生物化学技术原理总复习
- 格式:ppt
- 大小:1.46 MB
- 文档页数:102
生物化学复习资料生物化学是研究生物体内各种化学成分及其相互关系的一门学科。
它是生物学和化学两门学科的交叉领域,通过对生物体内的化学物质进行分析和研究,揭示生命现象的基本原理和机制。
以下是关于生物化学的复习资料,希望能够帮助同学们温故知新。
一、生物大分子的结构与功能1. 蛋白质:蛋白质是生物体内最重要的物质之一,由氨基酸组成,具有结构和功能多样性。
了解蛋白质的结构层次(一级结构、二级结构、三级结构和四级结构)、功能和分类是生物化学的基础。
例如,酶是一类重要的蛋白质,它可以催化生物体内的化学反应。
2. 核酸:核酸是构成生物体遗传信息的基本单位,包括DNA和RNA。
DNA是遗传信息的存储介质,RNA参与蛋白质的合成。
了解核酸的结构、功能和生物合成是理解遗传信息传递的关键。
3. 多糖:多糖是一类碳水化合物,由单糖分子通过糖苷键结合而成。
多糖在生物体内具有能量储存和结构支持的功能。
了解多糖的种类、结构和生物功能对于了解生物体内的能量代谢和细胞结构具有重要意义。
二、代谢与能量1. 代谢途径:代谢是生物体内的化学反应过程,包括物质的合成、降解和转化。
了解代谢途径(如糖酵解、脂肪酸合成、氨基酸代谢等)和相关酶的作用是理解生物体内化学反应的基本原理。
2. 能量产生与转化:生物体内的能量主要来自ATP(三磷酸腺苷)的合成和分解。
了解ATP的结构、合成途径和参与的能量转化过程是理解生物体内能量代谢的关键。
三、酶的性质与调节1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和催化效率。
了解酶的底物特异性、酶促反应的速率和酶的催化机制是理解酶学的基础。
2. 酶的调节:生物体内的酶活性可以通过多种方式进行调节,如底物浓度、温度、pH值的变化以及酶的共价修饰等。
了解酶的调节机制对研究生物体内代谢的调控具有重要意义。
四、生物体内的信号传导1. 细胞膜受体:细胞膜受体是生物体内信号传导的重要组成部分,包括离子通道和酶联受体等。
生物化学复习题及答案生物化学是研究生命体内化学过程和物质转化的科学,它涉及到细胞内各种生物分子的结构、功能和代谢途径。
以下是一些生物化学的复习题及答案,供学习者参考。
题目1:简述酶的催化机制。
答案:酶是生物体内具有催化作用的蛋白质,其催化机制通常涉及酶的活性部位与底物的结合。
酶降低反应的活化能,从而加速反应速率。
酶的活性部位通常具有与底物相匹配的形状,使得底物能够精确地与酶结合,形成酶-底物复合物。
在复合物形成后,底物分子发生化学变化,生成产物,随后产物从酶的活性部位释放,酶恢复其原始状态,准备进行下一轮催化。
题目2:解释DNA复制的保真性。
答案:DNA复制的保真性指的是复制过程中新合成的DNA链与模板链的高度一致性。
这种高保真性主要依赖于DNA聚合酶的高度选择性,它能够识别并正确地将互补的核苷酸与模板链配对。
此外,DNA聚合酶还具有校对功能,能够检测并纠正配对错误,从而确保复制过程的准确性。
题目3:描述细胞呼吸过程中的能量转换。
答案:细胞呼吸是细胞内将有机物质氧化分解,释放能量的过程。
这个过程主要分为三个阶段:糖酵解、克雷布斯循环(柠檬酸循环)和电子传递链。
在糖酵解阶段,葡萄糖分解为丙酮酸,释放少量能量。
在克雷布斯循环中,丙酮酸进一步氧化,产生更多的高能电子和二氧化碳。
最后,在电子传递链中,这些高能电子通过一系列氧化还原反应传递,最终将电子传递给氧气,形成水,同时释放大量能量。
这些能量部分以ATP的形式储存,供细胞使用。
题目4:简述蛋白质合成的基本原理。
答案:蛋白质合成主要在细胞质中的核糖体上进行,这个过程称为翻译。
首先,mRNA携带遗传信息从细胞核转移到核糖体。
核糖体识别mRNA上的起始密码子,然后tRNA携带相应的氨基酸与mRNA上的密码子配对。
核糖体沿着mRNA移动,逐个添加氨基酸,形成多肽链。
当遇到终止密码子时,蛋白质合成结束,新合成的多肽链随后折叠成其特定的三维结构,形成具有生物活性的蛋白质。
生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从份子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学。
其研究内容包括①生物体的化学组成,生物份子的结构、性质及功能②生物份子的分解与合成,反应过程中的能量变化③生物信息份子的合成及其调控,即遗传信息的贮存、传递和表达。
生物化学主要从份子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题(1)生物化学的发展史分为哪几个阶段?生物化学的发展主要包括三个阶段:①静态生物化学阶段 (20 世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成份以及生物体的排泄物和分泌物②动态生物化学阶段(20 世纪初至20 世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段(20 世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大份子的结构与其功能之间的关系。
(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素?组成生物体的元素共28 种第一类元素包括C、H、O、N 四中元素,是组成生命体的最基本元素。
第二类元素包括S 、P 、Cl、Ca、Na、Mg,加之C、H、O、N 是组成生命体的基本元素。
第二章蛋白质1. 名词解释(1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高份子含氮化合物(2)氨基酸等电点:当氨基酸溶液在某一定pH 时,是某特定氨基酸份子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极挪移,此时溶液的pH 即为该氨基酸的等电点(3) 蛋白质等电点:当蛋白质溶液处于某一pH 时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH 称为蛋白质的等电点(4) N 端与 C 端:N 端(也称N 末端)指多肽链中含有游离α-氨基的一端, C 端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α -羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽(6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残存部份称为氨基酸残基(7)肽单元(肽单位):多肽链中从一个α -碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转(8)结构域:多肽链的二级或者超二级结构基础上进一步绕蜿蜒叠而形成的相对独立的三维实体称为结构域。
生物化学总复习题型一、判断题,10分二、选择题,10分三、英文缩写符号中文含义,5分四、填空题,35-43分五、名词解释,6个,18分六、叙述题,3-4题,23-30分各种题型复习一、判断题第一章核酸化学1.tRNA的二级结构是倒L型。
(×)2.DNA分子中的G和C的含量愈高,其熔点(Tm)值愈大。
(√)3.Tm值高的DNA,其(A+T)百分含量也高。
(×)4.如果DNA一条链的碱基顺序是CTGGAC,则互补链的碱基序列为GACCTG。
(×)5.在tRNA分子中,除四种基本碱基(A,G,C,U)外,还含有稀有碱基。
(√)6.一种生物所有体细胞的DNA,其碱基组成均是相同的,这个碱基组成可作为该类生物种的特征。
(√)7.真核mRNA分子5’末端有一个Poly A结构。
(×)8.真核mRNA分子3'末端有一个Poly A结构。
(√)9.DNA是遗传物质,而RNA则不是。
(×)10.DNA双螺旋结构中,由氢键连接的碱基对形成一种近似平面的结构。
(√)11.RNA的分子组成中,通常A不等于U,G不等于C。
(√)第二章蛋白质化学1.三肽Ala-Asp-Gly也可以写作H2N-Ala-Asp-Gly-COOH。
(√)2.三肽Ala-Asp-Gly也可以写作HOOC-Ala-Asp-Gly-NH2。
(×)3.常见的蛋白质氨基酸除了甘氨酸是非手性分子之外,其余19种均为手性分子,且相对构型都是D-型的。
(×)4.常见的蛋白质氨基酸都是α-伯胺基酸。
(×)5.变性导致蛋白质分子无法形成功能构象。
(√)6.一氨基一羧基氨基酸的pI为中性,因为-COOH和-NH3+的解离度相等。
(×)7.构型的改变必须有旧的共价健的破坏和新的共价键的形成,而构象的改变则不发生此变化。
(√)8.生物体内只有蛋白质才含有氨基酸。
(×)9.所有的蛋白质都具有一、二、三、四级结构。
《生物化学》复习一、名词解释:1.两性离子:指在同一氨基酸分子上即含有可解离出氢离子的基团,又含有能结合氢离子的基团,这样的离子兼性离子或偶极离子。
2.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。
3.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。
4.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。
5.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。
6. 退火:加热变性DNA溶液缓慢冷却到适当的低温,则两条互补链可重新配对而恢复到原来的双螺旋结构的现象。
7.DNA的熔解温度:DNA加热变性过程中,紫外吸收值达最大吸收值一半时所对应的温度。
8.核酸的变性:在某些理化因素作用下,DNA双螺旋区氢键断裂,空间结构破坏,形成单链无规则线团状态的过程;9.减色效应:复性DNA由于双螺旋的重新形成,在260nm处的紫外吸收值降低的现象。
10.增色效应:变性DNA由于碱基对失去重叠,在260nm处的紫外吸收值增加的现象11.米氏常数(Km值):酶反应速度为最大反应速度一半时的底物浓度。
12.活性中心: 酶分子中直接与底物分子结合,并催化底物化学反应的部位。
13.酶的比活力:是指每毫克酶蛋白所含的活力单位数,有时也用每克酶制剂或每毫升所有的活力单位。
14.生物氧化:有机物质在生物体活细胞氧化分解,同时释放能量的过程。
15.氧化磷酸化:是代物质氧化脱氢经呼吸链传递给氧生成水,同时伴有ATP磷酸化生成ATP的过程。
16. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示17.呼吸链:代物上的氢原子被脱氢酶激活脱落后,经过一系列的传递体,最后传递给激活的氧分子而生成水的全部体系。
18.底物水平磷酸化:底物在脱氢脱水的过程中是分子化学能重新分布和排列生成高能化合物,高能化合物与ADP磷酸化想偶联生成ATP的方式。
考试题型:一、填空;二、是非题;三、选择题;四、名词解释;五、问答题每章简要:一、生物氧化基本概念,与非生物氧化比较呼吸链;概念、组成、类型、传递顺序、抑制剂。
氧化磷酸化; 概念、机制、解偶联剂二、代谢总论基本概念; 代谢、代谢途径、代谢物,分解代谢、合成代谢、代谢组、代谢组学三、糖酵解糖的消化; 淀粉的酶水解糖酵解全部反应、三步限速步骤、特异性抑制剂、两步底物磷酸化反应。
能量产生、生理意义、丙酮酸去向。
四、TCA 循环乙酰CoA 的形成, TCA 循环化学途径、能量产生,功能和调节。
乙醛酸循环五、磷酸戊糖途径发生部位、氧化相反应、功能六、糖异生概念、发生部位、与糖酵解比较、底物、几步重要反应、生理意义七、光合作用概念,总反应式光反应;两大光系统的组成(中心色素,电子受体与供体,功能),光合磷酸化以及与氧化磷酸化的比较。
暗反应;光反应与暗反应的比较, C3 途径重要的反应, 酶和中间物八、糖原代谢糖原降解;相关酶;糖原磷酸化酶………糖原合成;相关酶,糖原合成酶,UDP-Glc, 需要引物, 糖原素……调节九、脂肪酸代谢脂肪酸的分解代谢;β-氧化, α-氧化,ω-氧化酮体脂肪酸的合成代谢十、胆固醇代谢胆固醇合成;前体、部位、重要的中间物、HMG-CoA 还原酶运输; 血浆脂蛋白、LDL 、HDL十一、磷脂和糖脂代谢甘油磷脂的酶水解十二、蛋白质降解及氨基酸代谢胞内蛋白质的降解;依赖于ATP 的降解途径氨基酸的分解代谢;氨基的去除,铵离子的命运,尿素循环生物固氮十三、核苷酸代谢核苷酸的合成;嘌呤核苷酸、嘧啶核苷酸的合成,从头合成和补救途径。
脱氧核苷酸的合成调节核苷酸的分解;嘌呤和嘧啶的分解主要相关疾病第一章:生物氧化一、概念1、生物氧化:糖类、脂肪、蛋白质等有机物质在细胞中进行氧化分解生成CO2和H2O 并释放出能量的过程称为生物氧化。
其实质是需氧细胞在呼吸代谢过程中所进行的一系列氧化还原反应过程。
2、呼吸链:由一系列传递体构成的链状复合体称为电子传递体系(ETS),因为其功能和呼吸作用直接相关,亦称为呼吸链。
生物化学复习资料生物化学复习资料生物化学是研究生物体内化学成分及其相互作用的科学。
它涉及到许多重要的生物分子,如蛋白质、核酸、碳水化合物和脂质,以及与它们相关的代谢途径和能量转化。
在这篇文章中,我们将探讨一些生物化学的重要概念和知识点,以帮助你复习这门学科。
1. 蛋白质:蛋白质是生物体内最重要的分子之一,它们由氨基酸组成。
氨基酸是一种含有氨基和羧基的有机分子,它们通过肽键连接在一起形成多肽链,进而形成蛋白质。
蛋白质在生物体内担任多种功能,包括酶催化、结构支持和信号传导等。
2. 核酸:核酸是生物体内存储和传递遗传信息的分子。
它们由核苷酸组成,核苷酸由糖分子、碱基和磷酸组成。
DNA是一种双链核酸,它包含了生物体的遗传信息。
RNA是一种单链核酸,它在蛋白质合成中起着重要的作用。
3. 碳水化合物:碳水化合物是生物体内最常见的有机分子之一,它们由碳、氢和氧原子组成。
碳水化合物可分为单糖、双糖和多糖三种类型。
单糖包括葡萄糖和果糖,它们是生物体内能量的重要来源。
多糖包括淀粉和纤维素,它们在能量存储和结构支持方面起着重要的作用。
4. 脂质:脂质是生物体内的另一类重要有机分子,它们主要由碳、氢和氧原子组成。
脂质可分为甘油三酯、磷脂和固醇三种类型。
甘油三酯是脂肪的主要组成部分,它们在能量存储和绝缘保护方面起着重要的作用。
磷脂是细胞膜的主要组成部分,它们在细胞结构和信号传导中起着重要的作用。
固醇包括胆固醇和激素,它们在细胞膜的稳定性和调节生理功能方面起着重要的作用。
5. 代谢途径:代谢途径是生物体内化学反应的连续序列,用于合成和分解生物分子以及能量转化。
其中最重要的代谢途径包括糖酵解、脂肪酸氧化和氧化磷酸化。
糖酵解是将葡萄糖分解为乳酸或乙酸,并产生少量ATP的过程。
脂肪酸氧化是将脂肪酸分解为乙酰辅酶A,并产生大量ATP的过程。
氧化磷酸化是将ATP合成反应与氧化还原反应相结合,产生大量ATP的过程。
6. 能量转化:能量转化是生物体内能量的转化和利用过程。
生物化学复习资料重点生物化学是生物学中的一门基础学科,它主要研究生物分子及其在细胞中的结构、功能、代谢、调控等方面的基本规律。
因此,对于学习生物化学的学生来说,必须留心掌握一些重点复习资料。
本文将针对这一问题进行一些讨论。
1.氨基酸和蛋白质的结构与功能氨基酸是蛋白质的基本组成单元,而蛋白质则是生物体内最重要的大分子有机化合物之一。
因此,学生需要深入了解氨基酸和蛋白质的结构与功能。
氨基酸的结构包含氮基、羧基、侧链分别连接在中央的碳原子上。
侧链的化学性质、结构和分布情况等是决定蛋白质分子结构和功能的重要因素。
蛋白质分子在生物体内具有多种功能,如酶催化作用、运输、抗原性、调节等。
2.酶和酶促反应酶是生物体内最重要的催化剂,可以加速生物化学反应的速率。
学生需要了解酶的性质、分类、活性位点、催化机理等方面的知识。
在酶促反应方面,学生需要了解酶与底物的结合方式、反应物与产物的转化关系等问题。
同时,生物体内的酶促反应还涉及到许多相关的调节机制,学生需要深入了解这些调节机制的原理和作用。
3.生物膜的结构与功能生物膜是生物体内细胞的界面结构,它在细胞内外起着分隔单元、维持稳定、运输和信息传递等重要功能。
学生需要掌握生物膜的组成、结构和功能等方面的知识。
生物膜主要由磷脂双层、蛋白质和糖类等组成,其中磷脂双层起着屏障和选择通道等作用。
同时,膜蛋白在细胞膜的粘合、检测、传输等方面发挥着重要的作用。
学生还需要了解生物膜内外物质传递的机制和影响因素等方面的知识。
4.核酸的结构与功能核酸是生物体内负责储存和传递遗传信息的大分子有机化合物,其中DNA是基因物质的主要组成成分。
学生需要了解核酸的组成、结构和功能等方面的知识。
DNA分子的结构包括碱基对、磷酸骨架和螺旋结构等,它在生物体内的作用是存储、传递和维护遗传信息。
RNA是DNA信息的复制、转录和翻译过程中的直接参与者,主要包括mRNA、tRNA和rRNA等。
在这些方面,学生需要系统地了解核酸分子的结构、特性和功能等。
一,概念题(每题2分,共14分)糖有氧氧化脂肪酸β-氧化鸟氨酸循环酮体限制性内切酶中心法则联合脱氨基氮的正平衡糖异生 DNA的变性共价调节Tm值核糖体引发体冈崎片断二,填空题(每空1分,共50分)1.糖酵解有步脱氢反应和步底物磷酸化反应。
2.18C的饱和脂肪酸经次β氧化生成个FADH2个NADH和个ATP。
3. 真核细胞mRNA 端有帽子结构。
5. 糖原分解的关键酶是。
琥珀酸脱氢酶的辅酶是。
6. 丙酮酸转变成磷酸烯醇式丙酮酸时共消耗了个ATP。
7.三羧酸循环中有步脱羧反应,步脱氢反应,步底物磷酸化反应。
8. 氮的总平衡是指机体摄入的氮量排出的氮量。
9.LDL是由向运输胆固醇。
丙酮酸脱氢酶系含,,酶和种辅酶。
10. 脂肪酸合成时所需的NADPH 来自和。
11.饥饿时大脑可以用代替糖的需要。
12.降低血糖的激素是,其主要作用是。
13.PRPP的中文是。
hnRNA的中文是。
11.糖代谢为脂肪合成提供,,和。
12.主要的生物氧化途径是和。
13.原核生物蛋白质合成起始氨基酸是,携带起始氨基酸的tRNA反密码子是。
琥珀酸脱氢酶的辅酶是。
14.奇数碳原子脂肪酸代谢的可以进入三羧酸循环。
15.丙酮酸脱氢酶含,,酶。
16.脂肪酸合成时所需的NADPH 来自和。
17.酮体在合成而在分解。
18.酪氨酸转变成和再生成糖和酮体。
19.脂肪酸合成的原件是。
20.HDL在形成,主要运输。
甘油先转变成再进入糖代谢途径。
磷酸戊糖途径不可逆的部分是由酶催化。
21.磷酸葡萄糖脱氢酶的受体是。
谷氨酸脱氢反应中的氢的受体是。
22.嘌呤在人体内的最终分解产物是。
23.肝肾以外的组织由于没有酶而无法直接补充血糖。
糖原分解的关键酶是。
24.LDL是由向运输胆固醇。
25.糖代谢的3个交汇点是,和。
26.RNA聚合酶是由和组成。
27.磷酸戊糖途径生成和。
28.IMP是和的前体。
PRPP是由合成的。
29.尿素由个氨和个二氧化碳合成。
30.柠檬酸乙酰辅酶A羧化酶的活性。