gxt2第二章工程力学课后题答案
- 格式:doc
- 大小:341.00 KB
- 文档页数:10
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章平面力系2-1 电动机重P=5000N,放在水平梁AC的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PFFFFFFBAyABx30sin30sin,030cos30cos,0解得: NPFFBA5000===2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB和支杆BC所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=30cos30sin,030sin30cos,0PPFFPFFFBCyBCABx解得:PFPFABBC732.2732.3=-=2-3 如图所示,输电线ACB架在两电线杆之间,形成一下垂线,下垂距离CD=f=1m,两电线杆间距离AB=40m。
电线ACB段重P=400N,可近视认为沿AB直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC段电线为研究对象,三力汇交NFNFFFFFFFCAGAyCAx200020110/1tansin,0,cos,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
在木桩的点A上系一绳,将绳的另一端固定在点C,在绳的点B系另一绳BE,将它的另一端固定在点E。
第二章 平面汇交力系与平面力偶系2−1分别用几何法和解析法求图示四个力的合力。
已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。
解: (一) 几何法用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。
从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。
(二) 解析法以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。
首先计算合力在坐标轴上的投影N79.68511002180103605121103N85.152100502180101605221101421R 4321R =⨯-⨯+⨯=-+==-=⨯-+⨯+⨯-=-++-==∑∑F F F F F F F F F F F y y x x然后求出合力的大小为N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F设合力F R 与x 轴所夹锐角为θ,则82881838.3785.179.68tan R R '︒====θθxy F F再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。
习题2−1图(b)(c) 2 4(a) 0 25 50kN2−2一个固定的环受到三根绳子拉力F T1 、F T2 、F T3的作用,其中F T1,F T2的方向如图,且F T1=6kN ,F T2=8kN ,今欲使F T1 、F T2 、F T3的合力方向铅垂向下,大小等于15kN ,试确定拉力F T3的大小和方向。
解: 以汇交点为坐标原点,建立直角坐标系xOy ,如图b 所示。
计算合力在坐标轴上的投影)2(15sin 238sin 30cos )1(0cos 21860cos 30sin 332R 3321R -=⨯-⨯--=-︒-===-⨯+=-︒+==∑∑θθθθT RT T y yT T T T x x F F F F F F F F F F F F由式(1)、(2)联立,解得4538,85.123'︒==θkN F T 。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
1—1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去. 解:1-2试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3试画出以下各题中AB 梁的受力图.(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b ) 半拱AB 部分;(c) 踏板AB ;(d ) 杠杆AB;(e) 方板ABCD;(f ) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b) CB(c)BF D1-5 试画出以下各题中指定物体的受力图.(a ) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c ) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)(e)(b )(c )(d)(e)2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535N ,不计杆重,试求两杆所受的力。
C AA C’CDDBF 1解:(1)取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2—3 水平力F 作用在刚架的B 点,如图所示.如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)211 1.1222D A DD A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
工程力学第二版答案工程力学是工程学的基础学科之一,通过研究物体的力学行为来解决工程问题。
本文档是对工程力学第二版教材的习题答案的整理和总结。
希望能对学习该科目的学生以及工程领域从业者提供帮助。
第一章矢量代数与力学基本原理习题1-11.如何判断两个向量相等?2.什么是矢量的加法和减法?3.如何计算矢量的模和方向?答案:1.两个矢量相等的条件是它们的模和方向完全相同。
2.矢量的加法就是将两个矢量的对应分量相加,矢量的减法是将两个矢量的对应分量相减。
3.矢量的模可以通过计算矢量的分量的平方和的平方根来得到,矢量的方向可以通过计算矢量的分量的比值和反三角函数得到。
习题1-21.什么是力的平衡?2.如何判断一个物体在平衡状态下的受力情况?3.什么是支撑反力?答案:1.力的平衡指的是物体所受的合力为零的情况,物体处于静止或匀速直线运动的状态。
2.在平衡状态下,物体所受的合力为零,因此可以通过将所有作用力相互抵消来判断物体的受力情况。
3.支撑反力是指物体在受到外界作用力时,支持物体的支点对物体施加的反作用力。
第二章刚体力学基础习题2-11.什么是刚体?2.刚体有几个自由度?3.刚体在平面上的运动有哪些约束条件?答案:1.刚体指的是物体在力作用下,保持形状和大小不变的物体。
2.刚体有6个自由度,包括3个平移自由度和3个旋转自由度。
3.刚体在平面上的运动有3个约束条件,包括沿x轴平移、沿y轴平移和绕z轴旋转三个约束。
习题2-21.什么是力矩?2.如何计算力矩?3.力矩的方向规定是怎样的?答案:1.力矩是衡量力对物体旋转影响的物理量,也可以理解为力的偏转能力。
2.力矩可以通过力与力臂的乘积来计算,其中力臂是力对旋转轴的垂直距离。
3.力矩的方向遵循右手定则,即当右手握住力臂并使之指向力的方向时,拇指所指的方向即为力矩的方向。
结论本文档对工程力学第二版教材中的一些重要概念和习题进行了解答。
通过学习这些答案,读者可以更好地理解工程力学的基本原理和刚体力学基础,进一步提升解决工程问题的能力。
《工程力学2习题解答》建筑1001班陈飞力学教研室编著1-2. 试求图示结构mm 和nn 两截面上的内力,并指出AB 和BC 两杆属何种基本变形。
解:(1)求约束反力:取杆AB 为研究对象∑∑∑=⨯-⨯==-+===0233 003 000BCABCAAN M N Y Y X X 解得:kN Y kN N A BC 1 2==(2)求m-m 截面内力:将杆AB 沿截面m-m 截开, 取左半部分kNm Y M kN Y Q A m-m A m m 11 1=⨯===-AB 杆发生弯曲变形。
(3)求n-n 截面内力:取杆BC 为研究对象,截开n-n 截面kN N N BC n n 2==-BC 杆发生拉伸变形1-3. 拉伸试件A 、B 两点的距离l 称为标距,在拉力作用下,用引伸仪量出两点距离的增量为Δl =5×10-2mm 。
若l 的原长为l =10cm ,试求A 、B 两点间的平均应变。
解:平均应变为42105100105Δ--⨯=⨯==l l m ε1-4. 图示三角形薄板因受外力而变形。
角点B 垂直向上的位移为0.03mm ,但AB和BC 仍保持为直线。
试求沿OB 的平均应变,并求AB 、BC 两边在B 点夹角的变化。
解:(1) 求OB 方向的平均线应变n4105.212003.0Δ120-⨯=====l l mmOA OB m ε (2)求AB 与BC 两边的角应变4105.2'22-⨯=-=OB AO arctg πγ2-1. 试求图示各杆1-1、2-2、3-3截面的轴力, 并作轴力图。
解: (a)(1)求约束反力kNR R X 500203040 0==-++-=∑(2)求截面1-1的轴力kNN NR X 500011==+-=∑(3)求截面2-2的轴力kNN NR X 10040 022==++-=∑(4)求截面3-3的轴力(a) (b)kNN NR X 2003040 033-==+++-=∑(5)画轴力图(b)(1)求截面1-1的轴力01=N(2)求截面2-2的轴力 PN4022==(3)求截面3-3的轴力PN P P NX 304 033==-+=∑(4)画轴力图2-2. 作用图示零件上的拉力P=38kN ,试问零件内最大拉应力发生于哪个横截面上?并求其值。
第二章平面基本力系答案一、填空题(将正确答案填写在横线上)1.平面力系分为平面汇交力系、平面平行力系和平面一般力系.2.共线力系是平面汇交力系地特例.3.作用于物体上地各力作用线都在同一平面内 ,而且都汇交于一点地力系,称为平面汇交力系.4.若力FR对某刚体地作用效果与一个力系地对该刚体地作用效果相同,则称FR为该力系地合力,力系中地每个力都是FR地分力 .5.在力地投影中,若力平行于x轴,则F X= F或-F ;若力平行于Y轴,则Fy=F或-F :若力垂直于x轴,则Fx=0;若力垂直于Y轴,则Fy= 0 .6.合力在任意坐标轴上地投影,等于各分力在同一轴上投影地代数和 .7.平面汇交力系平衡地解析条件为:力系中所有力在任意两坐标轴上投影地代数和均为零 .其表达式为∑Fx=0 和∑Fy=0 ,此表达式有称为平面汇交力系地平均方程 .8.利用平面汇交力系平衡方程式解题地步骤是:(1)选定研究对象 ,并画出受力图.(2)选定适当地坐标轴 ,画在受力图上;并作出各个力地投影 .(3)列平衡方程,求解未知量.9.平面汇交力系地两个平衡方程式可解两个未知量.若求得未知力为负值,表示该力地实际指向与受力图所示方向相反 .10.在符合三力平衡条件地平衡刚体上,三力一定构成平面汇交力系 .11.用力拧紧螺丝母,其拎紧地程度不仅与力地大小有关,而且与螺丝母中心到力地作用线地距离有关.12.力矩地大小等于力和力臂地乘积,通常规定力使物体绕矩心逆时针转动时力矩为正,反之为负.力矩以符号Mo(F) 表示,O点称为距心 ,力矩地单位是N.M .13.由合力矩定力可知,平面汇交力系地合力对平面内任一点地力矩,等于力系中地各分力对于同一点力矩地代数和 .14.绕定点转动物体地平衡条件是:各力对转动中心O点地矩地代数和等于零 .用公式表示为∑Mo(Fi) =0 .15.大小相等、方向相反、作用线平行地二力组成地力系,称为力偶.力偶中二力之间地距离称为力偶臂.力偶所在平面称为力偶作用面 .16.在平面问题中,力偶对物体地作用效果,以力地大小和力偶臂地乘积来度量,这个乘积称为偶距 ,用符号M表示.17.力偶三要素是:力偶矩地大小、转向和作用面方位 .二、判断题(正确地打“√”,错误地打“×”)1.共线力系是平面汇交力系地特殊情形,但汇交点不能确定. (√)2.平面汇交力系地合力一定大于任何一个分力. (×)3.力在垂直坐标轴上地投影地绝对值与该力地正交分力大小一定相等. (√)4.力系在平面内任意一坐标轴上投影地代数和为零,则该力系一定是平衡力系. (×)5.只要正确地列出平衡方程,则无论坐标轴方向及矩心位置如何取定,未知量地最终计算结果总一致. (√)6.平面汇交力系地合力,等于各分力在互相垂直两坐标轴上投影地代数和. (×)7.力矩和力偶都是描述受力物体转动效果地物理量;力矩和力偶地含义和性质完全相同.( × )8.力对物体地转动效果用力矩来度量,其常用单位符号为N﹒m. (√)9.力矩使物体绕定点转动地效果取决于力地大小和力臂地大小两个方面. (×)10.同时改变力偶中力地大小和力偶臂长短,而不改变力偶地转向,力偶对物体地作用效果就一定不会改变. ( × ) 11.力偶矩地大小和转向决定了力偶对物体地作用效果,而与矩心地位置无关. (√)三.选择题(B )1.平面汇交力系地合力一定等于________.A.各分力地代数和B.各分力地失量和C.零(A )2.如图2—1所示地两个三角形,________是平衡力系.A.图aB.图bC.两个都不是(A )3.力使物体绕定点转动地效果用_______来度量.A.力矩B.力偶矩C.力地大小和方向(C )4.如图2—2所示中地______正确表示了力F对A点之矩Ma(F)2FL.(C )5.力偶可以用一个_______来平衡.A.力B.力矩C.力偶(C )6.力矩不为零件地条件是_______.A.作用力不等于零B.力地作用线不通过矩心C.作用力和力臂均不为零(C )7.如图2—3所示地各组力偶中,两个力偶等效地是_______.(C )8.为便于解题,力地投影坐标轴方向一般应按_______选取,且将坐标原点与汇交点重合.A. 水平或者铅垂B. 任意C. 尽量与未知力垂直或多数力平行四.简答题1.如图2—4所示地钢架,A、D两点上地力F1、F2地作用线交于B点,若在D点上加力F3,并使钢架平衡,则力F3地作用线一定通过哪一点?其指向如何?答:通过B点,由B点指向D点.因为在主动力F1地作用下,C点地运动趋势方向向上,根据三力平衡汇交定理可知F3地方向是由B点指向D点.2.如图2-5所示,刚体受两力偶(F1,F1’)和(F2,F2’)作用,其力多边形恰好闭合,刚体处于平衡状态吗?答:刚体不会平衡.因为刚体受力偶(F1,F1’)和(F2,F2’)作用产生顺时针方向转动.3.如图2-6中,半径为r地圆盘在力偶M=Fr地作用下转动,如在盘地r/2处加一力F’,且F’=2F,便可使圆盘得到平衡,说明力偶距可用一个力来平衡,对吗?答:不对.力偶距是由力F’对O点地产生地距相平衡地.4.按图2-7所示a.b两种不同地捆法(a<β)吊起同一重物,哪种捆法易断?为什么?答:a图易断.计算起吊重物地钢丝绳强度时,应考虑起吊重物上升时地加速度,因为此时钢丝绳所受地拉力最大,应加上一定地安全系数.如图所示a<120°且越小越好;当a=180时,钢丝绳受力无穷大,无法保证其工作地安全性.5.结合图2-8所示地实例说明里偶地等效性.答:力偶地等效性有:(1)只要保持力偶矩大小和转向不变,力偶可在其作用面内任意移动,而不改变其作用效应.(2)只要保持力偶距大小和转向不变,可以同时改变力偶中力地大小和力偶臂地长短,其作用效果不变.图中d1<d2,若F1×d2=F2×d1,只要F2>F1,丝锥地转动效应会保持不变.五.计算题1.如图2—9所示,已知:F1=F2=F3=F4=40N.试分别求出各力在X,Y轴上地投影.解:F1x=F1·cos30°=34.64NF1y =F1·cos30°=20NF2x=0F2y=-F2=-40NF3x=-F3=-40NF3y=0F4x=-F4·cos135°=-28.28NF4y=F4·cos45°=28.28N2.试求图2—10所示中各力在X轴和Y轴上地投影.已知F1=F2=F4=100N,F3=F5=150N,F6=200N.解:F1x=F1=100NF1y=0NF2x=0NF2y=F2=100NF3x=F3·cos30°=129.9NF3y=F3·cos60°=75NF4x=F4·cos60°=50NF4y=-F4·cos150°=-86.6NF5x=F5·cos60°=75NF5y=-F5·cos150°=-129.9NF6x=-F6·cos120°=-100NF6y=-F6·cos150°=-173.2N3.试求图2—11所示中各力分别对O点和对A点地力矩.(用代数式表示)解:Mo(F1) =F1×1=F1M A(F1) =-F1×1=-F1Mo(F2) =-F2×2=-2F2M A(F2) =-F2×4=-4F2Mo(F3) =F3×0=0M A(F3) =F3×1×sin45°=0.707F3Mo(F4) =F4×3=3F4M A(F4) =F4×4=4F4Mo(F5) =F5×1.141=1.141F5M A(F5) =-F5×1×sin45°=-0.707F54.计算图2—12所示中力F对B点地力矩.已知F=50N,la=0.6m ,a=30°.(a) M B(F) =F1·la=30N·m(b) M B (F) =F 1·la·cosa =25.98N·m5.如图2—13所示矩形板ABCD 中,AB =100mm,BC =80mm,若力F =10N,a =30°.试分别计算力F 对A 、B 、C 、D 各点地力矩.解: ()0A M F N m =⋅()sin B M F F AB α=-∙∙1101005002N mm =-⨯⨯=-⋅ ()cos sin C M F F BC F AB αα=∙∙-∙∙31108010100192.822N mm =⨯⨯-⨯⨯=⋅ ()cos 0D M F F AD α=∙∙+31080692.82N mm =⨯⨯=⋅ 6. 如图2—15所示,已知:F =100N,La =80mm,Lb =15mm .试求力F 对点A 地力矩.解:(a) ()cos30sin 30A b a M F F l F l =-∙︒∙+∙︒∙ 311001510080 2.70122N m =-⨯⨯+⨯⨯=⋅ (b )()cos 60sin 60A a b M F F l F l =∙︒∙+∙︒∙131008010015 5.29922N m =⨯⨯+⨯⨯=⋅7.如图2-15所示为拖拉机制动装置,制动时用力F踩踏板,通过拉杆CD而使拖拉机制动. 设F=100N,踏板和拉杆自重不计.求图示位置拉杆地拉力FD及铰链支座B地约束反力. 解:(1)取踏板ABC为研究对象由三力平衡定理可知:B点地约束反力FB通过汇交点O,如图所示以O点为坐标原点建立坐标系.(2)做投影Fx=-F·cos135°=-0.707F F Y=-F·cos135°=-0.707FF D x=F D F DY=0F B x=-F B·cos135°=-0.866F B F BY=F B·cos60°=0.5F B(3)列方程由ΣFix=0 : Fx+F D x+F B x=0由ΣFi Y=0 : F Y+F DY+F BY=0(4) 解方程解方程得到:F D=193.2NF B=141.2N。
工程力学(第2版)第2章 平面力系题库:主观题(1-10)道 + 计算题(11-36)道 + 填空题(37-52)道 + 选择题(53-69)道 + 判断题(70-85)道 一、主观题2-1 如何利用几何法和解析法求平面汇交力系的合力?答案:利用几何法时,可根据力的平行四边形法则或作力多边形得到合力;利用解析法时,可先求Rx x Ry y F F F F ⎧=⎪⎨=⎪⎩∑∑,进而得到()()()()cos ,,cos ,RRx Ry x y R Rx R R Ry RF F F F F F i F F F j F F ⎧=+=+⎪⎨⎪==⎩∑∑ 知识点:2.1节 参考页:P19-P20 学习目标:1 难度:12-2 指出思考题2-2图的各图中,哪个是力系的合力?答案:图(a ),1F 是合力;图(b ),合力为零;图(c ),2F 是合力。
知识点:2.1节 参考页:P19-P20 学习目标:1 难度:22-3 用解析法求合力时,若选不同的直角坐标轴,所得的合力是否相同?答案:当选择不同的坐标轴时,所得力的投影不同,但合力的大小和方向是相同的。
知识点:2.1节 参考页:P20 学习目标:1 难度:22-4 已知某一平面一般力系向A 点简化得到的主矢50 N AF '=,主矩20 N m A M =⋅,试求原力系向B 点简化结果。
其中20 mm AB =。
答案:50 N BA F F ''==0350cos302010 N m A B M F -⎛⎫'=⨯⨯=⋅ ⎪⎝⎭()20 N m A B A B M M M F ⎛⎫'=+=+⋅ ⎪⎝⎭知识点:2.3节参考页:P24 学习目标:3 难度:22-5 思考题2-5图所示力F 和力偶,F F ⎛⎫''' ⎪⎝⎭对轮的作用有何不同?设轮轴静止,2F F F '''=-=。
范钦珊教育教学工作室FAN Qin-Shan’s Education & Teaching StudioeBook工程力学习题详细解答(教师用书)(第2章)2006-12-18第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。
二力作用线之间的距离为d 。
试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。
解:由图(a),假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++-x F x d F ,d x =∴,F F F F =-=∴2R , 方向如图示。
合力矢量属于滑动矢量。
2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。
若已知:M A =20 kN.m 、M B =0和M C =-10kN.m,求:这一力系最后简化所得合力的大小、方向和作用线。
解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且 CD AG 2=(图(a )) 在图(a )中: 设 OF = d ,则 θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD -==(2)即 θθs i n )25.4(2s i n)3(dd -=+ d d -=+93 3=d∴ F 点的坐标为(-3, 0) 合力方向如图(a ),作用线如图过B 、F 点; 34tan =θ 8.4546sin 6=⨯==θAG8.4R R ⨯=⨯=F AG F M Ak N 6258.420R ==F 即 )k N 310,25(R =F作用线方程:434+=x y讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。
第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
工程力学(二)知到章节测试答案智慧树2023年最新江西理工大学第一章测试1.一动点沿一曲线作匀加速运动,则该点的切向加速度一定()。
参考答案:与速度同号2.点沿其轨迹运动时()。
参考答案:若a t = 常量、a n不等于 0,则点作匀变速曲线运动3.已知动点沿半径为R=2m的圆周运动,其运动规律为s=t2(弧长s以米计,时间t以秒计),当t=1s时,该动点的加速度大小为()m/s2。
参考答案:4.法向加速度反映了()。
参考答案:速度方向的变化率5.动点作曲线运动时,若加速度方向始终与速度方向垂直,动点的运动并不一定就是圆周运动。
()参考答案:对6.在自然坐标系中,如果速度v = 常数,则加速度a = 0。
()参考答案:错7.动点沿某一轨迹运动时,若始终有速度和加速度方向垂直,则此动点必作匀速运动。
()参考答案:对第二章测试1.刚体运动时,若体内任意直线始终保持与原来位置(),这种运动称为平移。
参考答案:平行2.刚体的简单运动为平行移动和定轴转动,下列表述正确的是()。
参考答案:若刚体运动时,刚体内(或其延伸部分)有两点始终固定不动,则该刚体一定作定轴转动。
3.刚体绕O轴转动,在垂直于转动轴的某平面上有A,B两点,已知OA=2OB,某瞬时a A=10m/s2,方向如图所示。
则此时B点加速度的大小为()m/s2。
参考答案:54.作定轴转动的刚体,任一点切向加速度指向()角加速度转向。
参考答案:顺着5.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平行移动。
()参考答案:错6.若刚体运动时,刚体内(或其延伸部分)有两点始终固定不动,则该刚体一定作定轴转动。
()参考答案:对第三章测试1.在推导动点的速度合成定理时,并没有限制动参考系作什么样的运动,也就是说动参考系可以是任何一种运动。
若在不同的瞬时,动点的牵连速度大小、方向都相同,则说明动参考系作的是()。
参考答案:匀速直线平移2.某人乘自动扶梯上楼,同时在运行的扶梯上向下行走,取人为动点,动系固结于作平移的自动扶梯上,于是此人某瞬时所站梯板对地面的速度应为()速度。
工程力学课后题答案2习题解答第二章汇交力系第二章汇交力系习题 2.1 在刚体的A点作用有四个平面汇交力。
其中F,2kN,F=3kN,F=lkN, F=2.5kN,1234方向如题2.1图所示。
用解析法求该力系的合成结果。
题2.1图0000FXFFFFKN,,,,,,cos30cos45cos60cos451.29解 ,Rx14230000FYFFFFKN,,,,,,sin30cos45sin60cos452.54 ,Ry142322 FFFKN,,,2.85RRxRyFRy0 (,)tan63.07,,,FXarcRFRx2.2 题2.2图所示固定环受三条绳的作用,已知F,1kN,F=2kN,F=l.5kN。
求该力系的123合成结果。
F1F2F3解:2.2图示可简化为如右图所示0FXFFKN,,,,cos602.75 ,Rx230FYFFKN,,,,,sin600.3 ,Ry1322 FFFKN,,,2.77RRxRyFRy0 (,)tan6.2,,,,FXarcRFRx7习题解答第二章汇交力系 2.3 力系如题2.3图所示。
已知:F,100N,F=50N,F=50N,求力系的合力。
123F1F2F3 解:2.3图示可简化为如右图所示800 ,,,,,BACarctan5360FXFFKN,,,,cos80, ,Rx32FYFFKN,,,,sin140, ,Ry1222 FFFKN,,,161.25RRxRyFRy0 (,)tan60.25,,,FXarcRFRx ,2.4 球重为W,100N,悬挂于绳上,并与光滑墙相接触,如题2.4 图所示。
已知,,,30试求绳所受的拉力及墙所受的压力。
F拉F推OW题2.4图解:2.4图示可简化为如右图所示XFF,,,sin0, ,拉推YF,,,cosW0, ,拉?,,FF115.47N57.74N,拉推墙所受的压力F=57.74N ?2.5 均质杆AB重为W、长为 l ,两端置于相互垂直的两光滑斜面上,如题2.5图所示。
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
第二章 平面汇交力系与平面力偶系2−1分别用几何法和解析法求图示四个力的合力。
已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。
解: (一) 几何法用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。
从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。
(二) 解析法以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。
首先计算合力在坐标轴上的投影N79.68511002180103605121103N85.152100502180101605221101421R 4321R =⨯-⨯+⨯=-+==-=⨯-+⨯+⨯-=-++-==∑∑F F F F F F F F F F F y y x x然后求出合力的大小为N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F设合力F R 与x 轴所夹锐角为θ,则82881838.3785.179.68tan R R '︒====θθxy F F再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。
习题2−1图(b)(c) 2 4(a) 0 25 50kN2−2一个固定的环受到三根绳子拉力F T1 、F T2 、F T3的作用,其中F T1,F T2的方向如图,且F T1=6kN ,F T2=8kN ,今欲使F T1 、F T2 、F T3的合力方向铅垂向下,大小等于15kN ,试确定拉力F T3的大小和方向。
解: 以汇交点为坐标原点,建立直角坐标系xOy ,如图b 所示。
计算合力在坐标轴上的投影)2(15sin 238sin 30cos )1(0cos 21860cos 30sin 332R 3321R -=⨯-⨯--=-︒-===-⨯+=-︒+==∑∑θθθθT RT T y yT T T T x x F F F F F F F F F F F F由式(1)、(2)联立,解得4538,85.123'︒==θkN F T 。
2−3图示三角支架由杆AB 、AC 铰接而成,在铰A 处作用着力F ,杆的自重不计,分别求出图中三种情况下杆AB 、AC 所受的力。
习题2−2图(b) (a) FA(a)(b) 习题2−3图(c)解:建立直角坐标系xOy ,如图g 所示。
(a )取节点A 为研究对象。
其受力如图d 所示。
列平衡方程F F F F F F FF F F F FAC AB C A AB xAC C A y58.05.0155.160cos 060cos ,0155.1060sin ,0=⨯=︒==︒-===-︒=∑∑(b )取节点A 为研究对象。
其受力如图e 所示。
列平衡方程)2(030sin 60sin ,0)1(030cos 60cos ,0=-︒+︒==︒-︒=∑∑F F F FF F F B A AC yAB C A x由式(1)、(2)联立,解得F F F F AC AB 87.0,50.0==。
(c )取节点A 为研究对象。
其受力如图f 所示。
列平衡方程FF F F F F FF F F F FAC AB B A AC yABAC AB C A x58.0060sin 60sin ,0060cos 60cos ,0===-︒+︒===︒-︒=∑∑2−4杆AB 长为l ,B 端挂一重量为G 的重物,A 端靠在光滑的铅垂墙面上,而杆的C 点搁在光滑的台阶上。
若杆对水平面的仰角为θ,试求杆平衡时A 、C 两处的约束力以及AC 的长度。
杆的自重不计。
解:取整体为研究对象,其上受一汇交于O 点的平面汇交力系作用,如图b 所示。
建(f)(e)(d F F AB F AC 60° A Ox y (g)习题2−4图(a)x (b)立直角坐标系xAy ,如图b 所示。
列平衡方程θθθθθθθθGtg G F F F F FG GF G F FNC NA NC NA xNC C N y====-====-=∑∑cos sin sin 0sin ,0sec cos 0cos ,0在直角三角形ABO 中AB AO=θcos ,则θcos l AO =。
在直角三角形AOC 中AOAC =θcos ,则θθ2cos cos l AO AC ==。
2−5图示铰接四连杆机构中,C 、D 处作用有力F 1、F 2。
该机构在图示位置平衡,各杆自重不计。
试求力F 1和F 2的关系。
解:(1)取节点C 为研究对象,受力如图b 所示.。
建水平的x 轴如图b 所示.,列平衡方程)1(030cos 15cos ,01=︒+︒=∑F F FCD x(2)取杆CD 为研究对象,受力如图c 所示,其中F ′CD =–F CD (F ′CD =F CD )。
由二力平衡知F ′DC =F ′CD =F CD(3)取节点D 为研究对象,受力如图d 所示.。
其中F DC =–F ′DC (F DC = F ′DC = F CD )。
建y 轴与力F DB 垂直,如图d 所示.,列平衡方程)2(030sin 60sin 030sin 60sin ,022=︒+︒=︒+︒=∑F F F F FCD DC y由方程(1)、(2)联立可得644.060sin 30cos 15cos 30sin 21=︒︒︒︒=F F 习题2−5图(a)F ′CD(c)F (b)(d)22−6用一组绳挂一重量G =1kN 的物体,试求各段绳的拉力。
已知1,3两段绳水平,且α=45º,β=30º。
解:(1)取物体及铅垂的绳子为研究对象,其上一汇交于A 点的平面汇交力系作用,如图b 所示。
建立直角坐标系xOy ,如图d 所示。
列平衡方程kNG G F F F F FkN G GG F G F FT T T T xT T y145cos 2cos 0cos ,041.112245sin sin 0sin ,0212!22==︒===+-==⨯==︒===-=∑∑αααα (2)取节点B 为研究对象,受力如图c 所示,其中F ′T 2=–F T 2(F ′T 2=F T 2=1.41kN )。
列平衡方程kN F F F F F F F kNF F F F FT T T T T T x T T T T y58.12115.12241.130sin 45cos 0sin cos ,015.130cos 45sin 41.130cos 45sin 0sin cos ,04234232424=⨯+⨯=︒+︒'==-'-==︒︒⨯=︒︒'=='-=∑∑βααβ2−7重物M 悬挂如图,绳BD 跨过滑轮且在其末端D 受一大小为100N 的铅垂力F 的作用,使重物在图示位置平衡。
已知α=45º,β=60º。
不计滑轮摩擦,试求重物的重量G 及绳AB 段的拉力。
习题2−6图2(b)T 3(c) (a) Oxy(d)习题2−7图(a)F (b)解:取物体及铅垂的绳子为研究对象,受力如图b 所示。
由于绳子的张力处处相等,则F T 的大小F T =F ,方向如图b 所示。
列平衡方程N F F G G F F F NF F F F FT TAB T TAB y T TAB T TAB x60.136211002249.12260cos 45cos 0cos cos ,049.12245sin 60sin 10045sin 60sin 0sin sin ,0=⨯+⨯=︒+︒==-+==︒︒⨯=︒︒==+-=∑∑βαβα2−8试计算下列各图中力F 对O 点之矩。
解:(a )M O =Fl ;(b )M O =0;(c )M O =Fl sin α;(d )M O =−Fa ;(e )M O =F (l +r );(f )M O =Fl sin α2−9已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
试求在图a ,b ,c 三种情况下,支座A 和B 的约束力。
(a)(b)(c)F(f) (e) (d)习题2−8图解:(a )取梁AB 为研究对象。
主动力为作用其上的一个主动力偶。
B 处是滑动铰支座,约束力F B 的作用线垂直于支承面;A 处是固定铰支座,其约束力方向不能确定;但梁上荷载只有一个力偶,根据力偶只能与力偶平衡,所以力F A 与F B 组成一个力偶,即F A =−F B ,力F A 与F B 的方向如图d 所示。
列平衡方程lMF F M l F MB A A i===-=∑00(b )取梁AB 为研究对象。
主动力为作用其上的一个主动力偶。
B 处是滑动铰支座,约束力F B 的作用线垂直于支承面;A 处是固定铰支座,其约束力方向不能确定;但梁上荷载只有一个力偶,根据力偶只能与力偶平衡,所以力F A 与F B 组成一个力偶,即F A =−F B ,力F A 与F B 的方向如图e 所示。
列平衡方程lMF F M l F MB A A i===-=∑00(c )取梁AB 为研究对象。
主动力为作用其上的一个主动力偶。
B 处是滑动铰支座,约束力F B 的作用线垂直于支承面;A 处是固定铰支座,其约束力方向不能确定;但梁上荷载只有一个力偶,根据力偶只能与力偶平衡,所以力F A 与F B 组成一个力偶,即F A =−F B ,力F A 与F B 的方向如图f 所示。
列平衡方程2−10简支梁AB 跨度l =6m ,梁上作用两个力偶,其力偶矩M 1=15kN·m ,M 2=24kN·m ,转向如图所示,试求支座A 、B 处的约束力。
l l l(a ) (c )(b) 习题2−9图l (e ) F l (d ) F l (f )B)cos (0cos 0θθl M F F M l F M B A A i ===-⨯=∑解:取简支梁AB 分析。
主动力为作用其上的两个主动力偶。
B 处是滑动铰支座,约束力F B 的作用线垂直于支承面;A 处是固定铰支座,根据力偶只能与力偶平衡,所以力F A 与F B 组成一个力偶,即F A =−F B ,力F A 与F B 的指向假设如图b 所示。
列平衡方程kNl M M F F M M l F MB A A i5.16241502121=+-=+-===-+=∑2−11铰接四连杆机构OABO 1在图示位置平衡,已知OA =0.4m ,O 1B =0.6m ,一个力偶作用在曲柄OA 上,其力偶矩M 1=1N·m ,各杆自重不计,求连杆AB 所受的力及力偶矩M 2的大小。