湖北省随州市第一中学2020-2021学年上学期高一9月月考数学试卷
- 格式:docx
- 大小:167.68 KB
- 文档页数:4
湖北省随州一中2020-2021学年高一数学上学期期中试题本试卷共4页,全卷满分150分,考试时间120分钟。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}220A x x x =--≤,{B x y ==,则A B =( )A .{}12x x -≤≤ B .{}02x x ≤≤ C .{}1x x ≥-D .{}0x x ≥2.已知函数23x y a -=+ (0a >且1≠a )的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log (3)f =( )A .2-B .1-C .1D .2 3.已知幂函数223()(22)nnf x n n x -=+-⋅在(0,)+∞上是减函数,则n 的值为( )A .3-B .1C .3D .1或3-4.企业在生产中产生的废气要经过净化处理后才可排放,某企业在净化处理废气的过程中污染物含量P (单位:mg /L )与时间t (单位:h )间的关系为0ektP P -=(其中0P ,k 是正的常数).如果在前10h 消除了20%的污染物,则20h 后废气中污染物的含量是未处理前的( )A .40%B .50%C .64%D .81%5.下列各组函数中,表示同一函数的是( )A .()2f x x =+与24()2x g x x -=-B .()1f x x =+与1,1,()1, 1.x x g x x x --<⎧=⎨+≥⎩C .()1f x =与0()g x x =D .()32(R)f x x x =+∈与()32(R)g t t t =+∈6.已知函数2240()0x x x f x x x ⎧+<=⎨-≥⎩,,,若()()5f f m ≥,则实数m 的取值范围是( )A.)+∞ B.⎡⎣ C.(,-∞D.⎡⎤⎣⎦7.若函数()()()()f x x a x b a b =-->的图像如图所示,则()xg x a b -=+的图像可能是( )A .B .C .D .8.若函数y =f (x )图象上存在不同的两点A ,B 关于y 轴对称,则称点对[A ,B ]是函数y =f (x )的一对“黄金点对”(注:点对[A ,B ]与[B ,A ]可看作同一对“黄金点对”).已知函数f (x )=222040412324x x x x x x x x ,<,,>⎧⎪-+≤≤⎨⎪-+⎩,则此函数的“黄金点对“有( ) A .0对B .1对C .2对D .3对二、选择题:本题共4小题,每小题5分,共20分。
2021年湖北省随州市曾都区第一中学高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.1 B.3 C.﹣3 D.0参考答案:C【考点】函数的值.【分析】由奇函数性质得当x>0时,f(x)=﹣2x2﹣x,由此能求出f(1).【解答】解:∵f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,∴当x>0时,f(x)=﹣2x2﹣x,∴f(1)=﹣2﹣1=﹣3.故选:C.2. 已知,若,则下列不等式成立的是()A. B.C. D.参考答案:C【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.3. 函数的定义域是()(A)(B)(C)(D)参考答案:D略4. 在等差数列中,,,则()A、48B、50C、60 D、80参考答案:C略5. ( )A、 B、 C、 D、0参考答案:B6. 一个几何体的三视图如图所示,则这个几何体的表面积等于()。
A.72 B. 66 C.60 D.30参考答案:A7. 设,则(★)A.B.C.D.参考答案:C略8. 将函数的图象向右平移个单位长度,所得图象对应的函数()A. 在区间上单调递增B. 在区间上单调递增C. 在区间上单调递增D. 在区间上单调递增参考答案:A【分析】函数的图象向右平移个单位长度,所得图象对应的函数的解析式为:,单调递增区间:,单调递减区间:,由此可见,当时,函数在上单调递增,故本题选A.【详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.9. 若函数在区间上为减函数,则实数的取值范围是()A. B. C. D.参考答案:A10. 将个正整数、、、…、()任意排成行列的数表.对于某一个数表,计算各行和各列中的任意两个数、()的比值,称这些比值中的最小值为这个数表的“特征值”.当时,数表的所有可能的“特征值”最大值为()A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 函数的单调递增区间是参考答案:12. 向量=(2,3),=(﹣1,2),若m+与﹣2平行,则m 等于.参考答案:【考点】平面向量共线(平行)的坐标表示.【分析】由已知向量的坐标求得m +与﹣2的坐标,再由向量平行的坐标表示列式求得m的值.【解答】解:∵ =(2,3),=(﹣1,2),∴m +=m(2,3)+(﹣1,2)=(2m ﹣1,3m+2),﹣2=(2,3)﹣2(﹣1,2)=(4,﹣1).又m+与﹣2平行,∴(2m﹣1)?(﹣1)﹣4(3m+2)=0,解得:m=﹣.故答案为:.【点评】平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a1,a2),=(b1,b2),则⊥?a1a2+b1b2=0,∥?a1b2﹣a2b1=0,是基础题.13. 将一枚硬币连续抛掷3次,正面恰好出现两次的概率为_ _.参考答案:略14. 在△ABC中,若,则△ABC的形状是____.参考答案:钝角三角形【分析】由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为:钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题15. (5分)从30名男生和20名女生中,采用分层抽样方法抽取一个容量为10的样本,则抽到每个人的概率是.参考答案:考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义和概率的性质进行求解即可.解答:根据概率的性质可知用分层抽样方法抽取一个容量为10的样本,则抽到每个人的概率是=,故答案为:点评:本题主要考查分层抽样和概率的计算,根据条件建立比例关系是解决本题的关键.比较基础.16. 若函数与函数图象有且只有两个交点,则实数的取值范围是。
2020-2021学年湖北省随州一中高一(上)月考物理试卷(9月份)试题数:18,满分:1001.(单选题,3分)在物理学的重大发现中科学家们创造了许多物理学研究方法,如控制变量法、极限思想法、等效替代法、理想模型法、微元法等等,以下叙述中错误的是()A.说生活中的下落运动遵循自由落体运动规律采用了理想模型的方法B.在不需要考虑物体的大小和形状时,用质点来代替实际物体采用了理想模型的方法C.根据速度定义式v=xt ,当△t非常非常小时,xt就可以表示物体在t时刻的瞬时速度,该定义采用了控制变量法D.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看做匀速直线运动,然后把各小段的位移相加,这里采用了微元法2.(单选题,3分)刻舟求剑的故事家喻户晓,“舟已行矣,而剑不行”这句话所选用的参考系是()A.舟B.舟上的人C.地面D.流动的水3.(单选题,3分)在2018年11月6日9时开幕的第十二届航展上,中国航天科工集团有限公司正在研发的高速飞行列车首次亮相。
其利用磁悬浮技术及近真空管道线路大幅度减小阻力,并具有强大的加速能力及高速巡航能力。
未来项目落地时最大运行速度可达4000km/h。
从郑州到北京的路程为693km,只要11.4min就可到达,真是“嗖”的一声,人就到了。
根据以上信息判断,下列说法正确的是()A.“2018年11月6日9时”和“11.4min”都是时刻B.从郑州到北京的路程为693km,这个“路程”是个矢量C.可以求得列车经过途中某位置时的速度为3650km/hD.若研究列车经过某一路标所用的时间,不能将列车看作质点4.(单选题,3分)在匀变速直线运动中,下列说法正确的是()A.相同时间内位移的变化相同B.相同时间内速度的变化相同C.相同位移内速度的变化相同D.相同位移内的平均速度相同5.(单选题,3分)质点做直线运动的速度-时间图象如图所示,该质点()A.在第1秒末速度方向发生了改变B.在第2秒末加速度方向发生了改变C.在前2秒内发生的位移为零D.第2秒末和第6秒末的位置相同6.(单选题,3分)关于自由落体运动(g取10m/s2),下列说法中不正确的是()A.它是竖直向下的、v0=0、a=g的匀加速直线运动B.在开始连续的三个1 s内通过的位移之比是1:3:5C.在开始连续的三个1 s末的速度大小之比是1:2:3D.从开始运动到距下落点5 m、10 m、15 m所经历的时间之比为1:2:37.(单选题,3分)如图所示,以8m/s的速度匀速行驶的汽车即将通过路口,有一位老人正在过人行横道,此时汽车的车头距离停车线8m。
英语试卷注意事项:1.答卷前,考生务必将自己的姓名、考号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the woman looking for?A. A cinema .B. A subway station.C. A fruit shop .2. What do we know about Jack?A. He doesn't work on the weekend .B. He has a large family to support .C. He is confused with his work .3. What does the man mean?A. He thinks everyone should be equal .B. He is afraid to be treated unequally.C.He agrees with the woman .4.What does the woman think of chemistry ?A. Boring.elessC. Hard5. What are the two speakers mainly talking about?A. The man’s apartment.B. A high building.C.Lifts.第二节所下面5段对话或独白。
湖北省荆州中学【最新】高一上学期9月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合U ={1,2,3,4,5,6},S ={1,4,5},T ={2,3,4},则S ∩(∁U T )等于( ) A .{1,4,5,6} B .{1,5}C .{4}D .{1,2,3,4,5}2.已知函数()y f x =,则该函数与直线x a =的交点个数有( ) A .1个 B .2个C .无数个D .至多一个3.已知2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,则44()()33f f +-的值等于( )A .2-B .4C .2D .4-4.已知集合{}{}(,)2,(,)4,M x y x y N x y x y =+==-=那么集合M N ⋂为( ) A .3,1xyB .()3,1-C .{}31,-D .3,15.函数1()3f x x =+的定义域为( ) A .(3,0]- B .(3,1]- C .(,3)(3,0]-∞--D .(,3)(3,1]-∞--6.已知()f x 的定义域为[1,5]-,则(25)f x +的定义域为( )A .[1,5]-B .[3,15]C .[3,0]-D .[0,3]7.已知()224f x x x -=-,那么()f x = ( ) A .284x x --B .24x x --C .28x x +D .24x -8.如果奇函数()f x 在区间[2,8]上是减函数且最小值为6,则()f x 在区间[-8,-2]上是( )A .增函数且最小值为6-B .增函数且最大值为6-C .减函数且最小值为6-D .减函数且最大值为6-9.已知函数2()1xf x a x =≥-在区间[3,5]上恒成立,则实数a 的最大值是 A .3B .13C .25D .5210.函数254()2x x f x x-+=-在(,2)-∞上的最小值是A .0B .1C .2D .311.已知定义域为R 的函数()y f x =在()0,4上是减函数, 又()4y f x =+是偶函数, 则( )A .()()()257f f f <<B .()()()527f f f <<C .()()()725f f f <<D .()()()752f f f <<12.已知奇函数()f x 的图象是两条直线的一部分(如图所示),其定义域为[1,0(0,1]-⋃,则不等式()()1f x f x -->-的解集( )A .1|02x x ⎧⎫-≤<⎨⎬⎩⎭B .{|11x x -≤≤且0}x ≠C .1|12x x ⎧-≤<-⎨⎩或01}x < D .{|10x x -≤<或112x <}二、填空题13.若不等式210kx kx --<对一切实数x 都成立,则实数k 的取值范围是_______.14. 设函数f (x )=(1)()x x a x++为奇函数,则a =________.15.函数y =______.三、双空题16.甲乙两地相距500km,汽车从甲地匀速行驶到乙地,速度v 不能超过120km/h.已知汽车每.小时运输成本为29360250v +元,则全程运输成本与速度的函数关系是y =______,当汽车的行驶速度为______km/h 时,全程运输成本最小.四、解答题17.设集合{}33A x a x a =-<<+,{|1B x x =<-或}3x >. (1)若3a =,求AB ;(2)若A B =R ,求实数a 的取值范围.18.设函数()f x 是定义域在R 上的奇函数,当0x >时,2()331f x x x =-+-,求()f x 在R 上的解析式.19.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算:某人在此商场购物总金额为x 元,可以获得的折扣金额为y 元.(1)写出y 关于x 的解析式. (2) 若y=30,求此人购物实际所付金额. 20.已知函数2()2(1)f x x a x a =+-+. (1)当1a =-时,求()f x 在[3,3]-上的值域; (2)求()f x 在区间[3,3]-上的最小值.21.规定[]t 为不超过t 的最大整数,例如[12.6]12=,[ 3.5]4-=-.对任意实数x ,令1()[4]f x x =,()4[4]g x x x =-,进一步令21()(())f x f g x =.(1)分别求1716f ⎛⎫⎪⎝⎭和2716f ⎛⎫⎪⎝⎭; (2)求x 的取值范围,使它同时满足1()1f x =,2()3f x =. 22.已知()21ax bf x x +=+是定义在()-1,1上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求()f x 的解析式;(2)判断()f x 的单调性,并证明你的结论; (3)解不等式 ()()220f t f t -+<.参考答案1.B 【分析】由集合{}1,2,3,4,5,6U =,{}2,3,4T =,由补集的运算有{}1,5,6U C T =,又{}1,4,5S =,再结合交集的运算即可得解. 【详解】解:因为集合{}1,2,3,4,5,6U =,{}2,3,4T =, 所以{}1,5,6U C T =,又{}1,4,5S =, 所以{}()1,5U S C T ⋂=, 故选B. 【点睛】本题考查了补集,交集的运算,重点考查了对交集、补集概念的理解能力,属基础题. 2.D 【解析】试题分析:此题出得巧,此时无形胜有形,充分检验了学生对函数概念的掌握情况,根据函数的概念在定义域范围内任意的一个自变量x 都有唯一的函数值对应,直线x a =与函数()y f x =的图像最多只有一个交点,从而得出正确的答案是D.考点:1.函数的概念;2.函数图像. 3.B 【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,故选B.考点:分段函数. 4.D【分析】解对应方程组,即得结果 【详解】由2,4x y x y +=⎧⎨-=⎩得3,1x y =⎧⎨=-⎩所以(){}3,1M N ⋂=-,选D. 【点睛】本题考查集合的交集,考查基本分析求解能力,属基础题. 5.C 【分析】直接利用负数不能开偶次方根和分母不能为零求解. 【详解】 因为030x x -≥⎧⎨+≠⎩,所以0x ≤且3x ≠-,所以函数1()3f x x =+的定义域为(,3)(3,0]-∞--, 故选:C 【点睛】本题主要考查函数定义域的求法,属于基础题. 6.C 【分析】根据()f x 的定义域为[1-,5]即可得出:要使得(25)f x +有意义,则需满足1255x -+,解出x 的范围即可. 【详解】()f x 的定义域为[1-,5],∴要使(25)f x +有意义,则1255x -+,解得30x -,(25)f x ∴+的定义域为[3-,0].故选:C . 【点睛】本题考查抽象函数定义域的求法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意形如[()]f g x 复合函数的求解原则. 7.D 【解析】因为()224f x x x -=-=()224x --,则()24f x x =-,故选D.点睛: 本题考查函数的表示方法,属于基础题目.求函数解析式的一般方法主要有:待定系数法,配凑法,换元法,构造方程组法,赋值法等.已知函数类型时,比如一次函数,二次函数,反比例函数以及指数函数或者对数函数时,往往使用待定系数法设出函数的表达式,再利用已知条件带入求出参数的值. 8.D 【分析】由奇函数在关于原点对称的两个区间上单调性相同,分析可得答案. 【详解】解:根据题意,()f x 在区间[2,8]上是减函数,且最小值为6,即()86f =,且()6f x ≥,又由()f x 为奇函数, 则()f x 在区间[-8,-2]上是减函数,且()86f -=-,则有()6f x ≤-, 故选:D . 【点睛】本题考查函数的奇偶性、单调性的性质以及应用,注意运用奇函数在关于原点对称的两个区间上单调性相同,属于基础题. 9.D 【分析】根据题意需求出()f x 的最小值,利用分离常数的方法分析函数的单调性,即可求解. 【详解】因为22(1)22()2111x x f x x x x -+===+---,所以函数()f x 在[]3,5上单调递减,函数()f x 的最小值为5(5)2f =,所以52a ≤, a 的最大值是52.故选D. 【点睛】本题主要考查根据函数恒成立求参数,利用函数的单调性求最值,考查逻辑推理和运算求解能力,属于中档题. 10.C 【详解】2541()2222x x f x x x x-+==+-≥--,所以选C.11.B 【分析】根据条件将自变量转化到()0,4上,再根据单调性判断大小 【详解】因为()4y f x =+是偶函数,所以()()44f x f x +=-+ 因此()()5(3),7(1)f f f f ==,因为()y f x =在()0,4上是减函数,所以()()()321,f f f <<()()()527f f f <<,选B 【点睛】本题考查函数单调性与奇偶性的应用,考查基本分析判断能力,属基础题. 12.C 【分析】由奇函数的定义可得,不等式即1(2)f x >-,结合图象求出它的解集. 【详解】由题意可得,不等式()()1f x f x -->-,即()()1()1f x f x f x >--=--,即2()1f x >-,即1(2)f x >-,结合图象可得112x -<-或01x <. 故选:C . 【点睛】本题主要考查奇函数的定义,利用函数图象解不等式,求得不等式即1(2)f x >-,是解题的关键,属于基础题. 13.-4<k ≤0 【分析】对不等式的最高次项的系数进行分类讨论进行求解即可. 【详解】当0k =时,原不等式变为10-<,显然对一切实数x 都成立;当0k ≠时,要想不等式210kx kx --<对一切实数x 都成立,则满足:k 0<且2()40k k ∆=-+<,解得40k -<<,综上所述:实数k 的取值范围是40k -<≤. 【点睛】本题考查了已知不等式恒成立求参数问题.考查了分类讨论思想. 14.1- 【详解】 因为函数f (x )=(1)()x x a x++为奇函数,(11)(1)(11)(1)(1)=(1), 1.11a a f f a ++-+-+∴=--=∴=-经检验符合题意.故答案为1-. 15.12,2⎛⎫- ⎪⎝⎭【分析】由题意首先确定函数的定义域,然后结合复合函数的单调性法则即可确定所给函数的单调递增区间. 【详解】函数有意义,则:260x x -++≥,解得:23x -≤≤, 令()26u x x x =-++,则()u x 在区间12,2⎛⎫- ⎪⎝⎭上单调递增,在区间1,32⎛⎫ ⎪⎝⎭上单调递减,函数y =由复合函数同增异减的法则可得,函数的单调递增区间为:12,2⎛⎫- ⎪⎝⎭. 故答案为:12,2⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查函数定义域的求解,复合函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力. 16.18000018y v v=+(0120)v <≤ 100 【分析】由已知可得汽车从甲地匀速行驶到乙地的时间为500v,结合汽车每小时运输成本为29360250v +元,可得全程运输成本与速度的函数关系式,再由基本不等式可得100v =时,y 取最小值.【详解】甲乙两地相距500km ,故汽车从甲地匀速行驶到乙地的时间为500v, 又由汽车每小时运输成本为29360250v +元, 则全程运输成本与速度的函数关系是()25009180000360180120250y v v v v v ⎛⎫=⋅+=+<≤ ⎪⎝⎭,由基本不等式得180000183600v v +≥=, 当且仅当18000018v v+,即100v =时,取最小值, 故答案为()180000180120y v v v=+<≤,100.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).17.(1){|1x x <-或}0x >;(2)()0,2. 【分析】(1)先求出集合A ,再求A ∪B ;(2)根据A B =R 得到31,33,a a -<-⎧⎨+>⎩解不等式组即得解. 【详解】(1)若3a =,则{}06A x x =<<,故{|1A B x x ⋃=<-或}0x >. (2)若A B =R ,则31,33,a a -<-⎧⎨+>⎩解得02a <<.∴实数a 的取值范围为()0,2.【点睛】本题主要考查集合的补集运算和根据集合的关系求参数的范围,意在考查学生对这些知识的解掌握水平和分析推理能力.18.22331,0()0,0331,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩【分析】设0x <,则0x ->,再利用奇函数的定义得到()f x 的解析式,再将函数写成分段函数的形式.【详解】设0x <,则0x ->,22()3()3()1331f x x x x x ∴-=--+--=--- ()f x 是奇函数,2()()331f x f x x x ∴=--=++,又()f x 是R 上的奇函数,(0)0f ∴=,22331,0,()0,0,331,0.x x x f x x x x x ⎧++<⎪∴==⎨⎪-+->⎩【点睛】本题考查分段函数的奇偶性及解析式的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.19.(1)(2)x="1350 "【解析】解:(1)由题可知: ………6分(2)∵y=30>25∴x >1300∴ 10℅(x -1300)+25="30 " 解得,x="1350 " ………12分20.(1)[5,20]-;(2)2min 73,2,()31,24,155, 4.a a f x a a a a a +≤-⎧⎪=-+--<<⎨⎪-≥⎩【分析】(1)当1a =-时,判断函数在区间[3,3]-的单调性,从而求得最值;(2)函数()f x 的对称轴为1x a =-,讨论对称轴与区间的位置关系,分别求得最小值,最后将函数的最小值写成分段函数的形式.【详解】(1)当1a =-时,2()41f x x x =--,()f x ∴的对称轴为2x =,()f x ∴在[3,2]-上单调递减,在(2,3]上单调递增,min ()(2)5f x f ∴==-,又(3)20f -=,(3)4f =-,()f x ∴在[3,3]-上的值域为[5,20]- .(2)函数()f x 的对称轴为1x a =-,①当13a -≤-,即4a ≥时,()f x 在[3,3]-上单调递增,min ()(3)155f x f a ∴=-=-;②当313a -<-<,即24a -<<时,∴()f x 在[3,1]a --上单调递减,在(1,3]a -上单调递增,2min ()(1)31f x f a a a ∴=-=-+-③当13-≥a ,即2a ≤-时,()f x 在[3,3]-上单调递减,min ()(3)73f x f a ∴==+ 综上所述,2min 73,2,()31,24,155, 4.a a f x a a a a a +≤-⎧⎪=-+--<<⎨⎪-≥⎩【点睛】本题考查一元二次函数的图象和性质,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对区间与对称轴位置关系的讨论. 21.(1)34,3;(2)71162⎡⎫⋅⎪⎢⎣⎭. 【分析】(1)直接利用题目信息的要求求出函数的值;(2)利用已知,1()[4]1f x x ==,()4[4]41g x x x x =-=-,又21()(41)[164]3f x f x x =-=-=,根据规定[]t 为不超过t 的最大整数,可得不等式组,解出即为x 的取值范围.【详解】(1)∵当716x =时,744x =, 1771164f ⎛⎫⎡⎤∴== ⎪⎢⎥⎝⎭⎣⎦,777316444g ⎛⎫⎡⎤=-= ⎪⎢⎥⎝⎭⎣⎦ 211773[3]316164f f g f ⎛⎫⎛⎫⎛⎫⎛⎫∴==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)1()[4]1f x x ==,()4[4]41g x x x x =-=-,21()(41)[164]3f x f x x ∴=-=-=.142,31644,x x <⎧∴⎨-<⎩解得71162x <.故满足题意的x 的取值范围为71162⎡⎫⋅⎪⎢⎣⎭. 【点睛】 本题为创新题,考查函数与方程的综合运用,解题的关键在于对题目中新定义、新概念的理解和应用,例如本题中若[]x a =,则必有+1a x a ≤<成立,属于较难题.22.(1)()21x f x x =+;(2)()f x 在()1,1-上单调递增,证明见解析;(3)12,23⎛⎫ ⎪⎝⎭. 【分析】(1)根据题意,由奇函数的性质可得()00f b ==,又由1225f ⎛⎫=⎪⎝⎭,可得a 的值,代入函数的解析式即可得答案;(2)设1211x x -<<<,由作差法分析()1f x 与()2f x 的大小关系,结合函数单调性的定义,即可得结论; (3)利用函数的奇偶性以及单调性,可以将()()220f t f t -+<转化为22122111t t t t -<-⎧⎪-<-<⎨⎪-<-<⎩,解可得t 的取值范围,即可得答案.【详解】(1)∵()f x 是()1,1-上的奇函数,∴()00f b ==,∴()21ax f x x =+, 又∵1225f ⎛⎫= ⎪⎝⎭, ∴2225112a=⎛⎫+ ⎪⎝⎭,解得1a =, ∴()21x f x x =+;(2)()f x 在()1,1-上单调递增,证明:任意取()12,1,1x x ∈-,且12x x <,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++, ∵1211x x -<<<,∴120x x -<,1210x x ->,2110x +>,2210x +>,∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,1-上单调递增;(3)∵()()220f t f t -+<,∴()()22f t f t -<-,易知()f x 是()1,1-上的奇函数,∴()()f t f t -=-,∴()()22f t f t -<-,又由(2)知()f x 是()1,1-上的增函数,∴22122111t t t t -<-⎧⎪-<-<⎨⎪-<-<⎩, 解得1223t <<, ∴不等式的解集为12,23⎛⎫⎪⎝⎭. 【点睛】本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,考查转化思想,考查学生灵活运用所学知识分析解决问题的能力.。
高中数学资料大全尊敬的读者朋友们:本文档内容是我们精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为资料分析笔记整理的全部内容。
注:资料封面,下载即可删除2020-2021学年湖北省荆州中学高一上学期9月月考数学试题一、单选题1.下列各式表述正确的是( ) A .20{0}x ∈= B .0{(0,0)}∈C .0N ∈D .0∈∅【答案】C【解析】根据元素与集合的关系即可判断每个式子的正误,从而找到正确选项. 【详解】2{0}x =表示集合中有一个元素是20x =,20{0}x ∴∉=,A 错误,{(0,0)}表示集合中有一个元素为(0,0),0{(0,0)}∴∉,B 错误,N 表示自然数集,包含数0,0N ∴∈成立,C 正确, φ表示集合一个元素也没有,0φ∴∉,D 错误.故选:C 【点睛】本题考查集合的含义,以及元素与集合的关系,属于基础题. 2.已知集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .MNB .M N ⊆C .M N ⊇D .M 与N 的关系不确定 【答案】B【解析】整数分为奇数和偶数,由此可得答案. 【详解】 解:∵1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭211,4222n n x x ⎧==+=+⎨⎩或21111,4224n n x n Z ++⎫=+=+∈⎬⎭, 且1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭, ∴M N ⊆, 故选:B .本题主要考查集合间的基本关系,属于基础题. 3.设0a b <<,则下列不等式中正确的是( )A .2a ba b +<<<B .2a ba b +<<C .2a ba b +<<<D 2a ba b +<<< 【答案】B【解析】利用不等式的基本性质和基本不等式即可求出答案. 【详解】解:∵0a b <<,2a b+,a <22a b b b b ++<=,∴2a ba b +<<<, 故选:B . 【点睛】本题主要考查不等式的基本性质和基本不等式的应用,属于基础题. 4.集合{}{}1,2,3,4,(1)()0A B x x x a ==--<若集合{}2,3A B =,则实数a 的范围是( ) A .34a << B .34a <≤C .34a ≤<D .3a >【答案】B【解析】分类讨论a 的值,根据集合间的交集运算,确定实数a 的范围. 【详解】当1a <时,{1}B xa x =<<∣,显然不满足{}2,3A B =当1a =时,B =∅,不满足{}2,3AB =当1a >时,{1}B xx a =<<∣,因为{}2,3A B =,所以34a <≤故选:B 【点睛】本题主要考查了根据交集运算的结果确定参数的范围,属于基础题.5.若集合{}2135A x a x a =+≤≤-,{}322B x x =≤≤,则能使A B ⊆成立的所有a 的集合是( )A .{}19a a ≤≤B .{}69a a ≤≤C .{}9a a ≤D .φ【解析】若A =∅,即2135a a +>-,解得6a <时,满足A B ⊆成立,若A ≠∅,即6a ≥时,要使A B ⊆成立,则2133522a a +≥⎧⎨-≤⎩,即19a a ≥⎧⎨≤⎩,解得19a ≤≤,此时69a ≤≤,综上,9a ≤,故选C.6.已知,a b +∈R ,21a b +=,求11a b+的最小值为( )A .3+B .3-C .D .4【答案】A【解析】由正实数a ,b 满足21a b +=,代入()1111223b aa b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,再利用基本不等式的性质即可得出. 【详解】 解:正实数a ,b 满足21a b +=,则()111122233232b a b aa b a b a b a b a b⎛⎫+=++=+++=+ ⎪⎝⎭当且仅当1a ==时取等号.故选:A 【点睛】本题考查基本不等式的性质,考查乘1法则,考查推理能力与计算能力,属于基础题. 7.已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( ) A .3 B .6C .8D .10【答案】D【解析】列举法得出集合()()()()()()()()()(){}2,1314151324252435354B =,,,,,,,,,,,,,,,,,,,共含10个元素.故答案选D8.若关于x 的不等式243x a a x+≥-对任意实数0x >恒成立,则实数a 的取值范围为( )A .[1,4]-B .(,2][5,)-∞-⋃+∞C .(,1][4,)-∞-⋃+∞D .[2,5]-【答案】A【解析】试题分析:由题意得,因为0x >,则4424x x x x+≥⋅=,当且仅当4x x =,即2x =时等号成立,又关于x 的不等式243x a a x+≥-对任意实数0x >恒成立,则234a a -≤,即,解得14a -≤≤,故选A.【考点】基本不等式的应用;不等式的恒成立问题.二、多选题9.下面关于集合的表示正确的是( )①{2,3}{3,2}≠;②{}{}(,)11x y x y y x y +==+=; ③{}{}11x x y y >=>;④{}{}11x x y y x y +==+= A .① B .②C .③D .④【答案】CD【解析】根据集合中元素的特征,可得判定①不正确;根据集合的表示方法和集合的元素的特征,可判定②不正确;③④正确,即可得到答案. 【详解】根据集合元素的无序性和集合的表示,可得{2,3}{3,2}=,所以①不正确;根据集合的表示方法,可得集合{}(,)1x y x y +=为点集,集合{}1y x y +=表示数集, 所以{}{}(,)11x y x y y x y +=≠+=,所以②不正确;根据集合的表示方法,可得集合{}{}11x x y y >=>,所以③正确; 根据集合的表示方法,可得集合{}{}1,1x x y R y x y R +==+==, 所以{}{}11x x y y x y +==+=,所以④是正确的. 故选:CD. 【点睛】本题主要考查了集合的表示方法及其应用,其中解答中熟记集合的表示方法,合理推算是解答的关键,属于基础题.10.下列四个命题中,是真命题的有( )A .没有一个无理数不是实数B .空集是任何一个集合的真子集C .已知,m n ∈R ,则“||||1m n +>”是“1n <-”的必要不充分条件D .命题“对任意2,220x x x ∈++>R ”的否定是“存在2,220x x x ∈++≤R ” 【答案】ACD【解析】根据实数、空集的概念分别判断A 、B ;举反例判断C ;全称命题的否定为特称命题,D 正确. 【详解】所有的无理数均是实数,A 正确; 空集是任何集合的子集,B 错误;若1n <-,则||1n >,||||1m n +>成立;可取1,1m n ==时,||||21m n +=>,故C 正确;全称命题的否定为特称命题,D 正确. 故选:ACD 【点睛】本题考查实数的概念、空集的概念、必要不充分条件的判断、含有一个量词的命题的否定,属于基础题.11.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的有( )①1ab ≤≤;③222a b +≥;④112a b+≥ A .① B .② C .③D .④【答案】ACD【解析】①.由2a b +=≥②.由()22=++≤+a b a b 判断;③.由()2222a b a b ab +=+-判断;④.由()111111122⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b 判断. 【详解】因为0a >,0b >,2a b +=,所以2a b +=≥1≤,故A 正确;因为()224=++≤+=a b a b 2,故B 错误;因为()2222422+=+-≥-=a b a b ab ,故C 正确;因为()11111111122222⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b ,故D 正确. 故选:ACD 【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于中档题. 12.设a b c >>,使不等式11ma b b c a c+≥---恒成立的充分条件是( ) A .4m ≤ B .3m ≤C .4m ≥D .5m ≤【答案】AB【解析】把不等式11m a b b c a c +≥---恒成立,即a c a c m a b b c --≤+--恒成立,结合基本不等式,求得a c a ca b b c--+--的最小值为4,进而结合选项,即可求解. 【详解】因为a b c >>,可得0,0,0a b b c a c ->->->,又由不等式11m a b b c a c +≥---恒成立,即a c a c m a b b c --≤+--恒成立, 因为()()()()2a c a c a b b c a b b c b c a ba b b c a b b c a b b c---+--+---+=+=++------24≥+=,当且仅当b c a b a b b c --=--时,即2b a c =+时等号成立, 所以a c a ca b b c--+--的最小值为4,故4m ≤, 所以结合选项,可得不等式11m a b b c a c+≥---恒成立的充分条件是4m ≤和3m ≤. 故选:AB. 【点睛】本题主要考查了充分条件的判定及应用,以及利用基本不等式求最小值,其中解答中熟练应用基本不等式求得a c a ca b b c--+--的最小值,结合选项求解是解答的关键,着重考查推理与运算能力.三、填空题13.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 组成的集合C =________.【答案】110,,35⎧⎫⎨⎬⎩⎭【解析】解出集合A ,由A B B =,可得出B A ⊆,然后分B =∅和B ≠∅两种情况讨论,可得出实数a 的值. 【详解】{}{}281503,5A x x x =-+==,且A B B =,B A ∴⊆.当B =∅时,则0a =,此时B A ⊆成立;当B ≠∅时,则0a ≠,此时{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,则有13a=或15a =,解得13a =或15a =.因此,110,,35C ⎧⎫=⎨⎬⎩⎭.故答案为:110,,35⎧⎫⎨⎬⎩⎭.【点睛】本题考查利用集合的包含关系求参数,解题时要对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于基础题.14. 一元二次不等式26x x <+的解集为_________. 【答案】(-2,3)【解析】试题分析:解不等式,解得.【考点】解一元二次不等式.15.若集合{}2|320A x ax x =-+=中至多有一个元素,则实数a 的取值范围是________. 【答案】0a =或98a ≥【解析】条件可转化为方程2320ax x -+=至多有一个根,然后分0a =和0a ≠两种情况讨论即可. 【详解】因为集合{}2|320A x ax x =-+=中至多有一个元素所以方程2320ax x -+=至多有一个根, 当0a =时解得23x =,满足题意 当0a ≠时,980a ∆=-≤,解得98a ≥ 综上:0a =或98a ≥ 【点睛】解答本题时一定要注意讨论0a =的情况,否则就会漏解.16.集合G 关于运算⊕满足:(1)对任意的,a b G ∈,都有a b G ⊕∈;(2)存在e G ∈,对任意a G ∈,都有a e e a a ⊕=⊕=,则称G 关于运算⊕为“融洽集”.现给出下列集合和运算:①G ={非负整数},⊕为整数的加法;②G ={偶数},⊕为整数的乘法;③G ={二次三项式},⊕为多项式的加法.其中G 关于运算⊕为“融洽集”的是________.(写出所有“融洽集”的序号) 【答案】①【解析】根据题意对给出的集合和运算对两个条件:运算的封闭性和单位量e 进行验证,分别用加法、乘法的法则判断,只有都满足时才是G 关于运算⊕为“融洽集”. 【详解】根据题意,判断给出的集合对运算⊕是否满足条件(1)(2)即可.其中,条件(1)的含义是:集合G 中任意两个元素关于运算⊕的结果仍然是集合G 的元素;条件(2)的含义是:集合G 中存在元素e ,它与G 中任何一个元素a 关于运算⊕满足交换律,且运算结果等于a .①中,G ={非负整数},⊕为整数的加法,满足对任意,a b G ∈,都有a b G ⊕∈,且存在0e =,使得00a a a ⊕=⊕=,所以①中的G 关于运算⊕为“融洽集”; ②中,G ={偶数}⊕为整数的乘法,若存在e G ∈,使a e e a a ⊕=⊕=,则1e =,与e G ∈矛盾,所以②中的G 关于运算⊕不是“融洽集”;③中,G ={二次三项式},⊕为多项式的加法,两个二次三项式相加得到的可能不是二次三项式,所以③中的G 关于运算⊕不是“融洽集”. 综上,G 关于运算⊕为“融洽集”的只有①. 故答案为① 【点睛】本题考查了学生对新定义的理解和运用能力,可结合学过的运算性质进行类比理解,比如:第一条是运算的封闭性,第二条如加法中的“0”或乘法中的“1”.四、解答题17.设命题:p x ∃∈R ,2230x x m -+-=,命题:q x ∀∈R ,222(5)190x m x m --++≠.若p 、q 都为真命题,求实数m 的取值范围.【答案】3|45m m ⎧⎫<≤⎨⎬⎩⎭【解析】先求出命题,p q 为真时,m 的取值范围,再取交集可得答案. 【详解】若命题:p x ∃∈R ,2230x x m -+-=为真命题,则44(3)0m ∆=--≥,解得4m ≤; 若命题:q x ∀∈R ,222(5)190x m x m --++≠为真命题,则命题:q x ∃∈R ,222(5)190x m x m --++=为假命题,即方程222(5)190x m x m --++=无实数根, 因此,()224(5)4190m m ∆=--+<,解得35m >. 又p 、q 都为真命题,所以实数m 的取值范围是33{|4}||455m m m m m m ⎧⎫⎧⎫≤⋂>=<≤⎨⎬⎨⎬⎩⎭⎩⎭.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力. 18.解关于x 的不等式:(1)(1)0(0)ax x a -->>. 【答案】当01a <<时,解集为{1x x <或1x a ⎫>⎬⎭; 当1a =时,解集为{x x R ∈且}1x ≠; 当1a >时,解集为1x x a⎧<⎨⎩或}1x >. 【解析】根据0a >,结合方程(1)(1)0ax x --=两根大小的关系分类讨论,求解不等式的解集即可. 【详解】0a >,∴方程(1)(1)0ax x --=的两根分别为121,1==x x a(1)当01a <<时,11a >∴解得:1x <或1x a>; (2)当1a =时,原不等式即为2(1)0x ->,解得:1x ≠(3)当1a >时,11a <,∴解得:1x a<或1x > 综上可知:当01a <<时,解集为{1x x <或1x a ⎫>⎬⎭; 当1a =时,解集为{x x R ∈且}1x ≠;当1a >时,解集为1x x a⎧<⎨⎩或}1x >. 【点睛】 本题考查了一元二次不等式的解法,考查了分类讨论思想,考查了数学运算能力.19.已知集合{}()22(2)[(31)]0,01x a A x x x a B x x a ⎧⎫-⎪⎪=--+<=<⎨⎬-+⎪⎪⎩⎭其中1a ≠ (1)当2a =时,求A B ;(2)求使B A ⊆的实数a 的取值范围【答案】(1)(4,5)A B ⋂=;(2)13a 或1a =-.【解析】(1)由交集的定义直接计算即可;(2)分13a <,13a =,13a >三种情况讨论得出. 【详解】(1)当2a =时,(2,7),(4,5),(4,5)A B A B ==∴⋂=(2)()22,1B a a =+当13a <时,(31,2)A a =+,要使B A ⊆,必须2231121a a a a ≥+⎧⎪+≤⎨⎪≠⎩,此时1a =-; 当13a =时,A =∅,使B A ⊆的a 不存在; 当13a >时,(2,31)A a =+,要使B A ⊆,则2221311a a a a ≥⎧⎪+≤+⎨⎪≠⎩,解得13a , 综上可得:a 的取值范围是13a或1a =-.【点睛】本题考查集合的交集运算,考查根据集合包含关系求参数,其中涉及一元二次不等式和分式不等式的求解,属于基础题.20.某建筑工地要建造一批简易房,供群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.(1)设房前面墙的长为x ,两侧墙的长为y ,一套简易房所用材料费为p ,试用,x y 表示p .(2)一套简易房面积S 的最大值是多少?当S 最大时,前面墙的长度是多少?【答案】(1);(2) 100,.【解析】试题分析:(1)依题得,根据长方体的表面积公式可知,;(2) S xy =根据基本不等式得200120032000S S +≤,解得0100S <≤.试题解析:(1)依题得,根据长方体的表面积公式可知,(2)∵S xy =,∴90040020029004002002001200p x y xy S S S S =++≥⨯+=+又因为32000p ≤,所以200120032000S S +≤,化简得61600S S +-≤, 解得1610S -≤≤,又0S >,∴0100S <≤,当且仅当900400{100x y xy ==,即203x =时S 取得最大值. 答:每套简易房面积S 的最大值是100平方米,S 最大时前面墙的长度是米. 【考点】数学建模能力及利用基本不等式求最值.21.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥.(1)当3a =时,求AB ; (2)若“x A ∈”是“R x B ∈”的充分不必要条件,且A ≠∅,求实数a 的取值范围.【答案】(1){11A B x x ⋂=-≤≤或45}x ≤≤;(2){}01a a ≤<.【解析】(1)根据两个集合交集运算性质即可解得;(2) “x A ∈”是“R x B ∈”的充分不必要条件即A B R ,然后求解出集合B 的补集,根据集合间的关系列出关于a 的不等式即可解得范围.【详解】(1)当3a =时,{}15A x x =-≤≤,又{1B x x =≤或}4x ≥, {11A B x x ⋂=-≤≤或45}x ≤≤(2){1B x x =≤或}4x ≥,{}R 14B x x =<<.由“x A ∈”是“R x B ∈”的充分不必要条件,得A B R ,.又{}22,A x a x a A =-≤≤+≠∅, 222124a a a a -≤+⎧⎪∴->⎨⎪+<⎩,01a ∴≤<即实数a 的取值范围是{}01a a ≤<.【点睛】:本题考查了集合交集的运算、利用集合间的关系求解参数的范围,属于中档题目,解题中需要准确的将充分条件和必要条件的关系转化为集合间的关系.22.设504a <≤,若满足不等式22()x ab -<的一切实数x ,亦满足不等式()2214x a -<求正实数b 的取值范围. 【答案】30,16⎛⎤ ⎥⎝⎦ 【解析】先化简集合,A B ,从而得到221212b a a b a a ⎧≤-+-⎪⎪⎨⎪≤-+⎪⎩,504a ⎛⎫<≤ ⎪⎝⎭,分别求出两个不等式中b 的范围即得解.【详解】设集合{}22()(,)A x x a b a b a b =-<=-+,()2222111{|},422B x x a a a ⎛⎫=-<=-+ ⎪⎝⎭由题设知A B ⊆,则221212a b a a b a ⎧-≥-⎪⎪⎨⎪+≤+⎪⎩于是得不等式组221212b a a b a a ⎧≤-+-⎪⎪⎨⎪≤-+⎪⎩,504a ⎛⎫<≤ ⎪⎝⎭ 又22113224a a a ⎛⎫-+-=--+ ⎪⎝⎭,函数的最小值为316; 22111224a a a ⎛⎫-+=-+ ⎪⎝⎭,函数的最小值为14; 316b ∴≤, 所以b 的取值范围是30,16⎛⎤ ⎥⎝⎦. 【点睛】本题主要考查一元二次不等式的解法,考查一元二次不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.。
湖北省随州市高一上学期数学9月测试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分) (2019高一上·天津月考) 下面给出的四类对象中,构成集合的是()A . 某班个子较高的同学B . 大于2的整数C . 的近似值D . 长寿的人2. (2分)给出如下四个命题①若“p且q”为假命题,则p、q均为假命题②命题“若xy=0则x=0或y=0”的否命题为“若,则且”③“任意”的否定是“存在”④在ABC中,“A>B”是“sinA>sinB”的充要条件其中正确的命题的个数是()A . 4B . 3C . 2D . 13. (2分) (2016高三上·连城期中) 设集合M={y|y=2x , x<0},N={y|y=lo x,0<x<1},则“x∈M”是“x∈N”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分) (2020高二下·成都月考) 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下:甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是()A . 甲B . 乙C . 丙D . 甲或乙二、填空题 (共10题;共10分)5. (1分) (2019高一上·北京月考) 含有三个实数的集合既可表示成,又可表示成,则 ________.6. (1分) (2016高一上·万全期中) 已知集合A={x|x∈N,∈N},则集合A用列举法表示为________7. (1分) (2017高一上·嘉兴月考) 已知全集,集合,,则________8. (1分) (2015高三上·巴彦期中) 一元二次方程kx2+3kx+k﹣3=0有一个正根和一个负根,则实数k的取值范围为________9. (1分) (2018高一上·上海期中) “若且,则”的否命题是________10. (1分) (2020高一下·宝坻月考) 已知一组数据4.7,6.1,4.2,5.0,5.3,5.5,则该组数据的第25百分位数是________.11. (1分) (2019高二上·双流期中) 已知命题P: [0,1], ,命题q:“ R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是________;12. (1分)已知集合A={x|ax2﹣3x+2=0}至多有一个元素,则a的取值范围是________13. (1分) (2019高三上·沈阳月考) 下列四个命题中,真命题的序号有________.(写出所有真命题的序号)①若,则“ ”是“ ”成立的充分不必要条件;②命题“ 使得”的否定是“ 均有”;③命题“若,则或”的否命题是“若,则”;④函数在区间上有且仅有一个零点.14. (1分)设集合P={﹣3,0,2,4],集合Q={x|﹣1<x<3},则P∩Q=________三、解答题 (共5题;共30分)15. (5分) (2019高一上·温州期末) 已知,,Ⅰ 当时,求;Ⅱ 若,求实数a的取值范围.16. (5分)已知集合A=(2,4),B=(a,3a)(1)若A⊆B,求实数a的取值范围;(2)若A∩B≠∅,求实数a的取值范围.17. (10分)已知集合A={x|2≤2x≤32},B={x|y=log2(3﹣x)}.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≥a+1},且(A∩B)⊆C,求实数a的取值范围.18. (5分) (2020高一下·荆州期末) 已知关于x的不等式(1)若不等式的解集是,求k的值;(2)若不等式的解集是R,求k的取值范围;(3)若不等式的解集为,求k的取值范围.19. (5分) (2018高二上·嘉兴期末) 已知, .(1)若,求;(2)若,求实数的取值范围.参考答案一、单选题 (共4题;共8分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:二、填空题 (共10题;共10分)答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共5题;共30分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、答案:19-2、考点:解析:。
数学试卷
注意事项:
1.答卷前,考生务必将自己的姓名、考号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,用签字笔或刚笔将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、单项选择题(本小题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.2:0,0p c x x c p ∃>-+=已知命题方程有解,则的否定为( )
A.20,0c x x c ∀>-+=方程无解
B.20,0c x x c ∀≤-+=方程有解
C.200c x x c ∃>-+=,方程无解
D.20,0c x x c ∃≤-+=方程有解
2.,,a B b R a b ∈∈>设则“”是“a b >||||”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.如果22,0,,,a R a a a a a ∈+<-且那么的大小关系为( )
A.2a a a -<<
B.2a a a <-<
C.2a a a <<-
D.2a a a <<-
4.不等式4122x x
-≥-的解集是( ) A.526x x x ⎧⎫≤>⎨⎬⎩⎭或 B.526x x ⎧⎫≤≤⎨⎬⎩⎭
C.526x x ⎧⎫≤<⎨⎬⎩⎭
D.526x x x ⎧⎫≤≥⎨⎬⎩⎭
或 5.若1,b a >>则下列不等式一定正确的是( )
A.2ab >
B.2a b +<
C.11a b <
D.2b a a b
+> 6.若一系列的函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么解析式为2y x =,值域为{1,4}的同族函数有( )个
A.7 B .8 C.9 D.10
7.不等式2(3)2(3)40a x a x -+--<对于一切x R ∈恒成立,a 的取值范围是( )
A.3a <-
B.13a -<≤
C.3a ≤-
D.13a -<<
8.(0x -≥的解集为( )
A.(1,)+∞
B.[1,)+∞
C.[1,){2}+∞-
D.(,2]{1}-∞-
二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)
9.使不等式260x x --<成立的一个充分不必要条件是( )
A.20x -<<
B.03x <<
C.23x -<<
D.24x -<< 10.下列命题中,为真命题的是( )
A.若22,a b ac bc >>则
B.若,,a b c d a c b d >>+>+则
C.若22||,a b a b >>则
D.若1
10a b a b
>><,则 11.设正实数,a b ,满足1,a b +=则( )
A.114a b +有最大值 1
2
D.2212a b +有最小值
12.若不等式
110414m x x +-≥-对104x x x ⎧⎫∈<<⎨⎬⎩⎭恒成立,则实数m 的值可以为( ) A.1
B.2
C.4
D.5
三、填空题(本题共4小题,每小题5分,共20分)
13.6x <的解集为 .
14.已知0,0,228,2x y x y xy x y >>++=+则的最小值是 .
15.若命题“2,390x R x ax ∃∈-+≤”为假命题,则实数a 的取值范围是 . 16.已知1542,a b a b -<+<-<-<,
则24a b -的取值范围为 .
四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.(本题满分10分)
已知命题2:10p x mx ++=方程有两个不相等的实数根,命题p 是真命题.
(1)求实数m 的取值集合M ;
(2)设不等式()(2)0x a x a ---<的解集为N,若x N x M ∈∈是的充分不必要条件,求实数a 的取值范围.
18.(本题满分12分)
已知全集22,{|230},{|680}U R A x x x B x x x ==--≥=-+≤集合.
(1)求,A B B (A);
(2)已知{|212},C x a x a C
=-<<+若(A)=C ,求实数a 的取值范围.
19.(本题满分12分)
运货卡车以每小时x 千米的速度匀速行驶150千米,按交通法规限制60120x ≤≤(单位:千米/时).假
设汽油的价格是每升5元,而卡车每小时耗油25400x ⎛⎫+ ⎪⎝
⎭升,司机的工资是每小时20元。
(1)求这次行车总费用y (单位:元)关于x 的表达式;
(2)当x 为何值时,这次行车的总费用最低?求出最低费用的值.
20.(本题满分12分)
(1)已知2540,x x x y x
++<=求函数的最大值; (2)已知10(13)3x y x x <<=-,求函数的最大值;
(3)22110,a b y ab a b
>=
++若、求的最小值.
21.(本题满分12分)求值域:
(1)3y =
(2)y x =- (3)2224723
x x y x x +-=++.
22.(本题满分12分)
设2,(12)20a R x ax a x ∈+-->解关于的不等式.。