三角函数图象平移问题的解题策略
- 格式:doc
- 大小:172.00 KB
- 文档页数:4
三角函数图像的平移、变换一、 引入以简单函数为例,解说“左加右减、上加下减” 。
讲清横移的实质是把全部x 替代为 x+a ;二、三角函数图像的平移之历年高考真题1、为了获得函数y sin(2 x) 的图像,只需把函数 y sin(2 x) 的图像( A )向左平移个长度单364位( B )向右平移 个长度单位4( C )向左平移个长度单位( D )向右平移个长度单位22【答案】 B2、将函数 ysin x 的图像上全部的点向右平行挪动个单位长度, 再把所得各点的横坐标伸长到本来的102 倍(纵坐标不变) ,所得图像的函数分析式是( A ) ysin(2 x ) (B ) ysin(2 x)sin( 1x10sin( 1x 5 ( C ) y) ( D ) y )2102 20分析:将函数 y sin x 的图像上全部的点向右平行挪动个单位长度, 所得函数图象的分析式为 y = sin( x10-)再把所得各点的横坐标伸长到本来的 2 倍(纵坐标不变) ,所得图像的函数分析式是10y sin( 1x) . 【答案】 C 210以本题为例,解说横向变换的实质也是替代。
可发问:上述步骤反演,结果怎样?3、( 2010 天津文)( 8)右图是函数 y Asin ( x+ )( xR )在区间 - 5上的图象,为了获得这个函数的图象,只,6 6要将 y sin x ( x R )的图象上全部的点(A) 向左平移 个单位长度,再把所得各点的横坐标缩短到原3来的 1倍,纵坐标不变2(B) 向左平移个单位长度, 再把所得各点的横坐标伸长到原3来的 2 倍,纵坐标不变(C) 向左平移个单位长度,再把所得各点的横坐标缩短到本来的1倍,纵坐标不变621【答案】 A【分析】本题主要考察三角函数的图像与图像变换的基础知识,属于中等题。
由图像可知函数的周期为,振幅为1,因此函数的表达式能够是y=sin(2x+ ).代入( - , 0)可得的6一个值为,故图像中函数的一个表达式是y=sin(2x+ ),即 y=sin2(x+ ),因此只需将 y=sinx ( x∈ R)3 3 6 1倍,纵坐标不变。
三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。
本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。
一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。
在三角函数中,平移变换会改变函数的水平位置。
具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。
1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。
与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。
与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。
当b为正值时,图像向左平移;当b为负值时,图像向右平移。
平移量b的绝对值越大,图像平移的距离越远。
二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。
在三角函数中,伸缩变换会改变函数图像的形状和振幅。
具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。
1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。
纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。
横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。
2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。
函数)sin(A ϕω+=x y 的图像1、函数sin()y A x ωϕ=+的图像与sin y x =图像间的关系:① 函数sin y x =的图像纵坐标不变,横坐标向左(ϕ>0)或向右(ϕ<0)平移||ϕ个单位得()sin y x ϕ=+的图像;② 函数()sin y x ϕ=+图像的纵坐标不变,横坐标变为原来的1ω,得到函数()sin y x ωϕ=+的图像;③ 函数()s i n y x ωϕ=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ωϕ=+的图像;要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图像,则向左或向右平移应平移||ϕω个单位。
2、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:【典型例题】例1将函数)3sin(2π+=x y 的图象上所有点的横坐标缩短到原来的21(纵坐标不变), 所得图象对应的表达式为A .)321sin(2π+=x y B .)621sin(2π+=x yC .)32sin(2π+=x yD .)322sin(2π+=x y 例2、110610. 将函数)32cos(4π-=x y 的图像向右平移6π个单位,所得图像的解析式是(A ))62cos(4π-=x y (B ))322cos(4π-=x y (C )x y 2cos 4= (D )x y 2sin 4=例3、080606.为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需把函数sin 2y x =的图象( ) A . 向左平移3π个单位长度B . 向右平移3π个单位长度C . 向左平移6π个单位长度D . 向右平移6π个单位长度试题分析:因为sin 2sin 236y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以只需将函数sin 2y x =的图像向右平移6π各单位即可得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象;故D 正确.【会考真题】1、101213.为得到函数)42sin(π+=x y 的图像,只须将函数x y 2sin =上所有点( )(A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移8π个单位 (D )向左平移8π个单位2、060615:要得到函数cos(2),3y x x R π=+∈的图像,只需把曲线cos 2y x =上所有的点( )(A )向左平行移动3π个单位长度 (B )向右平行移动3π个单位长度 (C )向左平行移动6π个单位长度 (D )向右平行移动6π个单位长度例4 、将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(A ) (B )(C ) (D ) 解析:将函数的图像上所有的点向右平行移动个单位长度,所得函数图象的解析式为y =sin (x -) 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是.【答案】C1、100113:把函数3sin y x =的图像上每个点的横坐标伸长到到原来的两倍(纵坐标保持不变),然后再将整个图像向左平移3π个单位,所得图像的函数解析式是( )(A )3sin(2)6y x π=-(B )13sin()26y x π=+ (C )3sin(2)3y x π=- (D )13sin()23y x π=+2、070614或090113:将函数sin()()3y x x R π=-∈的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图像向左平移3π个单位长度,则得到的图像的函数解析式是( )(A )1sin2y x = (B )1sin()23y x π=- (C )sin(2)6y x π=- (D )1sin()26y x π=-sin y x =10πsin(2)10y x π=-sin(2)5y x π=-1sin()210y x π=-1sin()220y x π=-sin y x =10π10π1sin()210y x π=-3、090614:把函数sin(2),4y x x R π=+∈的图像向右平移8π个单位长度,再把所得图像上各点的横坐标缩短到到原来的12倍(纵坐标不变),则所得图像对应的函数解析式为( ) (A )cos(4)8y x π=+(B )sin(4)8y x π=+ (C )cos 4y x = (D )sin 4y x =例5、为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象( )A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度解析 y =cos(2x +π3)=sin[π2+(2x +π3)]=sin(2x +5π6).故要得到y =sin(2x +5π6)=sin2(x +5π12)的图象,只需将函数y =sin2x 的图象向左平移5π12个单位长度.。
高中数学三角函数图像平移变换最难题型技巧轻松解,颠覆你的认知三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数让一些同学真的是很头痛的知识点,它不仅变化多端,而且技巧性很强。
有时候你稍微不注意,没有弄清楚题目的变化,题目可能就要全军覆没。
在考研备考复习过程中,三角函数这块知识点也是必不可少的。
考研涉及的关于三角函数的知识点考查形式很多,比如有关三角函数的等价无穷小代换、万能公式代换积分、涉及三角函数的微分方程……今天先给大家分享一些结论性的三角函数积分知识。
今天讲这个专题有三个元素量:第一个是初始函数,第二个是变换过程,第三个是目标函数。
这三个元素量组合成三种题型,它是知二求一,就是说任意两个是已知的,让你求第三个。
所说它分三个题型:①已知初始函数和变换过程,求目标函数;②已知变换过程和目标函数,求初始函数;③已知初始函数和目标函数,求变换过程。
我告诉大家,前两个题型非常简单,我今天不给大家讲,我前面有讲《2句话搞定三角函数图像平移变换问题》,只要看过我这篇文章或者视频课,把这个点领悟透彻,这两题非常容易就做出来了。
我给大家答案,大家可以自己去做一下,第一题答案是:A;第二题答案:B。
今天就主要来讲一讲如何搞定第三种题型:已知初始函数和目标函数,求变换过程。
它为什么难度比较大呢,就是因为它给的两个函数的名称不一样,你首先是要统一名称,而且是唯一的,你如果统一成cosx就有可能有正确的先期,如果统一成sinx可能就没有正确选项。
所以这类题只能出选择题,不能出填空题。
为什么?因为填空它的答案不唯一!!所以一般不会出填空题。
为方便大家能将这个知识点理解透彻,我用常规方法解一道题讲原理,最后给大家讲秒杀方法,那么这种题目就可以10秒出答案!常规方法解例1:首先我统一成cosx看能不能选出答案。
3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。
高中数学函数图像平移题解题技巧在高中数学的学习中,函数图像平移题是一个非常常见的题型。
这类题目要求我们根据给定的函数,通过平移的方式得到新的函数图像。
解决这类题目,我们需要掌握一些解题技巧。
一、平移的基本概念在解决函数图像平移题之前,我们首先要了解平移的基本概念。
平移是指将函数图像沿着坐标轴的方向进行移动,而不改变函数的形状。
在平移过程中,函数图像上的每一个点都按照相同的距离和方向进行移动。
二、平移的方向1. 向右平移:当我们需要将函数图像向右平移时,可以通过在自变量上加上一个正数来实现。
例如,对于函数y = f(x),如果我们需要将其向右平移3个单位,则可以考虑使用函数y = f(x - 3)。
2. 向左平移:当我们需要将函数图像向左平移时,可以通过在自变量上加上一个负数来实现。
例如,对于函数y = f(x),如果我们需要将其向左平移2个单位,则可以考虑使用函数y = f(x + 2)。
三、平移的距离平移的距离是指函数图像在坐标轴上移动的单位数。
当平移的距离为正数时,表示向右平移;当平移的距离为负数时,表示向左平移。
四、平移的应用举例下面我们通过具体的题目来说明函数图像平移题的解题技巧。
例题一:已知函数y = x^2,将其向右平移2个单位,得到新函数y = (x - 2)^2。
求新函数的图像。
解析:根据平移的定义,我们可以得知新函数的自变量为x - 2。
为了绘制新函数的图像,我们可以列出一个函数值的对应表。
当x = 0时,原函数的y = 0,新函数的y = (-2)^2 = 4;当x = 1时,原函数的y = 1,新函数的y = (-1)^2 = 1;当x = 2时,原函数的y = 4,新函数的y = (0)^2 = 0;当x = 3时,原函数的y = 9,新函数的y = (1)^2 = 1;通过以上计算,我们可以得到新函数的函数值表。
将这些点连接起来,就可以得到新函数的图像。
例题二:已知函数y = sin(x),将其向左平移π/2个单位,得到新函数y = sin(x+ π/2)。
⾼考数学三⾓函数图像平移变换!⾼考必考内容!3种题型讲解!题型⼀:函数y=A sin(ωx+φ)的图象及变
换
1.三⾓函数图象变换的思路
先平移后伸缩;先伸缩后平移.值得注意的是,对于三⾓函数图象的平移变换问题,其平移变
换规则是“左加、右减”,并且在变换过程中只变换其⾃变量x,如果x的系数不是1,则需把x的系
数提取后再确定平移的单位长度和⽅向.
题型⼆:由图象求y=A sin(ωx+φ)的解析
式
求函数y=A sin(ωx+φ)+b(A>0,ω>0)中参数的⽅法
(1)求A,b先确定函数的最⼤值M和最⼩值m,则A=(M-m)/2,b=(M+m)/2
(2)求ω先确定函数的周期T,则可得ω=T/2π
(3)求φ
代⼊法.把图象上的⼀个已知点代⼊(此时A,ω,b已知)或代⼊图象与直线y=b的交点求解(此
时要注意交点在上升区间上还是在下降区间上).
题型三:y=A sin(ωx+φ)的图象与性质
函数y=A sin(ωx+φ)的图象与性质是命题的热点,多将图象变换、解析式求法与性质综合⼀起
考查,属中低档题.
常见的命题⾓度有:
(1)图象变换与性质的综合;
(2)解析式的求法与性质的综合;。
三角函数图象平移问题的解题策略三角函数图象的平移是图象学习中的一个要点,做题时往往容易搞错,究其原因主要是没有对其仔细的理解,没有形成解决问题的套路,下面对解决这类问题,给大家提供一个“四看”的解题策略。
一、看平移要求.拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断移动方向的关键点,一般题目会有下面两种常见的叙述。
例1. (1)要得到函数的图象,只需将函数的图象()A. 向左平移B。
向右平移C. 向左平移D. 向右平移(2)函数的图象经过下面哪个变化,可以得到函数的图象()A. 向左平移B。
向右平移C. 向左平移D. 向右平移分析:上面两题是平移问题两种典型的叙述方法,粗看两题好像差不多,其实两题的要求是不同的。
第(1)题是要把函数移到,而第(2)题是要把函数移到,两题平移的要求不同。
第(1)题是我们教学中的基本形式,应该选D,而第(2)题是它的反向形式,故选C.二、看函数形式我们在解决这类问题时,一定要依赖的形式,如果题目给定的函数不是这样的形式,那么我们首先要化为的形式,再考虑平移.所以二看函数形式。
例2。
(1)为了得到函数的图象,可以将函数的图象()A。
向右平移个单位长度B。
向右平移个单位长度C. 向左平移个单位长度D。
向左平移个单位长度(2)函数的图象可由的图象经下面变换得到()A. 向右平移个单位长度B. 向右平移个单位长度C。
向左平移个单位长度D。
向左平移个单位长度分析:这两题主要是函数形式的变化,我们所研究的两个函数必须都是型如等形式。
当我们实际题目两个函数不都是这样的形式时,我们先利用函数公式进行转化。
第(1)题我们可以改变的形式为:因此将向右移动可得到,故选B.第(2)题中函数可化为:正确答案为D.三、看移动方向在学习中,移动的方向一般我们会记为“正向左,负向右”,其实,这样不理解的记忆是很危险的。
上述规则不是简单的看中的正负,而是和它的平移要求有关。
正确的理解应该是:平移变换中,将x变换为x+,这时才是“正向左,负向右”.例3. 要得到函数的图象,可以将函数的图象()A。
三角函数的平移与幅角调整三角函数是数学中的重要概念,用于描述周期性变化的函数。
当我们对三角函数进行平移时,函数的图像会在坐标平面上沿着x轴或y轴移动。
而幅角调整则是通过改变函数的振幅和周期来对函数进行调整。
在本文中,我们将探讨三角函数的平移与幅角调整的相关概念和应用。
首先,我们来讨论三角函数的平移。
平移指函数图像在平面上的移动,其结果是函数的图像相对于原坐标系向左、右、上或下平移。
具体而言,当我们在函数的自变量上加上或减去一个常数,可以使函数的图像在x轴上平移。
而在函数的因变量上加上或减去一个常数,则可以使函数的图像在y轴上平移。
以正弦函数为例,正弦函数的一般形式为y = A*sin(Bx + C) + D。
其中A为振幅,B为周期的倒数,C为幅角调整,D为纵向平移。
我们首先来看看C的作用。
当C为正数时,图像会沿y轴的负方向平移;当C为负数时,图像会沿y轴的正方向平移。
C的绝对值越大,平移的距离就越大。
而对于D,当D为正数时,图像会沿y轴的正方向平移;当D为负数时,图像会沿y轴的负方向平移。
D的绝对值越大,平移的距离就越大。
举例说明,假设我们有一个正弦函数y = sin(x),如果我们在x轴上加上一个常数,例如y = sin(x + π/4),则原函数的图像会向左平移π/4个单位。
同样地,如果我们在y轴上加上一个常数,例如y = sin(x) + 1,原函数的图像会向上平移1个单位。
在幅角调整方面,我们可以通过改变函数的振幅和周期来改变函数的形状和变化速度。
振幅表示函数图像在y轴上的变化幅度,即函数图像上下波动的高度。
周期表示函数图像在x轴上的重复模式。
调整振幅和周期可以改变函数的波动幅度和速度。
对于正弦函数y = sin(x),振幅A表示函数图像的振动范围,即函数图像上下波动的高度。
例如,如果我们将A的值设置为2,那么函数图像的最高点将是2,最低点将是-2。
如果我们将A的值设置为0.5,函数图像的振幅将减小,波动幅度将变小。
三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。
1。
为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。
专题07 三角函数的图像与性质【母题来源一】【2020年高考全国Ⅰ卷文数】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 最小正周期为224332T πππω===,故选:C 【名师点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 【母题来源二】【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.的【母题来源三】【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【解析】根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+, 所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=.故选B.【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 【命题意图】(1)能画出y =sin x ,y =cos x ,y = tan x 的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等). (3)能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)理解同角三角函数的基本关系式、诱导公式,能运用和与差的三角函数公式、二倍角公式等进行简单的恒等变换. 【命题规律】三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下. 常见的命题角度有: (1)三角函数的图象变换; (2)三角函数解析式的确定;(3)三角函数的性质(单调性、值域与最值、奇偶性、周期性、对称性等); (4)函数sin()y A x ωϕ=+的性质与其他知识的综合应用. 【方法总结】(一)函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. (二)结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法(1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知). ②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点(,0)ϕω-作为突破口,具体如下: “第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(三)求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(四)三角函数单调性问题的常见类型及解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. (3)利用三角函数的单调性求值域(或最值).形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. (五)三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx+φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0. (六)三角函数的图象及性质与三角恒等变换相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式.(2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间. 【好题训练】1.【2020广西南宁高三调研】如图,直线 2230x y +-=经过函数() sin()f x x ωϕ=+(0>ω,||ϕπ<) 图象的最高点 M 和最低点 N ,则A .2πω=,4πω=B .ωπ=, 0ϕ=C .2πω=,4πϕ=-D .ωπ=, 2ϕπ=【答案】A【解析】由M ,N 分别是图象的最高点和最低点得其纵坐标为1和1-,代入直线2230x y +-=得其横坐标分别为12和52,故1,12M ⎛⎫ ⎪⎝⎭,5,12N ⎛⎫- ⎪⎝⎭,得51 2222T =-=,故24T πω==,故2πω=,M代入()f x 得11sin 22πϕ⎛⎫=⨯+⎪⎝⎭,故12222k ππϕπ⨯+=+,所以24k k Z πϕπ=+∈,因为||ϕπ<,所以4πϕ=,故选A .【名师点睛】本题主要考查利用()sin y A x ωφ=+的图象特征,由函数()sin y A x ωφ=+的部分图象求解析式,理解解析式中,,A ωφ的意义是正确解题的关键,属于中档题.A 为振幅,有其控制最大、最小值,ω控制周期,即2T πω=,通常通过图象我们可得2T 和4T,φ称为初象,通常解出A ,ω之后,通过特殊点代入可得,用到最多的是最高点或最低点.2.【2020福建三明高三三模】函数()|sin |cos 2f x x x =+的值域为 A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意得22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦,故选D.【名师点睛】本题考查三角函数的恒等变换及性质,考查二次函数值域,考查运算求解能力,是中档题.3.【2020安徽阜阳高三模拟】已知函数()()2sin 0,0y x ωθωθπ=+><<为偶函数,其图象与直线2y =的交点的横坐标为12,x x ,若12x x -的最小值为π,则 A .=2=2πωθ, B .1==22πωθ, C .1==24πωθ,D .=2=4πωθ,【答案】A【解析】因为函数与直线2y =的交点的横坐标为12,x x ,且12x x -的最小值为π,所以周期T π=,,所以2==2πωπ,又函数为偶函数且0θπ<<,所以=2πθ,故选A. 【名师点睛】本题主要考查了正弦型函数的图象与性质,涉及周期性和奇偶性,属于中档题.4.【2020河南洛阳高三联考】将函数π()2sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所 有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称 D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=- ⎪⎝⎭,()g x 的最大值为2,可知A 错误;()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误;当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.5.【2020湖南邵阳高三质检】已知函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π,若()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,则正数ϕ的最小值为A .6πB .56π C .3π D .4π 【答案】B【解析】∵函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π, ∴1224ππω⋅=,∴4ω=,∴()sin(4)f x x ϕ=+, 又∵()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,∴6x π=是()f x 的一条对称轴,∴462k ππϕπ⨯+=+,k Z ∈ ,∴6,k k Z πϕπ=-∈.∵0ϕ>,故令1k =,得56πϕ=为最小值.故选:B. 【名师点睛】本题为考查“()sin()f x A x b ωϕ=++的图像和性质”的基本题型,考查学生对三角函数相关性质的理解记忆,以及运用,为中等偏下难度题型. 6.【2020广东省韶高三调研】已知函数ππ()sin cos 44f x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是 A .()f x 的图象关于π=4x 对称 B .()f x 的最小正周期为π2C .()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数D .()f x 的一个对称中心是(π,0)【答案】D【解析】ππ1π1()sin cos sin 2|cos2|44222f x x x x x ⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由()f x 的图象知,()f x 的图象关于π4x =对称,故A 正确;()f x 的最小正周期为π2,故B 正确; ()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数,故C 正确;点(π,0)不是()f x 的一个对称中心,故D 错误.选:D【名师点睛】本小题考查三角函数的图象,考查余弦函数的最小正周期、对称轴、对称中心、单调区间等基本知识,考查了运算能力,逻辑推理能力,函数与方程思想,属于中档题.7.【2020江西赣州高三诊断】已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是A .π6B .π3C .2π3D .5π6【答案】B【解析】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭,所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈,即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π.故选B 【名师点睛】本题考查三角函数的图象及其性质,考查运算求解能力.8.【2020广东佛山高三模拟】已知函数()f x 是定义域在R 上的偶函数,且()()11f x f x =+-,当[]0,1x ∈时,()3f x x =,则关于x 的方程()cos f x x π=在15,22⎡⎤-⎢⎥⎣⎦上所有实数解之和为A .1B .3C .6D .7【答案】D【解析】因为()()11f x f x =+-,则()()2f x f x =-,所以()f x 的最小正周期为2,又由()()()111f x f x f x +=-=-得()f x 的图像关于直线1x =对称.令()cos g x x π=,则()g x 的图像如图所示,由图像可得,()y f x =与()cos g x x π=的图像在15,22⎡⎤-⎢⎥⎣⎦有7个交点且实数解的和为2317⨯+=,故选D.【名师点睛】一般地,方程()()f x g x =的解的性质的讨论,可以通过构建新函数()()()F x f x g x =-来讨论,也可以通过考虑()y f x =和()y g x =的图像的交点性质来讨论. 9.【2020湖北襄阳高三模拟】关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③.【名师点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020河南郑州高三质检】已知函数()1cos 2c 4os f x x b x c =++,若对任意1x ,2x R ∈,都有12()()4f x f x -≤,则b 的最大值为 . 【答案】2 【解析】2111()cos 2cos cos cos 424f x x b x c x b x c =++=++-,令[]cos 1,1t x =∈-,问题等价于211()24g t t bt c =++-, 对任意1t ∀,[]21,1t ∈-,都有()()124g t g t -≤,即max min ()()4g t g t -≤, 欲使满足题意的b 最大,所以考虑0b >,21()2g t t bt c =++对称轴为x b =-,当01b <<时,2max min 11()(1),()()22g t g b c g t g b b c ==++=-=-+m max 22in ()()4111(1)2222g t g t b b b =-=++<≤+,01b ∴<<;当1b ≥时,max min ()()(1)(1)24g t g t g g b -=--=≤,2b ≤,12b <≤,综上,02b <≤,b 的最大值为2,故选:C.【名师点睛】本题考查了三角函数的图象与性质应用问题,也考查了二次函数的性质应用问题,属于较难题.。
三角函数的平移三角函数是数学中常见且重要的函数之一,包括正弦函数、余弦函数和正切函数。
这些函数在实际应用中具有广泛的意义,而其中一项关键操作就是平移。
一、平移定义和基本概念平移是指将图形或函数在一定方向上进行移动,而不改变其形状和大小。
对于三角函数而言,平移可以通过改变函数的幅值、相位和角度单位来实现。
1. 幅值的平移对于正弦函数和余弦函数,平移可以通过改变幅值来实现。
幅值即函数图像在y轴上的偏移量。
当幅值为正时,图像会向上平移,在y轴上方显示;当幅值为负时,图像会向下平移,在y轴下方显示。
2. 相位的平移相位是指函数图像在x轴上的偏移量,也称为水平平移。
对于正弦函数和余弦函数,相位变化会导致函数在x轴上发生平移。
相位正数右平移,相位负数左平移。
3. 角度单位的平移三角函数中的角度单位通常为弧度制和度数制,不同的角度单位会影响函数图像在x轴上的变化。
当角度单位为度数制时,函数图像在x轴上向右平移;当角度单位为弧度制时,函数图像在x轴上向左平移。
二、平移的公式和示例以下是三种常见的三角函数的平移公式:1. 正弦函数平移公式:y = a·sin(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
2. 余弦函数平移公式:y = a·cos(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
3. 正切函数平移公式:y = a·tan(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
示例:以正弦函数为例,说明平移的具体过程。
假设原始的正弦函数为:y = sin(x)若要对其进行平移,可以通过修改幅值、相位和角度单位来实现。
比如,将原始正弦函数的幅值改为2,相位改为π/6,角度单位改为弧度制,则新的正弦函数为:y = 2·sin(1(x - π/6))三、三角函数平移的应用举例三角函数平移在实际应用中具有广泛的应用,下面介绍两个常见的应用举例。
三角函数的平移与伸缩三角函数在数学中占据着重要的地位,其在几何、物理、工程等各个领域都有广泛的应用。
而三角函数的平移与伸缩是对原本的函数图像进行操作,使其在坐标系中发生移动和变形。
本文将探讨三角函数的平移与伸缩,以及其对函数图像的影响。
1. 平移变换平移是指将函数图像沿着坐标系的横轴或纵轴方向进行移动。
对于正弦函数y = sin(x)和余弦函数y = cos(x),平移操作可以通过改变自变量x发生。
如果横轴上的平移量为a,那么正弦函数的平移变换可以表示为y = sin(x - a),余弦函数的平移变换可以表示为y = cos(x - a)。
这样,原本位于x轴上的函数图像将平移至新的位置。
2. 伸缩变换伸缩是指通过改变函数图像在坐标系中的大小和形状来实现。
伸缩操作可以通过改变函数的自变量或因变量进行。
对于正弦函数和余弦函数,分别称为sine函数和cosine函数,它们的伸缩变换形式可以表示为y = A*sin(Bx)和y = A*cos(Bx)。
其中,A和B分别代表着振幅和周期。
振幅A决定了函数图像在纵向上的幅度,而周期B则决定了函数图像在横向上的重复性。
当A增大时,函数图像的“峰”和“谷”之间的距离增大,振幅变大;反之,当A 减小时,振幅变小。
当B增大时,函数图像在横轴方向上的周期变长,每个周期内包含更多的“峰”和“谷”;反之,当B减小时,周期变短,每个周期内的“峰”和“谷”减少。
综合平移和伸缩,我们可以得到更加复杂的三角函数的变换。
例如对于正弦函数y = sin(x)进行平移和伸缩的组合操作,可以表示为y =A*sin(B(x - C)) + D。
其中C为平移量,A为伸缩因子,D为上下方向的平移量。
同样地,对于余弦函数也可以进行类似的操作。
三角函数的平移与伸缩在实际应用中起到了重要的作用。
它们能够改变函数图像在坐标系中的位置和形状,进而影响到相关问题的解决。
例如在物理学中,正弦函数和余弦函数可以用来描述周期性现象,如电磁波的传播及机械振动等。
三角函数平移的知识点总结一、三角函数平移的基本概念1. 正弦函数和余弦函数的平移正弦函数和余弦函数的平移可以通过改变函数的自变量(x)来实现。
对于正弦函数f(x) = sin(x)和余弦函数g(x) = cos(x)来说,它们的平移操作可以分别表示为f(x + a)和g(x + a),其中a表示在x轴上的平移距离。
当a为正数时,函数图像向左平移;当a为负数时,函数图像向右平移。
同样,如果在函数中加上一个常数b( f(x) + b 或 g(x) + b),则代表在y 轴上的平移。
当b为正数时,函数图像上移; 当b为负数时,函数图像下移。
2. 正弦函数和余弦函数的平移公式正弦函数和余弦函数的平移公式可以表示为:f(x ± a) = sin(x ± a)g(x ± a) = cos(x ± a)f(x) ± b = sin(x) ± bg(x) ± b = cos(x) ± b这些公式表示了正弦函数和余弦函数在x和y轴上的平移操作。
通过改变a和b的数值,可以控制函数图像在坐标系中的位置,从而得到不同的函数图像。
3. 正切函数和余切函数的平移类似于正弦函数和余弦函数,正切函数和余切函数的平移操作也可以通过改变自变量来实现。
对于正切函数h(x) = tan(x)和余切函数k(x) = cot(x)来说,它们的平移操作可以分别表示为h(x + a)和k(x + a)。
同样,如果在函数中加上一个常数c( h(x) + c 或 k(x) + c),则代表在y轴上的平移。
4. 正切函数和余切函数的平移公式正切函数和余切函数的平移公式可以表示为:h(x ± a) = tan(x ± a)k(x ± a) = cot(x ± a)h(x) ± c = tan(x) ± ck(x) ± c = cot(x) ± c这些公式表示了正切函数和余切函数在x和y轴上的平移操作。
三角函数图象的作法:1.y=Asin(ωx+φ)的图象:的图象:①用五点法作图①用五点法作图::五点取法由ωx +j =0=0、、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图描点作图. .②图象变换:先平移、再伸缩两个程序③A---A---振幅振幅振幅 vp2=T--------周期周期周期 pw 21==T f --------频率频率频率 相位--+j w x 初相--j2、函数sin()y A x k w j =++的图象与函数sin y x =的图象之间可以通过变化A k w j ,,,来相互转化.A w ,影响图象的形状,k j ,影响图象与x 轴交点的位置.轴交点的位置.由由A 引起的变换称振幅变换,引起的变换称振幅变换,由由w 引起的变换称周期变换,它们都是伸缩变换;由j 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象j j j <¾¾¾¾¾¾¾®向左向左((>0)>0)或向右或向右或向右((0)平移个单位长度得sin()y x j =+的图象()w w w¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾®®横坐标伸长横坐标伸长(0<(0<<1)<1)或缩短或缩短或缩短((>1)1到原来的纵坐标不变 得sin()y x w j =+的图象()A A A >¾¾¾¾¾¾¾¾¾®纵坐标伸长纵坐标伸长((1)1)或缩短或缩短或缩短(0<(0<<1)为原来的倍横坐标不变 得sin()y A x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k j =++的图象.的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<¾¾¾¾¾¾¾¾¾®纵坐标伸长或缩短为原来的倍(横坐标不变横坐标不变))得sin y A x =的图象(01)(1)1()w w w<<>¾¾¾¾¾¾¾¾¾®横坐标伸长或缩短到原来的纵坐标不变得sin()y A x w =的图象(0)(0)j j j w><¾¾¾¾¾¾¾®向左或向右平移个单位得sin ()y A x x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k w j =++的图象.的图象.注意:利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种x ? ? ? ? j w +x2p p23pp 2)sin(j w +=x A yA 0 -A 0变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
三角函数的平移-回复
三角函数的平移是指对函数进行水平或垂直方向上的移动,使原本的函数图像发生变化。
平移也可以称为移动或变换。
平移通常可以通过改变函数中的自变量的值来实现。
具体来说,对于三角函数y = f(x),如果对x的值加上或减去一个常数c,那么函数的图像会沿x轴向左或向右移动c个单位。
如果对y的值加上或减去一个常数d,那么函数的图像会沿y轴向上或向下移动d个单位。
这种平移称为水平平移和垂直平移,分别用下列公式表示:
y = f(x - c) 水平方向上平移c个单位
y = f(x) + d 垂直方向上平移d个单位
平移可以改变三角函数图像的位置和形状,因此在三角函数的应用中,常常需要通过平移使函数符合实际情况。
例如,地球上的日照时间和经度之间的关系可以用正弦函数表示,通过平移可以调整正弦函数的波峰和波谷的位置,使得函数与地球的实际情况相符合。
初中数学如何求解三角函数的平移性变换问题要求解三角函数的平移性变换问题,我们需要了解三角函数的平移性特点和平移性变换的规律。
下面以正弦函数为例,介绍如何求解三角函数的平移性变换问题。
1. 正弦函数的平移性特点:正弦函数sin(x)的图像是一条周期性的曲线,它在区间[0, 2π]上是周期性的。
当我们对sin(x)进行平移时,其图像的位置发生变化,但形状和周期不变。
2. 求解正弦函数的平移性变换问题:现在我们要求解sin(x)的平移性变换,即要找到一组平移后的正弦函数,使其图像在坐标平面上发生平移。
-平移性的定义:一个函数在坐标平面上的图像向左、向右、向上或向下移动,称为平移。
-平移性的变换规律:在平移性变换中,函数图像的位置发生变化,但形状和周期不变。
-平移性变换的关键点:要求解平移性变换问题,我们需要找到一个关键点,即平移的向量,确定平移后的函数图像的位置。
3. 具体求解平移性变换问题的方法:对于正弦函数sin(x),我们可以通过以下步骤求解平移性变换问题:-步骤1:确定平移的方向。
平移可以是向左、向右、向上或向下的移动。
我们需要确定平移的方向。
-步骤2:确定平移的距离。
平移的距离可以是正数或负数,表示向左或向右的移动距离,也可以是正数或负数,表示向上或向下的移动距离。
我们需要确定平移的距离。
-步骤3:根据平移的方向和距离,确定平移后的函数图像的位置。
在坐标平面上,我们可以找到一组平移后的正弦函数,使其图像在平移后的位置上。
-步骤4:根据平移性的变换规律,确定平移后的函数图像的形状和周期。
在平移性变换中,函数图像的形状和周期不变。
4. 其他三角函数的平移性变换问题:类似地,我们可以根据其他三角函数的平移性特点和平移性变换的规律来求解平移性变换问题。
以余弦函数为例,余弦函数cos(x)的图像也是一条周期性的曲线,它在区间[0, 2π]上是周期性的。
当我们对cos(x)进行平移时,其图像的位置发生变化,但形状和周期不变。
初中数学如何求解三角函数的平移性变换问题在初中数学中,我们经常会遇到求解三角函数的平移性变换问题。
这类问题要求我们根据已知函数的平移性质,求解相应的变换函数的平移性质。
在本文中,我们将讨论如何求解三角函数的平移性变换问题,并通过具体的例子来说明。
一、正弦函数和余弦函数的平移性变换1. 正弦函数的平移性变换正弦函数sin(x)的标准图像是在原点上方和下方呈现周期性波动的曲线。
现在我们来求解正弦函数的平移性变换问题,即求解sin(x + a)的平移性。
对于正弦函数sin(x + a),我们可以使用以下公式来求解平移:平移量= -a这意味着sin(x + a)的图像向左平移a个单位。
例如,当a=π/2时,sin(x + π/2)的图像向左平移π/2个单位。
2. 余弦函数的平移性变换余弦函数cos(x)的标准图像是在原点右侧和左侧呈现周期性波动的曲线。
现在我们来求解余弦函数的平移性变换问题,即求解cos(x + a)的平移性。
对于余弦函数cos(x + a),我们可以使用以下公式来求解平移:平移量= -a这意味着cos(x + a)的图像向左平移a个单位。
例如,当a=π/2时,cos(x + π/2)的图像向左平移π/2个单位。
二、例题解析现在我们通过具体的例子来求解三角函数的平移性变换问题。
例题1:求解sin(x - π/3)的平移性。
根据前面的讨论,我们知道sin(x - π/3)的图像向右平移π/3个单位。
例题2:求解cos(x + π/4)的平移性。
根据前面的讨论,我们知道cos(x + π/4)的图像向左平移π/4个单位。
通过这两个例子,我们可以看到,根据三角函数的平移性规律,我们可以很轻松地求解三角函数的平移性变换问题。
三、数学背景和应用三角函数的平移性变换问题在数学中具有重要的意义。
平移是函数的一种特殊性质,它可以帮助我们理解和分析函数的位置变化规律。
通过求解三角函数的平移性变换问题,我们可以更好地掌握函数的平移性,从而更好地理解和应用三角函数。
解题宝典三角函数图象平移问题是高考数学中的“常客”.解答此类问题,要求同学们熟练掌握各种三角函数图象的性质、特征以及图象平移的技巧.本文结合一道例题来探究一下解答三角函数图象平移问题的三种技巧:化同名法、逆向思维法、数形结合法.题目:若想得到函数y =sin(2x +π3)的图象,只需要将y =cos 2x 的图象向右平移ϕ个单位,求ϕ的值.解答本题,我们需将两个函数的名称统一起来,结合函数的图形来分析.这里有三种解答方法.一、化同名法化同名法是指运用同角三角函数的基本关系与诱导公式,将不同名称的三角函数化为函数名称相同的三角函数式的方法.在解答三角函数图象平移问题时,我们可以首先利用化同名法,将题目中的三角函数式的名称统一起来,然后再将图象进行平移.解:因为y =cos 2x =sin æèöø2x +π2,则y =sin æèöø2x +π2¾®¾¾¾¾¾¾¾¾向右平移ϕ个单位y =sin[2(x -ϕ)+π2]=sin æèöø2x -2ϕ+π2,所以-2ϕ+π2=π3,解得ϕ=π12.在解题的过程中,我们遵循“先化同名,再平移”的原则,利用诱导公式cos α=sin æèöøα+π2将y =cos 2x转化为正弦函数y =sin æèöø2x -2ϕ+π2,进而建立关于ϕ的关系式,求得ϕ的值.二、逆向思维法逆向思维法是指采取反向思维解决问题的方法.在解答三角函数图象平移问题时,我们可以结合所学的知识,由所求目标逐步向已知条件推导,通过平移图形,得到满足题意的关系式,进而求得结果.解:y =sin æèöø2x +π2¾®¾¾¾¾¾¾¾¾向右平移ϕ个单位y =sin[2()x +ϕ+π3]=sin æèöø2x +2ϕ+π3,则sin æèöø2x +2ϕ+π3=cos 2x ,又因为cos 2x =sin æèöø2x +π2,所以2ϕ+π3=π2,所以ϕ=π12.解答本题,需把函数y =sin(2x +π3)的图象向左平移ϕ个单位得到y =sin æèöø2x +2ϕ+π3,再利用诱导公式cos α=sin æèöøα+π2求得ϕ的值.运用逆向思维法来解题,能帮助我们拓宽解题的思路.在实际做题的过程中,同学们要注意转换思维.三、数形结合法数形结合法是解答三角函数问题的常用方法.在解答三角函数图象平移问题时,我们可以首先结合题意绘制出相应的图形,然后分析已知的和所求的三角函数的图象,通过对比建立关系式,找到解题的思路.解:首先绘制出y =cos 2x 和y =sin(2x +π3)的图象,由图可知y =cos 2x 图象的最高点为G ()0,1,y =sin(2x +π3)图象的最高点E æèöøπ12,1.所以y =cos 2x ¾®¾¾¾¾¾¾¾¾向右平移ϕ个单位y =sin(2x +π3),就可以转为G ()0,1¾®¾¾¾¾¾¾¾¾向右平移ϕ个单位E æèöøπ12,1,所以ϕ=π12.这里主要运用了数形结合法,通过比较函数y =cos 2x 与函数y =sin(2x +π3)图象的最高点,建立关于ϕ的关系式,求得ϕ的值.数形结合法比较直观,能帮助我们快速找到解题的思路.三角函数图象平移问题较为灵活,没有固定的解法.但是我们在解题的过程中,只要运用发散思维,从多个不同的角度进行分析,就可以得到多种不同的解题方法.(作者单位:安徽省宿州学院附属实验中学)任杰43Copyright©博看网 . All Rights Reserved.。
三角函数的平移与伸缩变换三角函数是数学中常见的函数类型之一,包括正弦函数、余弦函数和正切函数。
在数学中,我们常常需要对函数进行变换,以适应不同的需求。
其中,平移和伸缩变换是常用的操作,可用于改变函数的图像以适应不同的参数和条件。
本文将介绍三角函数的平移和伸缩变换的概念、方法和应用。
平移变换是指将函数图像上下左右移动,而不改变其形状。
平移变换的一般形式是f(x) → f(x - a),其中 a 为平移的距离。
对于三角函数来说,平移变换会改变函数图像的水平和垂直位置。
以正弦函数为例,平移变换可以描述如下:f(x) = A * sin(B * (x - C)) + D其中 A、B、C、D 为常数。
A 控制振幅(垂直拉伸或压缩),B 控制周期(水平拉伸或压缩),C 控制平移(左右平移),D 控制上下平移。
以具体的数值为例,考虑 Y = sin(X) 函数。
如果要将其向右平移π/2 个单位,则可以使用 Y = sin(X - π/2) 实现。
这使得函数图像水平向右平移π/2 个单位。
伸缩变换是指改变函数图像的形状,而不改变其位置。
伸缩变换的一般形式是f(x) → A * f(B * x),其中 A 和 B 为常数。
对于三角函数来说,伸缩变换会改变函数图像的振幅和周期。
以正弦函数为例,伸缩变换可以描述如下:f(x) = A * sin(B * x)其中 A 为振幅,B 为周期。
A 控制振幅的拉伸和压缩,B 控制周期的拉伸和压缩。
以具体的数值为例,考虑 Y = sin(X) 函数。
如果要将其振幅扩大两倍,则可以使用 Y = 2 * sin(X) 实现。
这使得函数图像在 y 轴方向上拉伸为原来的两倍。
在实际应用中,三角函数的平移和伸缩变换可以方便地用于数据处理、信号处理等领域。
例如,对于一组采样数据,可以通过平移变换将其对齐,以方便比较和分析。
而对于时域信号处理,可以利用伸缩变换改变信号的频谱特性,以达到滤波、降噪等目的。
三角函数图象平移问题的解题策略
三角函数图象的平移是图象学习中的一个要点,做题时往往容易搞错,究其原因主要是没有对其仔细的理解,没有形成解决问题的套路,下面对解决这类问题,给大家提供一个“四看”的解题策略。
一、看平移要求。
拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断移动方向的关键点,一般题目会有下面两种常见的叙述。
例1. (1)要得到函数的图象,只需将函数的图象()
A. 向左平移
B. 向右平移
C. 向左平移
D. 向右平移
(2)函数的图象经过下面哪个变化,可以得到函数的图象()
A. 向左平移
B. 向右平移
C. 向左平移
D. 向右平移
分析:上面两题是平移问题两种典型的叙述方法,粗看两题好像差不多,其实两
题的要求是不同的。
第(1)题是要把函数移到,而第
(2)题是要把函数移到,两题平移的要求不同。
第(1)题是我们教学中的基本形式,应该选D,而第(2)题是它的反向形式,故选C。
二、看函数形式
我们在解决这类问题时,一定要依赖的形式,如果题目给定的
函数不是这样的形式,那么我们首先要化为的形式,再考虑平移。
所以二看函数形式。
例2. (1)为了得到函数的图象,可以将函数的图象()
A. 向右平移个单位长度
B. 向右平移个单位长度
C. 向左平移个单位长度
D. 向左平移个单位长度
(2)函数的图象可由的图象经下面变换得到()
A. 向右平移个单位长度
B. 向右平移个单位长度
C. 向左平移个单位长度
D. 向左平移个单位长度
分析:这两题主要是函数形式的变化,我们所研究的两个函数必须都是型如
等形式。
当我们实际题目两个函数不都是这样的形式时,我们先利用函数公式进行转化。
第(1)题我们可以改变的形式为:
因此将向右移动可得到,故选B。
第(2)题中函数可化为:正确答案为D。
三、看移动方向
在学习中,移动的方向一般我们会记为“正向左,负向右”,其实,这样不理解
的记忆是很危险的。
上述规则不是简单的看中的正负,而是和它的平移要求有关。
正确的理解应该是:平移变换中,将x变换为x+,这时才是“正向左,负向右”。
例3. 要得到函数的图象,可以将函数的图象()
A. 向左平移
B. 向右平移
C. 向左平移
D. 向右平移
分析:两个函数的形式不同我们所期望的形式,所以先对它们进行变形。
转化为,转化为。
而由变到,我们可以看成原来的x替换为得到。
因此选D。
还可以通过函数的过渡。
先向右移得到
,再向右移得到,因此,变到
是向右移。
四、看移动单位
在函数中,周期变换和相位变换都是沿x轴方向的,所以和
之间有一定的关系,是初相位,再经过的压缩,最后移动的单位是。
例4. 要得到函数的图象,可以将函数的图象()
A. 向左平移
B. 向右平移
C. 向左平移
D. 向右平移
分析:先把函数化为:。
初相位是,而最后移动的单位是。
选C。