝大部分数量关系。
在本讲中,我们将介绍有理数的定义、性质和表示方法,以及数轴的概念和使用方法。
一、有理数的定义和性质1.1 定义有理数是可以表示为两个整数的比值的数,其中分母不为零。
整数是有理数的特殊情况,可以看作分母为1的有理数。
有理数可以是正数、负数或零。
1.2 性质有理数有以下性质:•有理数的加法、减法和乘法运算仍然得到有理数。
•有理数的除法运算结果可能是有理数,也可能是无理数(不能表示为两个整数的比值)。
二、有理数的表示方法有理数可以用分数、整数或小数形式表示。
2.1 分数表示法分数是有理数最常见的表示形式,它由一个分子和一个分母组成,分子表示被分割的份数,分母表示总共的份数。
分数可以是正数、负数或零。
2.2 整数表示法整数是没有小数部分的有理数。
它可以是正整数、负整数或零。
2.3 小数表示法小数是有理数的一种特殊表示形式。
它可以有有限的数字部分和无限的循环部分,也可以是有限的数字部分。
三、数轴的概念和使用方法3.1 数轴的定义数轴是由一条直线和一个固定原点组成的图形,用来表示数的大小和位置关系。
原点通常表示零,正方向表示正数,负方向表示负数。
3.2 数轴的使用方法数轴可以用来表示有理数的位置和大小关系。
我们可以通过在数轴上画点、画线段等方式来表示有理数的位置。
数轴上两个数之间的距离,即两个数的差的绝对值,表示它们之间的差别大小。
有理数是我们日常生活中非常重要的数,它包括整数和分数。
有理数可以用分数、整数或小数形式表示,可以在数轴上表示它们的位置和大小关系。
了解和掌握有理数的定义、性质和表示方法,以及数轴的概念和使用方法,对我们的数学学习和实际应用都非常有帮助。
参考文献:•《数学教学参考书》•《高中数学学科教学大纲》。
有理数知识点总结归纳数学是一门严谨而又精确的学科,有理数作为数学的基础之一,其在数学中起着重要的作用。
在本文中,将对有理数的一些常见知识点进行总结归纳,以便读者更好地理解和掌握这一概念。
一、有理数的定义与表达方式有理数由整数和分数两部分组成,可以用分数形式或小数形式表示。
分数形式为两个整数的比值,其中分子为整数,分母为非零整数;小数形式为无限循环小数或有限小数。
二、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。
对于加法和乘法,有理数符合交换律、结合律和分配律;对于减法和除法,有理数符合减法的延伸性和除法的唯一性。
三、有理数的大小比较有理数的大小比较可以通过求差、求商或化简等方法进行。
求差法即将两个有理数相减;求商法即将两个有理数相除;化简法即将两个有理数化成相同的分母,再进行大小比较。
四、有理数的奇偶性判断有理数的奇偶性判断可以通过其分子和分母的奇偶性进行推导。
当分子为偶数、分母为奇数或分子为奇数、分母为偶数时,有理数为偶数;当分子为奇数、分母为奇数时,有理数为奇数。
五、有理数的相反数与绝对值有理数的相反数是指与该有理数的绝对值相等,但符号相反的有理数。
有理数的绝对值是指该有理数去掉符号后的值。
相反数和绝对值都是有理数的重要概念,在四则运算和大小比较中经常用到。
六、有理数的约分与化简有理数的约分是指将有理数的分子和分母同时除以它们的最大公因数,使得有理数的分数形式缩小为最简形式。
有理数的化简是指将有理数的小数形式进行处理,使其变为简洁而易读的形式。
七、有理数在实际生活中的应用有理数在实际生活中有着广泛的应用。
例如,有理数可以用来表示温度、时间、距离、速度等实际量,方便我们对这些量进行计算、比较和分析。
此外,有理数还可以应用于金融、经济、科学等领域,帮助我们解决实际问题。
有理数作为数学中的基础概念,掌握它的定义和相关知识点对于学好数学来说至关重要。
通过对有理数的定义、四则运算、大小比较、奇偶性判断、相反数与绝对值、约分与化简以及在实际生活中的应用进行总结归纳,读者可以更好地理解和掌握有理数的概念和运用,为日后的学习打下坚实的基础。
七年级数学有理数的知识点在七年级数学中,有理数是一个重要的知识点。
本文将介绍有理数的概念、有理数的加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点。
一、有理数的概念有理数是指可以表示为两个整数的比的数,其中分母不为0。
有理数包括正有理数、负有理数以及0。
可以用分数形式表示,例如2/3、-3/4等,也可以用小数表示。
二、有理数的加减乘除1.有理数的加法:同号相加,异号相减,保留符号取绝对值相加。
例如:3+5=8,-3+(-5)=-8,-3+5=2,-3-(-5)=2。
2.有理数的减法:减去一个数等于加上这个数的相反数。
例如:3-5=3+(-5)=-2,-3-(-5)=-3+5=2。
3.有理数的乘法:符号相同为正,符号不同为负,绝对值相乘。
例如:3×4=12,-3×4=-12,-3×(-4)=12。
4.有理数的除法:除数不为0,符号相同为正,符号不同为负,绝对值相除。
例如:8÷2=4,-8÷2=-4,-8÷(-2)=4。
三、负数的概念1.负数的概念:小于0的整数即为负数。
例如:-1、-2、-3等。
2.相反数:两个数互为相反数,当且仅当它们的和等于0。
例如:2和-2互为相反数。
3.绝对值:一个数的绝对值,表示这个数到0的距离。
例如:|-3|=3,|5|=5。
四、有理数的比较1.相等与不等:两个有理数相等,当且仅当它们的差等于0。
例如:-4+6=2,所以-4和6不相等。
2.大小比较:可以用数轴比较大小,也可以比较绝对值。
例如:-5<2,|3|>|-5|。
总之,在数学学习中,有理数是一个非常基础且重要的知识点。
希望这篇文章能够对大家更好地掌握有理数的概念、加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点提供一定的帮助。
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
§1 数 轴、相 反 数【基础知识】:一、数轴的概念: 规定了 原点 、 正方向 和 单位长度 的直线叫做数轴。
注意:(1) 原点 、正方向和 单位长度是数轴的三要素。
规定从数轴的原点向右(或上)为正方向,从数轴的原点向左(或下)为负方向。
同时,从数轴的原点向右(或上)的部分叫做数轴的正半轴,从数轴的原点向左(或下)的部分叫做数轴的负半轴。
(2)单位长度要一致。
(3)如果a 是正数,则数轴上表示数a 的点在原点的右边,到原点的距离是a 个单位;如果a 是负数,则数轴上表示数a 的点在原点的左边,到原点的距离是︱a ︱个单位;(4)数轴的正半轴上的点对应的数是正数,原点对应的数是0,负半轴上的点对应的数是负数; 数轴的正半轴和原点对应的数是非负数,负半轴和原点对应的数是非正数。
二、相反数1.相反数:只有符号不同的两个数称互为相反数, 如211 和-211 互为相反数.即211是-211 的相反数. -211是211的相反数. 我们还规定: 0的相反数是0.2.相反数的几何意义:在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.3. 相反数的表示:a 的相反数是 。
【即:通常在一个数的前面添上“-”号,表示原来那个数的相反数,在一个数的前面添上“+”号,仍表示原来那个数。
】(这是化简一个数的符合的依据)0的相反数是 。
-0= ;+0= 。
注意:(1)一个数的相反数的相反数是它的本身。
(2)一般地,奇数个负号为负,偶数个负号为正;4.互为相反数的两个数的特性:(1)它们的和等于零,(2)非零数的相反数与原数的商等于-1.(3)当0>a 时,0<-a ;当0<a 时,0>-a ;当0=a 时,0=-a【基础巩固训练】一、选择题1.图中所画的数轴,正确的是( )-1A 1B -1210C D23-1-2-30D C B A 2.在数轴上,原点及原点左边的点所表示的数是( )A .正数B .负数C .非负数D .非正数3.与原点距离是2.5个单位长度的点所表示的有理数是( )A .2.5B .-2.5C .±2.5D .这个数无法确定4.关于-32这个数在数轴上点的位置的描述,正确的是( ) A .在-3的左边 B .在3的右边 C .在原点与-1之间 D .在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-96.下列说法正确的是( )A .带“+号”和带“-”号的数互为相反数B .数轴上原点两侧的两个点表示的数是相反数C .和一个点距离相等的两个点所表示的数一定互为相反数D .一个数前面添上“-”号即为原数的相反数7.如图所示,表示互为相反数的点是( ) A .点A 和点D B .点B 和点C; C .点A 和点C D .点B 和点D8.下列说法错误的是( )A .+(-3)的相反数是3;B .-(+3)的相反数是3C .-(-8)的相反数是-8;D .-(+18)的相反数是8 9.若a 的相反数是b ,则下列结论错误的是( )A .a =-bB .a +b=0;C .a 和b 都是正数D .无法确定a ,b 的值10.一个数的相反数大于它本身,这个数是( )A .有理数B .正数C .负数D .非负数11.a -b 的相反数是( ) A .a+b B .-(a+b ) C .b-a D .-a -b12.下列各数+(-4),-(14),-[+(-14)],+[-(+14)],+[-(-4)]中,正数有( ) A .0个 B .2个 C .3个 D .4个13.如果a 与-3互为相反数,那么a 等于( )A .3B .-3C .13D .-1314、下列说法错误的是( )(A)6是-6的相反数; (B)-6是-(-6)的相反数;(C)-(+8)与+(-8)互为相反数; (D)+(-8)与-(-8)互为相反数二、填空题1.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.2.数轴上到原点的距离5个单位的点有个,分别表示的有理数是。
第一章:有理数一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-"去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别.②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;2、有理数的概念及分类:整数和分数统称为有理数.有理数的分类如下:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数; ②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;3、数轴:标有原点、正方向和单位长度的直线叫作数轴。
数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数—a 的点在原点的左边,与原点的距离是a 个单位长度。
有理数的概念与运算有理数是数学中的一类数,是整数和分数的统称。
有理数的概念与运算是数学的基础知识之一,对于理解和应用数学有着重要的意义。
本文将就有理数的概念、有理数的分类、有理数的四则运算以及有理数的应用进行探讨。
一、有理数的概念有理数是指可以表达为两个整数的比值的数,包括整数和分数。
有理数可以用分数表示,并且可以用有限小数或无限循环小数表示。
例如,-3、1/2、-0.75都属于有理数。
有理数的分类根据有理数的大小,可以将有理数分为正有理数、负有理数和零三类。
正有理数是指大于零的有理数,例如1/2、0.75等;负有理数是指小于零的有理数,例如-3、-0.5等;零是不小于也不大于零的有理数,即0。
二、有理数的四则运算1. 加法运算有理数的加法运算遵循相同符号相加、不同符号相减的原则。
即同号相加取符号、异号相减取绝对值后取符号。
例如:2/3 + 1/3 = 3/3 = 1-5 + 3 = -22. 减法运算有理数的减法运算可以转化为加法运算。
即减去一个数等于加上其相反数。
例如:1/2 - 1/4 = 1/2 + (-1/4) = 1/2 + (-1/2) = 03. 乘法运算有理数的乘法运算可以直接按照分数的乘法规则进行运算。
即分别对分子和分母进行相乘。
例如:-3/4 × 2/3 = (-3×2)/(4×3) = -6/12 = -1/24. 除法运算有理数的除法运算可以转化为乘法运算。
即除以一个数等于乘以其倒数。
例如:-3/4 ÷ 2/3 = (-3/4) × (3/2) = -3/8三、有理数的应用1. 数轴表示有理数可以用数轴表示,便于直观理解和比较大小。
在数轴上,正有理数位于原点右侧,负有理数位于原点左侧,零位于原点上。
2. 比较大小有理数的大小可以通过大小关系符号进行比较。
其中,大于号(>)表示大于,小于号(<)表示小于,等于号(=)表示相等。
有理数知识点总结归纳有理数是数学中的一个重要概念,是整数和分数的统称。
在数学的学习中,对于有理数的理解和运算是基础中的基础。
本文将对有理数的相关知识点进行总结和归纳,帮助读者更好地理解和掌握有理数的概念与运算。
一、有理数的定义有理数指的是可以写成两个整数的比例形式的数,即分数,同时还包括所有整数。
有理数可以表示为 p/q的形式,其中p和q是整数,且q不等于零。
二、有理数的分类1. 正有理数:即大于零的有理数,如1/4, 2/3, 5/7等。
2. 负有理数:即小于零的有理数,如-1/3, -2/5, -4/7等。
3. 零:即整数与分数中的0,如0/1, 0/2, 0/3等。
三、有理数的比较1. 相反数的比较:对于两个有理数a和-b,如果a > -b,则a大于-b;如果a = -b,则a等于-b;如果a < -b,则a小于-b。
2. 同号数的比较:对于两个同号的有理数a和b,如果a > b,则a大于b;如果a = b,则a等于b;如果a < b,则a小于b。
3. 异号数的比较:对于一个正有理数和一个负有理数,正数永远大于负数。
四、有理数的运算1. 加法运算:对于两个有理数a和b,可以直接将它们的分母取公倍数,然后按照分数的加法规则进行计算。
例如:3/4 + 2/5 = (3*5)/(4*5) + (2*4)/(5*4) = 15/20 + 8/20 = 23/202. 减法运算:减法的原理类似于加法,只需要将第二个数改为相反数后进行加法运算。
例如:3/4 - 2/5 = 3/4 + (-2/5) = 15/20 + (-8/20) = 7/203. 乘法运算:乘法的规则是将两个有理数的分子乘积作为结果的分子,分母乘积作为结果的分母。
例如:3/4 * 2/5 = (3*2)/(4*5) = 6/20 = 3/104. 除法运算:除法的规则是将第一个数作为被除数,第二个数的倒数作为除数,然后进行乘法运算。
有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。
在数学中,有理数的性质和运算规律是我们学习的基础,下面将从有理数的定义、性质和运算规律三个方面进行总结。
一、有理数的定义有理数是可以用两个整数的比表示出来的数,即有理数是整数和分数的统称。
其中,整数是有理数的一种特殊形式,而分数则是整数的推广。
有理数的特点是可以用分数表示为有限小数或无限循环小数。
二、有理数的性质1. 有理数可以进行比较大小。
对于任意两个有理数a和b,有且只有以下三种情况之一成立:a<b,a=b,a>b。
2. 有理数可以进行加、减、乘、除运算。
有理数的加法、减法、乘法、除法运算仍然是有理数。
3. 有理数的加法和乘法满足交换律、结合律和分配律。
三、有理数的运算规律1. 加法运算规律:对于任意三个有理数a、b、c,有(a+b)+c=a+(b+c);a+b=b+a。
2. 减法运算规律:对于任意三个有理数a、b、c,有(a-b)+c=a+(b-c);a-b=-(b-a)。
3. 乘法运算规律:对于任意三个有理数a、b、c,有(a*b)*c=a*(b*c);a*b=b*a。
4. 除法运算规律:对于任意三个非零有理数a、b、c,有(a/b)/c=a/(b/c);a/b=(c/b)*a。
5. 分配律:对于任意三个有理数a、b、c,有a*(b+c)=a*b+a*c。
有理数是数学中的基本概念之一,它在实际生活中有着广泛的应用。
比如,在商业活动中,我们需要进行货币的加减乘除运算,这就涉及到有理数的运算规律;在科学研究中,我们需要对数据进行分析和比较,这也需要用到有理数的性质。
有理数是数学中重要的概念之一,它包括了整数和分数,并具有比较大小和四则运算的性质。
掌握有理数的定义、性质和运算规律,对于我们学习数学和应用数学知识都具有重要意义。
第一章有理数基本内容结构本章内容:(1)有理数的相关概念,包括数轴、相反数、绝对值等;(2)有理数的运算,包括有理数的加、减、乘、除和乘方运算等;(3)科学记数法和近似数.本章重点:(1)有理数的相关概念,能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义;(2)有理数的运算,能进行有理数的加、减、乘、除、乘方运算和简单的混合运算.本章难点:负数概念的建立以及对有理数运算法则的理解.本章考情:本章在中考题中主要考查有理数的有关概念和科学记数法,题型主要以选择题、填空题为主. 本章知识是后续学习的基础,所以在对其他内容的考查中也会包含有理数的知识.学习方法指导1. 有理数的有关概念及运算与小学学过的数的概念及运算联系紧密,因此注意应用类比的方法学习. 例如,对负数的认识离不开对已学过的数的认识;有理数的运算,当符号确定后,就归结为已学过的运算.2. 注重数学思想的应用,体会数形结合、分类讨论、转化、类比等数学思想方法在本章学习中的应用.1.1 正数和负数本节概念与方法:正数和负数是具有相反意义的量.教学要求1.了解正数和负数的产生过程,体会数学与现实生活的联系.2.理解正数、负数和0的意义,会判断一个数是正数还是负数.13.能用正数、负数表示生活中具有相反意义的量.提前预习内容1.自然数的认识:自然数起源于数数,0是最小的自然数,没有最大的自然数.2.自然数与整数的关系:自然数都是整数,但整数不一定是自然数.3.分数:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数.知识点突破知识点1 正数与负数的定义1.像2%,4,3,5这样大于0的数叫做正数. 有时为了明确所表达的意义,要在正数前面加上“+”(正)号,如+2,+0.7,17+,….2.像-3,-2.7%,-4.5这样在正数前面加上“-”(负)号的数叫做负数.提示:小于零的数是负数.3.0既不是正数,也不是负数,不要忽视零的这一特性.注意:(1)一个数前面的“+”或“-”号叫做这个数的符号,正数前面的“+”号一般省略不写,负数前面的“-”号不能省略不写.(2)0的意义:0不仅表示“没有”,它还是正数与负数的分界.例1 判断下列各数,哪些是正数,哪些是负数.+2014,-3.1,12,10.58,-9,+1,-45.6,0,1100+,-7%,114-.分析:可根据正数、负数的定义判断一个数是正数还是负数.解:正数有:+2014,12,10.58,+1,1100+.负数有:-3.1,-9,-45.6,-7%,114-.知识点2 用正数、负数表示具有相反意义的量在生产、生活中常常会遇到一些具有相反意义的量,例如“收入1000元与支出500元”“向东走2 km与向西走3 km”“上升1.5 m与下降0.8 m”等.为了更好地区分这些具有相反意义的量,我们把其中一种意义的量规定为正的,把另一种和它具有相反意义的量规定为负的.学习具有相反意义的量应注意两点:(1)它们表示的意义相反;(2)它们是同类量.提示:(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,2但习惯把“前进、上升,收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.例如:若规定收入1000元记作+1000元,则支出500元记作-500元;若规定上升1.5 m记作+1.5 m,则下降0.8 m记作-0.8 m.(2)具有相反意义的量一定是具体的数量.(3)具有相反意义的量中的两个量必须是同类量,如节约3吨汽油与浪费1吨水就不是具有相反意义的量.(4)具有相反意义的量是成对出现的,单独的一个量不能成为具有相反意义的量.具有相反意义的量,只要求意义相反,而不要求数量相等,如盈利3000元与亏损400元是具有相反意义的量.例2 (1)天气预报说某地12月某天的最高温度是零上5 ︒C,最低温度是零下3 ︒C,若规定零上温度为正,则零上5 ︒C可记作︒C,零下3 ︒C可记作︒C.(2)如果某蓄水池的水位比标准水位高2 m,记作+2 m,那么比标准水位低0.8 m应记作;恰好在标准水位应记作.(3)某地区的平均高度高于海平面310 m,记作海拔高度+310 m,则海拔高度-270 m 表示.解析:(1)因为规定零上温度为正,所以零下温度为负;(2)比标准水位高用正数表示,那么比标准水位低则用负数表示,恰好在标准水位上就用0表示;(3)高于海平面的海拔高度用正数表示,所以负数表示海拔高度低于海平面.答案:(1)+5(或5),-3;(2)-0.8 m,0 m;(3)低于海平面270 m.点拨:用正数和负数表示具有相反意义的量时,要明确“基准”.例3 长江某水文站的警戒水位为12 m,如果超过警戒水位1 m,记作+1 m,那么低于警戒水位0.60 m,记作m.观察某年8月1日至8月5日该水文站的水位记录表并回答问题.日期8月1日8月2日8月3曰8月4曰8月5日水位/m -0.80 0 0.38 0.50 0.96(1)哪一天的水位最高?最高水位是多少?(2)哪一天的水位最低?最低水位是多少?(3)在这五天中,有多少天的水位超过警戒水位?分析:在本题中负数表示低于警戒水位,正数表示超过警戒水位,由此可确定每天的水位,再进行比较即可.解:-0.60.(1)8月5日的水位最高,为12.96 m.(2)8月1日的水位最低,为11.20 m.(3)在这五天中,有三天的水位超过警戒水位.34规律总结:当题目中已明确给出“一种意义”的量对应的是正数还是负数时,我们就可判断“与之具有相反意义”的量所对应的是负数还是正数.题型分类剖析题型1 辨别正数和负数例1 在-5,0,2014,123-,13-,+0.03,154+,-1.23,π中,负数的个数为( ). A .8 B .6 C .4 D .3解析:根据负数的定义进行判断.注意对于正数和负数,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数,如+(-4)=-4不是正数,-(-2)=2不是负数.答案:C题型2 正数和负数的实际应用1.用具有相反意义的量表示行走问题中的量例2 文具店、书店和玩具店依次位于一条东西走向的大街上,文具店在书店西边20 m 处,玩具店在书店东边100 m 处,小明从书店沿街向东走了40 m ,接着又向东走了-60 m ,此时小明在( ).A .文具店B .玩具店C .文具店西40 m 处D .玩具店西60 m 处解析:把文具店、书店、玩具店的相对位置及小明的行走路线在图上表示出来,小明从书店出发沿街向东走了40 m ,到达M 处,接着又向东走了-60 m ,表示接着向西走了60 m ,所以小明向西走了60 m ,此时小明在文具店.答案:A方法归纳:图示法.图示法是将研究的问题用图表示出来,使其直观形象,便于理解问题内在联系的方法.例如,本题中用直线上的点表示位置,用线段的长表示距离,便可轻松地确定小明的位置.2.用正数、负数记录成绩例3 七年级(1)班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,将超过平均成绩的记为正,得到五名同学的成绩为-15分,-4分,0分,4分,15分.这五名同学的实际成绩分别是多少分?分析:以平均成绩为标准,负数表示该成绩低于平均成绩,0表示该成绩与平均成绩相同,正数表示该成绩高于平均成绩.解:-15分表示比平均成绩85分少15分,即70分;-4分表示比平均成绩少4分,即81分;0分表示和平均成绩相同,即85分;4分表示比平均成绩多4分,即89分;15分表示比平均成绩多15分,即100分.这五名同学的实际成绩分别是70分,81分,85分,89分,100分.方法归纳:为了计算方便,常把高于平均数、标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示.3.用正数、负数表示误差范围例 4 某饮料公司生产了一种瓶装饮料,外包装上印有“(600±30) mL”的字样,那么(600±30) mL表示什么含义?质检局抽查了5瓶该产品,容量分别为603 mL,611 mL,588 mL,568 mL,628 mL,就容量而言,问抽查的产品是否合格?解题关键:“(600±30) mL”隐含着产品合格的范围,即合格产品的容量在(600-30) mL与(600+30) mL之间,根据这个范围来判断抽查产品是否合格.解:(600±30) mL表示容量在(570~630) mL的产品都合格.抽查的5瓶饮料中只有568 mL比600 mL少了32 mL,属不合格,其余均合格.注意:正数和负数的分界是0,但并不是所有的分界都是0,如本题中的分界为600 mL.题型3 与正数、负数相关的表格信息题例 5 一个病人每天要测量五次体温,该病人某一天五次所测体温的变化情况(与前一次测量的体温比较,升高为正,降低为负,前一天最后一次测量的体温是38 ︒C)如下表:时间6:00 10:00 14:00 18:00 22:00 体温变化/︒C +1.1 +0.4 -1 +0.5 -0.1实际体温/︒C(1)完成上面的表格;(2)计算该病人这一天的平均体温;(3)用前一天最后一次测量的体温与这天的平均体温比较,你能判断出该病人的体温是上升还是下降吗?分析:(1)根据该病人一天的体温变化情况,结合正数和负数的表示方法,即可求出答案.(2)根据表中所给的数据,结合题意,即可求出该病人这一天的平均体温.(3)用该病人前一天最后一次测量的体温与病人这天的平均体温进行比较,即可得出答案.解:(1)完成表格如下:5时间6:00 10:00 14:00 18:00 22:00 体温变化/︒C +1.1 +0.4 -1 +0.5 -0.1实际体温/︒C +39.1 +39.5 +38.5 +39 +38.9(2)根据题意,得平均体温=(39.1+39.5+38.5+39+38.9)÷5=195÷5=39 ︒C.(3)∵前一天最后一次测量的体温是38 ︒C,这天的平均体温是39 ︒C,39 ︒C>38 ︒C,∴该病人的体温上升了.注意:本题中明确每次的基准温度是难点,只有第一次测量体温时的基准温度是38 ︒C,而后几次的基准温度均是前一次所测量的实际温度.题型4 正数、负数的规律探究题例6 观察下面依次排列的两组数,请按其规律写出后面的3个数,你能说出第15个数、第101个数、第2017个数分别是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,,,,…;(2)-1,12,-3,14,-5,16,-7,18,,,,….分析:仔细观察每组数的特点,尤其是符号的分布特点,从变化中发现一般规律.由第(1)题所给的依次排列的一组数中的前8个数可知:对于第n个数,当n是3的整数倍时,此数为+n;当n不是3的整数倍时,此数为-n;由第(2)题所给的依次排列的一组数中的前8个数可知:对于第n个数,当n为奇数时,此数为-n;当n为偶数时,此数为1n.解:(1)+9,-10,-11.这组数中的第15个数为+15,第101个数为-101,第2017个数为-2017.(2)-9,110,-11.这组数中的第15个数为-15,第101个数为-101,第2017个数为-2017.点拨:探索规律时,应全面分析题中所给的所有数据,要从符号和数两个方面进行观察,若是分数,还要分别观察分子和分母.要特别注意观察符号的变化规律,这样才能找到这组数的变化规律.中考考点对接考点归纳解读 1:正数和负数的定义,主要考查辨别一个数是正数还是负数,中考题中多以选择题和填空题的形式出现,题目较简单.解读 2:考查运用正数、负数表示具有相反意义的量或考查用正数、负数表示的数的实际意义,题型以选择题、填空题为主.6典型考题中考真题((2016·山东临沂中考·3分)四个数-3,0,1,2,其中负数是().A.-3 B.0 C.1 D.2解析:根据负数的定义来判断.答案:A考题点睛:中考真题和教材练习题均考查了依据正数、负数的定义来辨别正数或负数,需要注意的是0既不是正数也不是负数.中考真题(2016·广州中考·3分)中国人很早开始使用负数,在中国古代数学著作《九章算术》的“方程”一章就正式引入了负数,这在世界数学史上属首次.如果收入100元记作+100元,那么-80元表示().A.支出20元B.收入20元C.支出80元D.收入80元解析:在实际问题中,由于“收入”和“支出”的意义相反,因此在用正负数表示具有相反意义的量时,若收入100元记作+100元,那么-80元表示支出80元,所以选项C正确,答案:C.考题点睛:中考真题与教材练习题都考查了对用正数、负数表示具有相反意义的量的理解,其解决问题的思想方法完全相同,属基础题.小结与警示一、知识结构图示二、前车之鉴易误点1 误认为凡带有正号的数就是正数,凡带有负号的数就是负数.正数前面的“+”号有时可以省略,但省略“+”号后仍是正数;用字母表示数时,带有“+”号或省略“+”号的数不一定是正数,带有“-”号的数不一定是负数.提示:例题见“题型分类剖析”例1.易误点2 对“0”的含义理解不准确.例1 下列说法错误的是().7A.0是自然数B.0是整数C.0是偶数D.某地海拔高度为0 m表示某地没有海拔高度答案:D注意:小学阶段开始学习数的吋候,0表示没有,学习了负数后,0除了表示“没有”外,还是正数与负数的分界.本题D选项中对海拔高度0 m的理解错误,它并不是表示某地没有海拔高度,而是表示某地与海平面一样高.易误点3 对负数表示的意义理解不清.例2 如果上升3 m记作+3 m,那么-4 m表示什么意义?解:-4 m表示下降4 m.注意:本题易错答案为下降-4 m.产生错误的原因是用正数、负数表示具有相反意义的量时,对负数表示的意义理解不清.易误点4 用正数、负数表示具有相反意义的量时忽略了量的单位.例3 如果中午12点记作0时,下午3点记作+3时,那么上午9点记作.解析:中午12点记作0时,中午12点之后几小时记作正几时,则中午12点之前几小时记作负几时,上午9点是中午12点之前3小时,故用-3时表示.答案:-3时注意:把一个量去掉它后面的单位名称后,它就是一个数,而不是一个量了.本题易错答案为-3,因漏掉后面的单位而出错.综合练习1.如果规定每天上午10时记为0时,10时以前记为负,10时以后记为正,且以45分钟为1个时间单位,如9:15记为-1时,10:45记为1时,那么7:45应记为().A.3时B.-3时C.-2.15时D.-7.45时2.在一次跳远测试中,体育老师以达标成绩2.00 m为标准,将高于该成绩的记为正,低于该成绩的记为负.王非跳出了2.12 m,记为+0.12 m;何叶跳出了1.95 m,记为;张平跳出的成绩记为0 m,他实际跳的距离是.3.一个物体沿着东、西两个方向运动,若向东记为正,向西记为负,则:(1)向东运动2 m,记作,向西运动4 m,记作;(2)+3 m表示向运动m,-6 m表示向运动m;(3)物体原地不动时,记作m.4.(“典型例题分析”例4变式)如图所示,某食品包装盒上标有“净含量385 g±5 g”,则这盒食品的合格净含量范围是g~390 g.895.教室高3 m ,教室里课桌高0.8 m ,如果把桌面高度记作0 m ,那么教室顶部和地面的高度分别记作什么?如果把教室顶部的高度记作0 m ,那么桌面和地面的高度分别记作什么?6.(“题型分类剖析”例3变式)如果课桌高度比标准高度高2 mm 记作+2 mm ,那么比标准高度低3 mm 记作什么?现有5张课桌,量得它们的高度比标准高度分别高+1 mm ,-1 mm ,0 mm ,+3 mm ,-1.5 mm ,若规定课桌的高度比标准高度高不超过 2 mm ,低不超过 2 mm 就算合格,则上述5张课桌中有几张合格?1.2 有理数本节概念与方法:有理数,有理数的分类,数轴,相反数,绝对值,有理数的大小比较.教学要求1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小,能对有理数按一定标准进行分类.2.借助数轴理解相反数、绝对值的意义,掌握求一个有理数的相反数、绝对值的方法. 3.知道|a |(a 表示有理数)的含义. 4.初步感悟分类讨论思想和数形结合思想.提前预习内容1.几个定义:10正数:像2%,4,3.5这样大于0的数叫做正数.负数:像-3,-2.7%,-4.5这样在正数前面加上符号“-”(负)的数叫做负数. 非正数包括负数和0; 非负数包括正数和0.2.已学过的几类数:(1)正整数,如1,2,3,…; (2)0;(3)负整数,如 1,-2,-3,…;(4)正分数,如12,13,0.1,35,…; (5)负分数,如-0.5,23-,18-,….知识点突破知识点1 有理数的有关概念★ 整数包括正整数、0、负整数,如-3,-2,0,1,2,3等. ★ 分数包括正分数、负分数,如+113,0.18,-1.35,45-等. 分数都可以化为有限小数或无限循环小数的形式,同时有限小数和无限循环小数又都可以化为分数,如10.254=,10.33= ,10.1428577= .所以有限小数和无限循环小数都属于分数,如3.17,0.3- 等都是分数. ★ 整数和分数统称为有理数. ★ 几个常用数学名词的含义.(1)正整数:既是正数,又是整数的数. (2)负整数:既是负数,又是整数的数. (3)正分数:既是正数,又是分数的数. (4)负分数:既是负数,又是分数的数. (5)非负数:正数和0. (6)非正数:负数和0. (7)非负整数:正整数和0. (8)非正整数:负整数和0. 拓展:任何一个有理数都可以写成nm的形式,其中只有当m ,n 同时满足:① m ,n 是互质的整数;② n ≠0,m ≠1时,nm才表示一个最简分数. 注意:(1)有理数只包括整数和分数,无限不循环小数不能转化成分数,故无限不循环。