深圳大学生物化学下册生物能学-讲义
- 格式:ppt
- 大小:1.21 MB
- 文档页数:52
生物化学韩秋菊概述生物化学即生命的化学,是一门运用化学的原理及方法,研究生命机体的科学,聚焦于研究生命机体的物质组成,维持生命活动的各种化学变化及其联系。
生物化学与多个学科有紧密的联系,通过深入研究生物分子结构与功能,揭示了生物体物质代谢、能量转换、遗传信息传递、神经传导、免疫和细胞间通讯等许多生命奥秘,使人们对生命本质的认识跃进到一个全新的阶段。
在药物的合成、开发阶段,一样离不开生物化学的理论知识,生物化学从分子水平上研究健康或疾病状态下人体结构与功能,为疾病预防、诊断与治疗,提供了理论与技术,对推动医药产业的新发展做出了重要的贡献。
第一部分蛋白质结构与功能蛋白质是由氨基酸残基以肽键相连组成的不分支的长链生物大分子。
蛋白质是构成生物体的基本成分,占细胞干重的50%。
蛋白质是生命过程的执行者,发挥着极其重要的作用。
蛋白质种类繁多,功能较为复杂。
已知的生物功能没有一个是离开蛋白质而实现的,生物个体间表现出的差异是由于其体内蛋白质不同。
一、蛋白质的化学组成蛋白质主要由碳、氢、氧、氮等化学元素组成,还可能含有硫、磷等,是一类重要的生物大分子。
蛋白质的含氮量很接近,平均为16%。
(一)蛋白质的基本单位1. 氨基酸的结构蛋白质的组成单位是氨基酸。
组成蛋白质的氨基酸有20种,除脯氨酸外,均为α-氨基酸。
每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R基团。
20种氨基酸结构的差别就在于它们的R基团结构的不同。
α-氨基酸结构简式如下图所示。
图1 氨基酸结构通式2. 氨基酸的分类根据侧链R基团的极性,可将20种氨基酸分为四大类:非极性R基氨基酸;不带电荷的极性R基氨基酸;带负电荷的R基氨基酸;带正电荷的R基氨基酸。
(1)非极性R基氨基酸:丙氨酸(Ala),缬氨酸(Val),亮氨酸(Leu),异亮氨酸(Ⅱe),脯氨酸(Pro),苯丙氨酸(Phe),色氨酸(Trp),蛋氨酸(Met)(2)不带电荷的极性R基氨基酸:甘氨酸(GIy),丝氨酸(Ser),苏氨酸(Thr),半胱氨酸(Cys),酪氨酸(Tyr),天冬氨酸(Asn),谷氨酰胺(Gln);(3)带正电荷的R基氨基酸:赖氨酸(Lys),精氨酸(Arg),组氨酸(His);(4)带负电荷的R基氨基酸:天冬氨酸(Asp),谷氨酸(Glu)。
生物化学课件完整版极其详细)第二章蛋白质第一节蛋白质的概念及其生物学意义一、什么是蛋白质?α—AA 借肽键相连形成的高分子化合物(短杆菌肽含D-苯丙氨酸)O[肽键:—C—NH—也叫酰胺键]二、蛋白质的生物学作用(或称功能分类)物质吸收与运输、运动,调节代谢、储存养分、催化各种生化反应、分子间的识别(支架蛋白)、信息传递(受体复制酶)、记忆、疾病防御—抗体。
应用:固体酶的工业应用(联于水不溶性树脂上)、脱(纺织品)浆(淀粉酶)、生化制药,蛋白酶用于皮革的脱毛及软化等,都是利用蛋白质的催化作用,蛋白质生物芯片(贮存信息量大,将多种蛋白质抗体固定、排列到玻璃板上,能检测各种疾病蛋白及其他基因表达蛋白),进行病原体与疾病诊断等。
第二节蛋白质的组成一、蛋白质的元素组成:C(50-55%)、H(6-8)、O(20-30%)、N(15-18)、S (半胱aa)(0-4%)有的还含有P(酪蛋白)、Fe、Zn、Mo(钼Fe蛋白)、Cu、I,特别是含N量都很接近,平均为16% 。
所以,测出含N量× 6.25(100/16 蛋白质系数)即可推测出蛋白质的含量——凯氏定氮。
二、蛋白质的aa组成通常只有20种,除Pro外均为α—aa ,除甘氨酸外,都有D、L 两种异构体(α—碳原子为不对称碳原子)所以有旋光性。
投影式如下:COOH COOHH2N —C —H H —C —NH2R RL—α D —αaa的分类方法:(一)氨基酸的种类分类一根据侧链基团R的化学结构分为四类:第一类脂肪族aa:侧链是脂肪烃链①一氨基一羧基(中性):一氨基一羧基aa中共九种:H —CH —COOH CH2—CH —COO-CH2—CH —COO-NH2 OH NH+3SH NH+3(Gly:G) (Ser:S) (Cys:C)CH3—CH —COO-CH3—CH —CH—COO-CH3—CH —CH —COO-NH+3OH NH+3CH3NH+ 3 (Ala:A) (Thr:T) (Val:V支链aa)—COO—(Leu: L支链aa)CH3—S —CH2—CH2—CH —O-CH3—CH —CH2—CH —? -NH+3CH3NH+3 CH3—CH2—CH —CH —COO-CH3NH+3(Ile:I支链aa)②一氨基二羧基aa(酸性)及其酰胺—OOC —CH2—CH —COO——OOC —CH2—CH2 —CH —COO—NH+3NH+3 (Asp:D) (Glu:E)O OH2N —C —CH2—CH —COO—H2N —C —CH2—CH2—CH —COO—NH+3NH+3 (Asn:N) (Gln:Q)③二氨基一羧基aa(碱性:—NH2>-COOH)H3N+—CH2(CH2)3—CH —COO—H2N —C —NH —(CH2)3—CH —COO—NH3+NH2+NH3+(Lys:K)(Arg:R)第二类芳香族aa(含有苯环的化合物叫做芳香族化合物,有的包括Trp):—CH2—CH —COO—HO ——CH2—CH —COO—(Phe:F) (丙aa取代)(Tyr:Y)第三类杂环aa:HC C—CH2—CH —COO—………—CH2—CH —COO—…HN+NH NH+3 N NH+3 CH(His:H咪唑基)(Trp :W 吲哚基苯并吡咯)第四类脯氨酸,也称杂环亚氨基酸:由Glu还原、环化、再还原形成四氢吡咯-2-羧酸NH2+NH+3NH+3(Met:M)(Pro:P)分类二按侧链R基团的极性(及在pH7左右时的解离状态)分为:非极性:甘、丙、缬、亮、异亮、苯丙、蛋、脯、色氨酸。
糖酵解名词说明: 激酶; 底物水平磷酸化;别构酶(酶的别构调剂)激酶:能够在ATP和任何一种底物之间起催化作用,转移磷酸基团的一类酶。
已糖激酶:是催化从ATP转移磷酸基团至各类六碳糖(G、F)上去的酶。
特异性低葡萄糖激酶: 特异性催化ATP磷酸基团转移至葡萄糖分子的酶. 在细胞葡萄糖浓度很高时起作用, 在糖原合成中发挥重要作用.激酶都需离子要Mg2+作为辅助因子底物水平磷酸化:伴随底物氧化还原反映,在被氧化的底物上发生磷酸化作用,形成高能磷酸化合物。
是直接将代谢物分子中的能量转移到ADP生成ATP的进程。
变构调剂酶(别构酶): 酶分子中有别构中心和酶活中心, 前者同意调剂分子调剂,通过引发构象转变而改变酶的活性.氟化物和砷酸都能使糖酵解中断, 其机制的要紧不同的地方是什么?氟化物能与Mg2+络合而强烈抑制酶活性。
(激酶都需离子要Mg2+作为辅助因子)碘乙酸可强烈抑制3-磷酸甘油醛脱氢酶的活性。
1.从糖酵解进程中己糖激酶的催化特性,能够熟悉到酶的那些大体功能?1). 反映方程,能够分解为哪两个吸能放能反映?吸能反映:葡萄糖分解为三碳糖,消耗2分子ATP放能反映:三碳糖生成丙酮酸,共产生4分子ATP2). 己糖激酶的催化作用己糖 + ATP = 6-磷酸己糖 + ADP3). 己糖激酶的偶联作用4). 限速酶/关键酶特点催化不可逆反映催化效率低受代谢物或激素的调剂常是在整条途径中催化初始反映的酶活性的改变可阻碍整个反映体系(代谢途径)的速度和方向2.糖酵解途径有哪些关键步骤调剂?细胞对酵解速度的调控是为了知足细胞对能量及碳骨架的需求。
在代谢途径中,催化不可逆反映的酶所处的部位是操纵代谢反映的有力部位。
糖酵解中有三步反映不可逆,别离由己糖激酶、磷酸果糖激酶、丙酮酸激酶催化,因此这三种酶对酵解速度起调剂作用:1.磷酸化葡萄糖被ATP磷酸化,产生6-磷酸葡萄糖。
3.磷酸化 6-磷酸果糖被ATP磷酸化,生成1,6-二磷酸果糖10.放能生成丙酮酸和ATP, 由丙酮酸激酶催化,需镁离子,不可逆。
生物化学讲义《生物化学》课程教学讲义1.课程简介21世纪是生命科学的世纪,《生物化学》是现代生物学的基础,是生命科学发展的支柱,是生命科学领域的“世界语”因此奠定坚实的生物化学基础是农业科学生命科学学生和科技工作者的共同需要。
生物化学的内容:生物化学是生命的化学。
生物是一个高度复杂和组织化的分子系统。
这个分子系统主要是由生物大分子—糖类、脂类、蛋白质和核酸组成的。
生物的多样性是生物体中生物分子多样性及其结构复杂性(一级结构和空间结构)决定的。
但生物体内生物分子及其化学变化不是无序的。
生命的化学有着自己的规律。
生命最突出的属性是自我复制和新陈代谢。
自我复制依赖的遗传信息都存在于由核酸序列组成的基因中。
代谢包含生物体内发生的所有化学反应-四大物质代谢,酶是反应的催化剂,物质代谢伴随着能量的生成和利用。
总之生物化学的内容可划分为两部分:静态生物化学—生物分子的化学组成、结构和性质;生物分子的结构、功能与生命现象的关系。
动态生物化学—生物分子在生物机体中的相互作用及其变化规律。
生物化学的发展史:19世纪末,德国化学家李比希(J.Liebig)初创了生理化学,德国的霍佩赛勒(E.F.Hoppe-seyler)将生理化学建成一门独立的学科,并于1877年提出“Biochemie”一词,译成英语为“Biochemistry”,即生物化学。
生物化学的发展大体可分为三个阶段:静态生物化学阶段(static biochemistry stage) 时期:19世纪末到20世纪30年代特点:发现了生物体主要由糖、脂、蛋白质和核酸四大类有机物质组成,并对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。
动态生物化学阶段(dynamic biochemistry stage) 时期:20世纪30~60年代主要特点:研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。
现代生物化学阶段(modern biochemistry stage) 时期:从20世纪60年代开始特点:探讨各种生物大分子的结构与其功能之间的关系。