SSI体系阻尼特性振动台模型试验研究_张之颖
- 格式:pdf
- 大小:430.95 KB
- 文档页数:5
国家自然科学基金重点项目资助(No. 50338040, 50025821)同济大学土木工程防灾国家重点实验室振动台试验室研究报告(A20030609-405)12层钢筋混凝土标准框架振动台模型试验的完整数据Benchmark Test of a 12-story Reinforced Concrete Frame Model on Shaking Table 报告编制:吕西林李培振陈跃庆同济大学土木工程防灾国家重点实验室振动台试验室2004年1月目录1 试验概况 (1)2 试验设计 (1)2.1试验装置 (1)2.2模型的相似设计 (1)2.3模型的设计与制作 (1)2.4材料性能指标 (4)2.5测点布置 (4)2.6加速度输入波 (5)2.7试验加载制度 (9)3 试验现象 (9)4 试验数据文件 (12)4.1 AutoCAD文件 (12)4.2输入地震波数据文件 (12)4.3测点记录数据文件 (12)4.4传递函数数据文件 (12)12层钢筋混凝土框架结构振动台模型试验1 试验概况试验编号:S10H模型比:1/10模型描述:单跨12层钢筋混凝土框架结构激励波形:El Centro波、Kobe波、上海人工波、上海基岩波工况数:62试验日期:2003.6.16试验地点:同济大学土木工程防灾国家重点实验室振动台试验室2 试验设计2.1 试验装置地震模拟振动台主要性能参数:台面尺寸 4.0m×4.0m最大承载模型重25t振动方向X、Y、Z三向六自由度台面最大加速度X向1.2g;Y向0.8g;Z向0.7g频率范围0.1Hz~50Hz2.2 模型的相似设计表1中列出了模型各物理量的相似关系式和相似系数。
2.3 模型的设计与制作模型比为1/10,梁、柱、板的尺寸由实际高层框架结构的尺寸按相似关系折算。
原型和模型概况见表2,模型尺寸和配筋图见图1。
模型材料采用微粒混凝土和镀锌铁丝。
微粒混凝土是一种模型混凝土,它以较大粒径的砂砾为粗骨料,以较小粒径的砂砾为细骨料。
振动台试验用横向钢阻尼装置设计与测试张银喜;郝红肖;孔令俊;何俊;陈彦北;曹志峰【摘要】In order to verify the seismic isolation performance of the transverse steel damper device( TSDD) in the actual bridge system,finite element simulation analysis technology was used to design small steel damper device for shaking table test. In combination with existing experimental condition,the performance of equipment was tested, while the method of attachment in shaking table test was studied. The results show that the plastic deformation of the V-shaped frame damping element can evenly distribute over its arcuate segment,the equivalent plastic strain at first time to reach the maximum displacement meets the recommended value for service life. The hysteresis curves obtained in the test are full,stable,and the yield strength is in good agreement with the requirements. After the test, there is no fracture occurred in the V-shape damping element. Because in some test,the adhesive layer between the test equipment and the auxiliary tool has fractured,the welded connection is suggested in shaking table test.%为验证横向钢阻尼装置在实际桥梁体系中的减隔震性能,利用有限元仿真分析技术设计了可供振动台试验使用的小尺寸横向钢阻尼试验装置,并结合现有试验条件对所设计的试验装置的性能进行了测试,同时对振动台试验中试验装置与工装的连接方式进行了研究.结果表明,V形架阻尼元件的塑性变形能够较为均匀地分布于其弧形段,初次达到最大位移时的等效塑性应变值满足使用寿命要求的建议值;试验所得滞回曲线饱满、稳定,屈服力符合设计要求,试验后V形架阻尼元件未发生断裂.由于部分试验中试验装置与工装间的胶层发生断裂,建议在振动台试验中采用焊接.【期刊名称】《铁道建筑》【年(卷),期】2017(000)005【总页数】3页(P31-33)【关键词】减隔震;横向钢阻尼装置;模型试验;振动台;数值仿真【作者】张银喜;郝红肖;孔令俊;何俊;陈彦北;曹志峰【作者单位】株洲时代新材料科技股份有限公司,湖南株洲 412007;株洲时代新材料科技股份有限公司,湖南株洲 412007;株洲时代新材料科技股份有限公司,湖南株洲 412007;株洲时代新材料科技股份有限公司,湖南株洲 412007;株洲时代新材料科技股份有限公司,湖南株洲 412007;株洲时代新材料科技股份有限公司,湖南株洲 412007【正文语种】中文【中图分类】U443.5近年来,随着桥梁减隔震技术取得较大发展,弹塑性钢阻尼器在桥梁减隔震中的应用日益广泛,已形成了多种成熟的钢阻尼支座产品[1-3]。
一、实验目的1. 了解阻尼振动的基本概念和特点;2. 掌握阻尼振动实验的基本操作和数据处理方法;3. 研究不同阻尼系数对阻尼振动的影响;4. 分析阻尼振动过程中的能量损失和振幅衰减规律。
二、实验原理阻尼振动是指在外力作用下,振动系统由于阻尼力的作用,其振动幅度逐渐减小,最终趋于稳定的过程。
阻尼系数是描述阻尼力大小的重要参数,它反映了阻尼对振动系统的影响程度。
在阻尼振动实验中,我们通常采用简谐振动系统,如弹簧振子、摆等,来模拟阻尼振动现象。
根据牛顿第二定律,阻尼振动系统的运动方程可表示为:m d²x/dt² + c dx/dt + k x = F(t)其中,m为质量,c为阻尼系数,k为弹簧刚度,x为位移,F(t)为外力。
三、实验装置1. 弹簧振子:包括弹簧、质量块、支架等;2. 阻尼装置:用于调节阻尼系数;3. 传感器:用于测量振动位移;4. 数据采集器:用于记录实验数据;5. 计算机:用于数据处理和分析。
四、实验步骤1. 将弹簧振子固定在支架上,调节阻尼装置,使阻尼系数为0;2. 用传感器测量弹簧振子的初始振幅;3. 在弹簧振子上施加外力,使其开始振动;4. 使用数据采集器记录振动过程中的位移数据;5. 改变阻尼系数,重复步骤3和4,记录不同阻尼系数下的振动数据;6. 分析实验数据,研究不同阻尼系数对振幅衰减和能量损失的影响。
五、实验数据与分析1. 阻尼系数为0时,弹簧振子进行无阻尼振动,振幅保持不变;2. 随着阻尼系数的增加,振幅逐渐减小,衰减速度加快;3. 当阻尼系数达到一定程度时,振幅趋于稳定,表明振动系统已达到稳态;4. 阻尼系数与振幅衰减速度之间存在一定关系,可用阻尼系数与振幅衰减率的比值来描述。
六、结论1. 阻尼振动是振动系统在外力作用下,由于阻尼力的作用,振动幅度逐渐减小,最终趋于稳定的过程;2. 阻尼系数是描述阻尼力大小的重要参数,它反映了阻尼对振动系统的影响程度;3. 阻尼系数与振幅衰减速度之间存在一定关系,阻尼系数越大,振幅衰减速度越快;4. 通过实验,我们掌握了阻尼振动实验的基本操作和数据处理方法,为研究振动系统在实际工程中的应用提供了理论依据。
第1篇实验名称:实验室震动分析实验日期:2023年3月15日实验地点:实验室振动台实验人员:张三、李四、王五一、实验目的1. 了解震动分析的基本原理和方法。
2. 掌握实验室振动台的使用方法。
3. 通过实验,分析不同振动条件下的震动特性。
二、实验原理震动分析是研究物体在受到周期性或非周期性外力作用下的动态响应过程。
本实验通过实验室振动台对物体进行振动,利用传感器采集震动信号,通过分析信号,得到物体的振动特性。
三、实验仪器与材料1. 实验室振动台2. 传感器3. 数据采集器4. 个人电脑5. 振动实验样品四、实验步骤1. 准备工作:将振动实验样品放置在振动台上,确保样品与振动台接触良好。
2. 连接仪器:将传感器固定在样品上,将传感器输出端连接到数据采集器,数据采集器与个人电脑连接。
3. 设置实验参数:根据实验需求,设置振动台振动频率、振动幅度等参数。
4. 开始实验:启动振动台,使样品进行振动,同时启动数据采集器,记录震动信号。
5. 数据分析:将采集到的震动信号导入电脑,利用振动分析软件进行数据处理和分析。
6. 实验结束:关闭振动台,整理实验器材。
五、实验结果与分析1. 振动频率分析:根据实验数据,分析样品在不同振动频率下的振动特性。
从实验结果可以看出,随着振动频率的增加,样品的振动幅度逐渐减小,振动速度逐渐增大。
2. 振动幅度分析:在相同振动频率下,分析样品在不同振动幅度下的振动特性。
实验结果表明,随着振动幅度的增加,样品的振动速度和加速度也随之增加。
3. 振动响应分析:分析样品在振动过程中的响应特性,包括振动速度、加速度和位移。
从实验结果可以看出,在低频振动下,样品的振动响应较小;在高频振动下,样品的振动响应较大。
4. 振动稳定性分析:观察样品在振动过程中的稳定性,包括振动幅度、频率和相位。
实验结果表明,在振动过程中,样品的振动幅度、频率和相位保持稳定。
六、实验结论1. 通过本实验,掌握了实验室振动台的使用方法,了解了震动分析的基本原理和方法。
阻尼振动实验报告
在阻尼振动实验中,我们通过实验装置测量了阻尼对振动特性的影响。
本次实验旨在探究阻尼对振动系统的影响,并通过实验数据进行分析和讨论。
以下是本次阻尼振动实验的报告:
实验装置及步骤
本次实验采用了一台带有阻尼装置的简谐振动器,实验装置包括振动器、振幅测量器、频率计等设备。
实验步骤如下:
1. 将振动器固定在实验台面上,并调整振动器的参数,使其处于稳定状态。
2. 将频率计连接至振动器,准确测量振动器的振动频率。
3. 启动振动器,记录振动的振幅随时间的变化。
实验数据处理与分析
通过实验数据的采集和记录,我们得到了阻尼振动的振幅随时间的变化曲线。
根据实验数据,我们可以得出以下结论:
1. 随着时间的推移,振幅逐渐减小,表明系统的振动受到了阻尼的影响。
2. 随着阻尼系数的增加,振幅的减小速度也随之增加,说明阻尼对振动的影响是显著的。
3. 阻尼对振动系统的自由振动频率也产生了一定的影响,振动频率随阻尼系数的增加而减小。
实验结论和讨论
本次实验结果表明,阻尼对振动系统的影响是不可忽视的。
阻尼能够减少振动系统的振幅,降低系统的能量,并影响系统的振动频率。
在实际工程中,阻尼的控制和优化对于提高系统的稳定性和性能至关重要。
总结
通过本次实验,我们深入了解了阻尼对振动系统的影响,并通过实验数据得出了结论和分析。
阻尼振动是振动学中的重要概念,对于工程领域具有重要意义。
希望本次实验报告能够帮助大家更好地理解阻尼振动的原理和特性。
第1篇一、实验目的1. 了解阻尼系数的概念和测量方法。
2. 掌握使用不同方法测定阻尼系数的原理和步骤。
3. 通过实验,验证阻尼系数在不同条件下的变化规律。
二、实验原理阻尼系数是描述阻尼作用强度的一个物理量,其定义为阻尼力与外力之比。
在振动系统中,阻尼系数的大小直接影响系统的振动特性,如振幅、频率等。
本实验通过以下几种方法测定阻尼系数:1. 振幅衰减法:通过测量振动系统在无外力作用下的自由衰减振动,计算阻尼系数。
2. 频率响应法:通过测量振动系统在不同频率下的响应,计算阻尼系数。
3. 波尔共振法:利用波尔共振仪,测量振动系统在不同阻尼力矩下的共振频率,计算阻尼系数。
三、实验器材1. 波尔共振仪2. 频率计3. 振幅传感器4. 信号发生器5. 示波器6. 电源7. 数据采集器8. 计算机及实验软件四、实验步骤1. 振幅衰减法:(1)将振动系统置于波尔共振仪上,确保系统稳定。
(2)启动信号发生器,产生频率为f0的正弦波信号。
(3)将信号发生器输出信号接入振动系统,观察振幅变化。
(4)记录振动系统自由衰减振动的振幅随时间的变化数据。
(5)根据振幅衰减数据,计算阻尼系数。
2. 频率响应法:(1)将振动系统置于波尔共振仪上,确保系统稳定。
(2)使用频率计测量振动系统的自振频率。
(3)调整信号发生器输出信号的频率,使其等于振动系统的自振频率。
(4)观察振动系统的响应,记录振幅和相位变化数据。
(5)根据频率响应数据,计算阻尼系数。
3. 波尔共振法:(1)将振动系统置于波尔共振仪上,确保系统稳定。
(2)调整波尔共振仪的阻尼力矩,使振动系统达到共振状态。
(3)记录振动系统的共振频率。
(4)改变阻尼力矩,重复步骤(2)和(3),得到多个共振频率。
(5)根据共振频率数据,计算阻尼系数。
五、实验结果与分析1. 振幅衰减法:根据实验数据,计算得到阻尼系数为0.05。
2. 频率响应法:根据实验数据,计算得到阻尼系数为0.04。
第46卷第11期2013年11月土木工程学报CHINA CIVIL ENGINEERING JOURNALVol.46Nov.No.112013基金项目:国家重点基础研究发展“973”计划(2011CB013603)、国家自然科学基金(91315301)作者简介:闫晓宇,博士研究生收稿日期:2013-01-08考虑土-结构相互作用的多跨连续梁桥振动台阵试验研究闫晓宇1李忠献1李勇2杜修力2(1.天津大学滨海土木工程结构与安全教育部重点实验室,天津300072;2.北京工业大学城市与工程安全减灾省部共建教育部重点实验室,北京100124)摘要:土-结构相互作用(SSI )对软土地基上桥梁结构地震响应的影响不可忽略。
通过对一座1ʒ10比例的四跨高架连续梁桥模型的振动台阵试验,系统地分析了SSI 效应对大跨度连续梁桥地震响应的影响规律。
研究表明:顺桥向地震激励下,SSI 效应增大了桥墩变形、墩底受力、墩顶水平加速度及主梁水平加速度,地震响应峰值随剪切波速的减小而单调递增,说明剪切波速是影响SSI 效应的重要因素;桥墩加速度响应、位移响应和应变响应对SSI 效应的敏感程度有所差异,其中加速度响应对SSI 效应最敏感,考虑SSI 效应后增幅最大;SSI 效应将引起支座相对位移的剧烈变化;实时耦联动力子结构试验技术是进行桥梁结构考虑SSI 效应的振动台试验的有效方法。
关键词:连续梁桥;土-结构相互作用;振动台阵试验;地震响应;实时耦联动力子结构试验中图分类号:U448.21文献标识码:A文章编号:1000-131X (2013)11-0098-07Shaking tables test on a long-span continuous girder bridgeconsidering soil-structure interactionYan Xiaoyu 1Li Zhongxian 1Li Yong 2Du Xiuli 2(1.The Key Laboratory of Coast Civil Structure Safety of the Ministry of Education ,Tianjin University ,Tianjin 300072,China ;2.The Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education ,Beijing University of Technology ,Beijing 100124,China )Abstract :The influence of soil-structure interaction under earthquake excitation should be considered for the bridge-foundation system ,especially for the foundation of soft soil.A 1ʒ10scaled model of a four-span continuous girder bridge was tested on shaking tables to investigate the influence of soil-structure interaction on seismic response of the bridge model.The experimental results indicate that SSI effect increases the dynamic response of the bridge model.The peak of the response monotonously increases as the shear wave velocity decreases ,which shows the shear wave velocity is an important factor influencing the SSI effect.The sensitivity of acceleration ,displacement and strain to SSI effect is significantly different.The acceleration is more sensitive to SSI effect in the longitudinal direction.Furthermore ,SSI effect may cause dramatic changes in the relative displacement of bearings.The test results verify the effectiveness of the real-time dynamic hybrid testing technique.Keywords :continuous girder bridge ;soil-structure interaction ;shaking tables test ;seismic response ;real-time dynamic hybrid substructure testing E-mail :zxli@tju.edu.cn引言上部结构破坏是连续梁桥常见的地震灾害之一,常发生在设置伸缩缝的位置。
阻尼振动实验报告篇一:阻尼振动与受迫振动实验报告阻尼振动与受迫振动实验报告一、实验目的(一)观察扭摆的阻尼振动,测定阻尼因数。
(二)研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼的情况下的共振曲线(即幅频特性曲线)。
(三)描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。
(四)观测不同阻尼对受迫振动的影响。
二、实验仪器扭摆(波尔摆)一套,秒表,数据采集器,转动传感器。
三、实验任务1、调整仪器使波耳共振仪处于工作状态。
2、测量最小阻尼时的阻尼比ζ和固有角频率ω0。
3、测量其他2种或3种阻尼状态的振幅,并求ζ、τ、Q和它们的不确定度。
4、测定受迫振动的幅频特性和相频特性曲线。
四、实验步骤1、打开电源开关,关断电机和闪光灯开关,阻尼开关置于“0”档,光电门H、I可以手动微调,避免和摆轮或者相位差盘接触。
手动调整电机偏心轮使有机玻璃转盘F上的0位标志线指示0度,亦即通过连杆E和摇杆M使摆轮处于平衡位置。
然后拨动摆轮使偏离平衡位置150至200度,松开手后,检查摆轮的自由摆动情况。
正常情况下,震动衰减应该很慢。
2、开关置于“摆轮”,拨动摆轮使偏离平衡位置150至200度后摆动,由大到小依次读取显示窗中的振幅值θj;周期选择置于“10”位置,按复位钮启动周期测量,停止时读取数据10Td。
并立即再次启动周期测量,记录每次过程中的10Td的值。
(1)逐差法计算阻尼比ζ;(2)用阻尼比和振动周期Td计算固有角频率ω0。
3、依照上法测量阻尼(2、3、4)三种阻尼状态的振幅。
求出ζ、τ、Q和它们的不确定度。
4、开启电机开关,置于“强迫力”,周期选择置于“1”,调节强迫激励周期旋钮以改变电机运动角频率ω,选择2个或3个不同阻尼比(和步骤3中一致),测定幅频和相频特性曲线,注意阻尼比较小(“0”和“1”档)时,共振点附近不要测量,以免振幅过大损伤弹簧;每次调节电机状态后,摆轮要经过多次摆动后振幅和周期才能稳定,这时再记录数据。
阻尼对结构模态测试精度影响的试验研究杨伟松;郭迅;何福;许卫晓【期刊名称】《地震工程与工程振动》【年(卷),期】2015(35)3【摘要】结构振动是多个振型参与的结果。
在结构抗震设计及地震工程相关领域,结构模态数值的应用程度越来越高,其准确程度从根本上关系到结构设计和工程抗震的实现效果。
为考察阻尼对实际结构模态测试结果的影响,设计了三层剪切型钢框架模型及可调硅油阻尼器。
计算其理论模态,并通过三种常用的模态测试方法,对其在阻尼比由小到大逐渐增大的各种工况下的频率和振型进行测试。
试验结果表明:阻尼比对结构模态测试结果确有影响,测试精度随着阻尼比的增大而降低,但在实际结构阻尼比量级时,常用测试方法得到的简单结构的模态结果精度可以满足工程计算需要;脉动法、初位移释放法和激振法的测试精度依次提高。
【总页数】8页(P86-93)【关键词】模态测试;阻尼比;振型精度;硅油阻尼器【作者】杨伟松;郭迅;何福;许卫晓【作者单位】中国地震局工程力学研究所中国地震局地震工程与工程振动重点试验室;防灾科技学院【正文语种】中文【中图分类】TU352.1;TU375.4【相关文献】1.薄板-附加阻尼层复合结构振动模态特性试验研究与仿真分析 [J], 王超;吕振华;顾叶青;吕毅宁2.嵌入式共固化耐高温阻尼复合材料结构的模态分析试验研究 [J], 张乾;梁森;韦利明3.环境激励下冷却塔结构模态测试与阻尼比特性研究 [J], 柯世堂; 余玮; 朱鹏; 侯宪安; 姚友成; 王振宇; 高玲4.土-结构相互作用体系合成模态阻尼比的振动台模型试验研究 [J], 吕西林;张之颖;曹文清5.粘弹阻尼结构频响函数计算的高精度模态展开法 [J], 童昕因版权原因,仅展示原文概要,查看原文内容请购买。