实际问题与反比例函数习题精选
- 格式:doc
- 大小:276.00 KB
- 文档页数:4
《实际问题与反比例函数》典型例题
典型例题
例题:
1.如图,受力面积为S(m2)(S是常数,且S≠0)的物体所受的压强p(Pa)与压力F(N)之间的函数关系的图象大致是( )
A B
C D
答案:C
说明:由物理知识可知p,F,S三者关系为:p =;∵S是常数且S≠0,∴p =F是正比例函数,∵F>0,S>0,∴答案为C.
2.一定质量的某种气体,它的密度ρ(kg/m3)与它的体积V(m3)成反比例函数;当V = 10m3时ρ = 1.43kg/m3.
①求ρ与V的函数关系式;②求当V = 5m3时该气体的密度ρ.
解:①∵ρ与V成反比例
∴设ρ =
∵当V = 10m3时,ρ = 1.43kg/m3
∴1.43 =,得k = 14.3
∴ρ =
②当V = 5m3时,ρ == 2.86kg/m3.
3.某市上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x−0.4)元成反比例,又当x = 0.65,y = 0.8.
①求y与x之间的函数关系式;
②若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?
解:①∵新增用电量y(亿度)与(x−0.4)元成反比例
∴设y =
∵当x = 0.65时,y = 0.8,∴0.8 =,解得k = 0.2
∴y ==
∴ y与x之间的函数关系式为y =.。
26.2 实际问题与反比例函数练习题一、选择题。
1.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=2.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000C.y=D.y=3.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=4.矩形面积是40m2,设它的一边长为x(m),则矩形的另一边长y(m)与x的函数关系是()A.y=20﹣x B.y=40x C.y=D.y=5.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)6.某工厂现有原材料100吨,每天平均用去x吨,这批原材料能用y天,则y与x之间的函数表达式为()A.y=100x B.y=C.y=+100 D.y=100﹣x二、填空题7.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围.8.已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化.9.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,则眼镜度数y与镜片焦距x之间的函数关系式是.10.若梯形的下底长为x,上底长为下底长的,高为y,则y与x的函数关系是.(不考虑x的取值范围)11.若矩形的面积为48,它的两边长分别为x,y.则y关于x的函数解析式为,其中自变量x的取值范围是.三、解答题12.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.13.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)。
中考数学《实际问题与反比例函数》专项练习题及答案
生听课效果最好时,讲完新课内容?
4.学校的学生专用智能饮水机里水的温度y(∵)与时间x(分)之间的函数关系如图所示,当水的温度(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式;
(3)平移直线y=-x,观察函数图象
(1)求可变电阻R与人的质量m之间的函数关系;
(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
14.新冠疫情下的中国在全世界抗疫战斗中全方位领跑.某制药公司生产3支单针疫苗和2支双针疫苗需
15.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,
(1)请写出这个反比例函数解析式;
17.商丘市睢县古称襄邑,西汉时期为全国织锦生产供应中心,朝廷专门在此设服官,负责文武大臣官服
12
0.70.7x ,∵小明应在打打第二针疫苗的时间段为打第一针后的第 (3)。
实际问题与反比例函数专题训练(1)一.选择题(共10小题)1.(2021秋•玉门市期末)甲、乙两地相距100km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.B.C.D.2.(2021秋•晋中期末)如图是一个闭合电路,其电源的电压为定值,电流I(A)是电阻R (Ω)的反比例函数.当R=2Ω时,I=6A.若电阻R增大1Ω,则电源I为()A.3A B.4A C.7A D.12A3.(2021秋•柳州期末)已知近视眼镜的度数y(度)与镜片焦距x(米)之间成如图所示的反比例函数关系,则眼镜度数y与镜片焦距x之间的函数解析式为()A.y=200x B.y=C.y=100x D.y=4.(2021秋•杏花岭区校级期中)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).血液中药物浓度不低于6微克/毫升的持续时间为()A.B.3C.4D.5.(2021•武陟县模拟)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数其图象如图所示,当气体体积为1m3时,气压为()kPa.A.150B.120C.96D.84 6.(2021•庆元县模拟)如图,在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后汽缸内气体的体积V和气体对汽缸壁所产生的压强p.根据如表中的数据规律进行探求,当汽缸内气体的体积压缩到70mL时,压力表读出的压强值a 最接近()体积V压强p(kPa)100609067807570a60100A .80kPaB .85kPaC .90kPaD .100kPa7.(2021春•衢州期末)某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变,在使杠杆平衡的情况下,小康通过改变动力臂L ,测量出相应的动力F 数据如表.请根据表中数据规律探求,当动力臂L 长度为2.0m 时,所需动力最接近( ) 动力臂L (m ) 动力F (N ) 0.5 600 1.0 302 1.5 200 2.0 a 2.5120A .120NB .151NC .300ND .302N8.(2021秋•柳南区期末)某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图),现测得药物8min 燃毕,此时室内空气中每立方米含药量为6mg .研究表明,当空气中每立方米的含药量不低于3mg 才有效,那么此次消毒的有效时间是( )A .10分钟B .12分钟C .14分钟D .16分钟9.(2020秋•城阳区期末)某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P(Pa)是4800Pa时,木板面积为()m2.A.0.5B.2C.0.05D.20 10.(2021•云岩区模拟)阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识﹣﹣杠杆原理,即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.二.填空题(共5小题)11.(2021秋•长安区期末)如图,某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)设矩形园子的相邻两边长分别为xm,ym,y关于x的函数表达式为(不写自变量取值范围);(2)当y≥4m时,x的取值范围为;(3)当一条边长为7.5m时,另一条边的长度为m.12.(2021秋•高新区校级期末)我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x 天之间的函数关系如图所示(当x≤20时,y与x是正比例函数关系;当x≥20时,y与x是反比例函数关系).则体内抗体浓度y高于70微克/ml时,相应的自变量x的取值范围是.13.(2022•福州模拟)密闭容器内有一定质量的二氧化碳,在温度不变的情况下,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化,已知密度ρ是体积V的反比例函数关系,它的图象如图所示,则当ρ=3.3kg/m3时,相应的体积V是m3.14.(2021秋•潍坊期末)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是.A.函数解析式为I=B.当R=9Ω时,I=4AC.蓄电池的电压是13VD .当I ≤10A 时,R ≥3.6Ω15.(2021秋•广丰区期末)某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为 m 2三.解答题(共10小题)16.(2021秋•永年区期末)某水果产销园,利用网络平台试销一种水果,为了获得适合的利润,在平台进行试销售,试销的结果统计如表:第1天 第2天 第3天 第4天 … 日单价x (千克/元) 46810…日销量y (千克)3000200015001200…已知y 是x 的反比例函数. (1)求y 与x 的函数关系式;(2)已知该水果的成本为每千克3元,若该水果产销园的某天利润为9000元,求该天的销售量是多少?17.(2021秋•太原期末)市政府计划建设一项惠民工程,工程需要运送的土石方总量为105m 3,经招投标后,先锋运输公司承担了运送土石方的任务.(1)直接写出运输公司平均每天运送速度v(单位:m3/天)与完成任务所需时间t(单位:天)之间的函数关系式;(2)如果每辆车每天平均运送102m3的土石方,要求不超过50天完成任务,求运输公司平均每天至少安排多少辆车.18.(2021秋•海门市期末)某汽车油箱的容积为70L,小王把油箱加满油后驾驶汽车从县城到300km远的省城接客人,接到客人后立即按原路返回请回答下列问题:(1)油箱加满油后,汽车行驶的总路程s(单位:km)与平均耗油量b(单位:L/km)有怎样的函数关系?(2)小王以平均每千米耗油0.1L的速度驾驶汽车到达省城,返程时由于下雨,小王降低了车速,此时平均每千米的耗油量增加了一倍.如果小王始终以此速度行驶,不需要加油能否回到县城?如果不能,至少还需加多少油?19.(2021秋•福州期末)已知某蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过3A,那么用电器可变电阻应控制在什么范围?20.(2021秋•韩城市期末)我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x 天之间的函数关系如图所示(当x≤20时,y与x是正比例函数关系;当x≥20时,y与x是反比例函数关系).(1)根据图象求当x≥20时,y与x之间的函数关系式;(2)当x≥20时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?21.(2021秋•肇源县期末)新冠肺炎疫情期间,口罩需求量大幅上升.某工厂接到任务紧急生产一批口罩,下面是每时生产口罩的数量与完成任务总共需要的时间的关系.每时生产口罩的数量/万只2346时间/时72483624(1)每时生产口罩的数量与时间有什么关系?(2)如果每时生产8万只口罩,那么完成这项任务一共需要多少时?22.(2021秋•鼓楼区校级期末)为了做好校园疫情防控工作,学校后勤每天对全校办公室和教室进行药物喷洒消毒,完成1间教室的药物喷洒要5min,药物喷洒时教室内空气中的药物浓度y(单位:mg/m3)与时间x(单位:min)的函数关系式为y=2x(0≤x≤5),其图象为图中线段OA,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).(1)点A的坐标为;(2)当教室空气中的药物浓度不高于12mg/m3时,对人体健康无危害.如果后勤人员依次对一班至十班教室(共10间)进行药物喷洒消毒,当最后一间教室药物喷洒完成后,一班是否能让人进入教室?请通过计算说明.23.(2021秋•仙居县期末)如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.24.(2021秋•舞阳县期末)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?25.(2021秋•达川区期末)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?。
人教版九年级数学下册第26章《2.实际问题与反比例函数》课时练习题(含答案)一、单选题1.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A .24I R =B .36I R =C .48I R =D .64I R= 2.港珠澳大桥桥隧全长55千米,其中主桥长29.6千米,一辆汽车从主桥通过时,汽车的平均速度 v (千米/时)与时间 t (小时)的函数关系式为( )A .55t v =B .25.4v t =C .v =29.6tD .29.6v t= 3.研究发现,近视镜的度数y (度)与镜片焦距x (米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为( )A .300度B .500度C .250度D .200度 4.在显示汽车油箱内油量的装置模拟示意图中,电压U 一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V 与电路中总电阻0R R R R =+总总()是反比例关系,电流I 与R 总也是反比例关系,则I 与V 的函数关系是( )A .反比例函数B .正比例函数C .二次函数D .以上答案都不对 5.在压力不变的情况下,某物体所受到的压强P (Pa )与它的受力面积S (2m )之间成反比例函数关系,且当S =0.1时,P =1000.下列说法中,错误..的是( ) A .P 与S 之间的函数表达式为100P S =B .当S =0.4时,P =250C .当受力面积小于20.2m 时,压强大于500PaD .该物体所受到的压强随着它的受力面积的增大而增大6.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y (℃)与通电时间(min)x 成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y 与通电时间x 之间的关系如图所示,则下列说法中正确的是( )A .水温从20℃加热到100℃,需要7minB .水温下降过程中,y 与x 的函数关系式是400y x= C .上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D .水温不低于30℃的时间为77min 37.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量()3mg /m y 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310mg /mB .室内空气中的含药量不低于38mg /m 的持续时间达到了11minC .当室内空气中的含药量不低于35mg /m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32mg /m 时,对人体才是安全的,所以从室内空气中的含药量达到32mg /m 开始,需经过59min 后,学生才能进入室内8.如图,点C 在反比例函数y=k x(x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB=BC ,△AOB 的面积为1,则k 的值为( )A .1B .2C .3D .4二、填空题9.列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .10.如图,一块长方体大理石板的A 、B 、C 三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m 帕,则把大理石板B 面向下放在地上时,地面所受压强是________m 帕.11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t (小时)与Q之间的函数表达式_____.12.对于函数2yx=,当函数值y<﹣1时,自变量x的取值范围是_______________.13.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当10x≥时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是________.三、解答题14.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y立方米,完成运送任务所需时间为t天.①求y关于t的函数表达式.②若080t<≤时,求y的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?16.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天) 3 5 6 9 ……硫化物的浓度y(mg/L) 4.5 2.7 2.25 1.5 ……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L ?为什么?17.设函数y 1=k x ,y 2=﹣k x(k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?18.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段。
26.2实际问题与反比例函数同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,正比例函数的图象与反比例函数的图象相交于,两点,其中点的横坐标为,当时,的取值范围是()A. 或B. 或C. 或D. 或2、如图,一次函数(、为常数,且)的图象与反比例函数(为常数,且)的图象都经过点,则当时,与的大小关系为().A. 以上说法都不对B.C.D.3、点是反比例函数图像上一点,则的值为().A.B.C.D.4、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图像如图所示,则的值为().A.B.C.D.5、如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象交于、两点.若,则的取值范围是().A. 或B.C. 或D.6、下列四个点中,在反比例函数的图象上的是().A.B.C.D.7、已知蓄电池的电压为定值,使用蓄电池时,电流(单位:)与电阻(单位:)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过,那么用电器可变电阻应控制的范围是______.A.B.C.D.8、面积为的直角三角形一直角边长为,另一直角边长为,则与的变化规律用图象大致表示为()A.B.C.D.9、如图,已知四边形是菱形,轴,垂足为,函数的图象经过点,且与交于点.若,则的面积为()A.B.C.D.10、如图,一次函数与轴、轴交于、两点,与反比例函数相交于、两点,分别过、两点作轴、轴的垂线,垂足为、,连接、、.有下列三个结论:①与的面积相等;②;③.其中正确的结论个数是()A.B.C.D.11、在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)是体积(单位:)的反比例函数,它的图象如图所示,当时,气体的密度是()A.B.C.D.12、反比例函数的图象与直线有两个交点,且两个交点横坐标的积为负数,则的取值范围是()A.B.C.D.13、某村耕地总面积为公顷,且该村人均耕地面积(单位:公顷/人)与总人口(单位:人)的函数图象如图所示,则下列说法正确的是()A. 该村人均耕地面积随总人口的增多而增多B. 该村人均耕地面积与总人口成正比例C. 若该村人均耕地面积为公顷,则总人口有人D. 当该村总人口为人时,人均耕地面积为公顷14、如图,正比例函数的图象与反比例函数的图象相交于,两点,其中点的横坐标为,当时,的取值范围是()A. 或B. 或C. 或D. 或15、函数(为常数)的图象上有三点,则函数值的大小关系是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如果反比例函数的图像在每个象限内随的增大而减小,那么的取值范围是________.17、如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象交于、两点,若,则的取值范围是______.18、如图,直线与双曲线交于点,则的解集为______.19、如图,若正方形的顶点和正方形的顶点都在函数的图象上,则点的坐标是______.20、如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为______.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,点是反比例函数的图象上一点,过点作轴,垂足为点,线段交反比例函数的图象交于点,求的面积.22、在平面直角坐标系中,直线与双曲线的一个交点为,与轴、轴分别交于.(1) 求的值;23、如图,已知反比例函数的图象与一次函数的图象相交于点和点.(1) 求反比例函数和一次函数的解析式.(2) 当一次函数的值小于反比例函数的值时,直接写出的取值范围.26.2实际问题与反比例函数同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,正比例函数的图象与反比例函数的图象相交于,两点,其中点的横坐标为,当时,的取值范围是()A. 或B. 或C. 或D. 或【答案】D【解析】解:反比例函数与正比例函数的图象均关于原点对称,、两点关于原点对称,点的横坐标为,点的横坐标为,由函数图象可知,当或时函数的图象在的上方,当时,的取值范围是或,故答案为:或.2、如图,一次函数(、为常数,且)的图象与反比例函数(为常数,且)的图象都经过点,则当时,与的大小关系为().A. 以上说法都不对B.C.D.【答案】D【解析】解:由图知,当时,一次函数的图象在反比例函数图象的上方。
1.下列函数表达式中,x 均表示自变量:①y=-25x
,②y=2x ,③y=-x -1
,④xy=2, ⑤y=11x +,
⑥y=
0.4
x
,其中反比例函数有( ). A .3个 B .4个 C .5个 D .6个
2.点(13)P ,在反比例函数k
y x
=
(0k ≠)的图象上,则k 的值是( ). A .13 B .3 C .1
3
- D .3-
3.体积、密度、质量之间的关系为:质量=密度⨯体积.所以在以下结论中,正确的为( ).
A .当体积一定时,质量与密度成反比例.
B .当密度一定时,质量与体积成反比例.
C .当质量一定时,密度与体积成反比例.
D .在体积、密度及质量中的任何两个量
均成反比例. 4.若反比例函数y =x
k
(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
A .(2,-1)
B .(-
21,2) C .(-2,-1) D .(2
1
,2) 5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ).
6.当x<0时,反比例函数y=-
x
21
的图像( ). A .在第二象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而减大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小
7.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).
A .成正比例
B .成反比例
C .不成正比例也不成反比例
D .无法确定
8.如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线 y =
x
1
于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ). A .逐渐增大 B .逐渐减小 C .保持不变 D .无法确定
9.函数y=k (x-1)与y=-
k
x
在同一直角坐标系内的图象大致是( ).
v /(km/h)
O
v /(km/h)
O
v /(km/h)
O
A .
B .
C . D
.
10.若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-
x
1
的图象上,则y 1,y 2,y 3的大小关系是( ).
A .y 1>y 2>y 3
B .y 1<y 2<y 3
C .y 1=y 2=y 3
D .y 1<y 3<y 2
11.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于
一次函数的值的x 的取值范围是( ).
A .x <-1
B .x >2
C .-1<x <0或x >2
D .x <-1或0<x <2
12.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象( ).
二.填空题:
13.已知变量y 与x 成反比例,且1x =时,5y =,则y 与x 之间的函数关系式是 . 14.函数8
y x
=-,当0x >时,y 0,相应的图象在第 象限内,y 随x 的增大而 .
15.已知反比例函数x
k
y =的图象分布在第二、四象限,则一次函数k kx y +=的图象不经过第 象限.
16.已知函数23
k y x
-=
,当0x <时,y 随x 的增大而减小,那么k 的取值范围是 . 17.如图,点M 是反比例函数y =x
a
(a ≠0)的图象上一点,过M 点作x 轴、
5 y
5
O y
10
O y 2
10 10
x
y y
x 2
2 A . B . C . D .
12
y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 . 18.如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为
B (-
3
20
,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折, 使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的 图象上,那么该函数的解析式是 .
19.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P,
则它的解析式是___________.
20.函数()()124
0y x x y x x
==>≥0,的图象如图所示,则结论:
①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3BC =;
④当x 增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是 . 三.解答题: 21.反比例函数y=
x
k
的图像经过点A (2,3); (1)求这个函数的解析式;
(2)请判断点B (1,6)是否在这个反比例函数的图像上,并说明理由.
22.反比例函数21
m y x
-=
的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点. (1)比较1b 与2b 的大小; (2)求m 的取值范围.
y Q
O x
P
A
1
x =4
y x =
x B O
C 1y x
=y
y
x
O
2(2)B b ,
1(1)
A b -,
23.已知反比例函数x
k
y =
图象与直线x y 2=和1+=x y 的图象过同一点. (1)求这个反比例函数的解析式;
(2)当x >0时,这个反比例函数值y 随x 的增大如何变化?
24.如图,一次函数y =ax +b 的图象与反比例函数y =x
k
的图象交于M 、N 两点。
(1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数
的值x 的取值范围.
25.防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每
立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为a
t
y =
(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1) 写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2) 测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,
那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?。