最优化方法遗传算法
- 格式:ppt
- 大小:377.00 KB
- 文档页数:42
遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。
本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。
自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。
遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。
在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。
本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。
遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。
遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。
为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。
这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。
精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。
基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。
遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。
随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。
研究者们在遗传算法的设计和应用方面取得了一系列创新成果。
基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。
Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。
无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。
而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。
本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。
一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。
其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。
然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。
2. 共轭梯度法共轭梯度法是一种改进的最速下降法。
它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。
相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。
3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。
它通过构建并求解特定的二次逼近模型来求解无约束问题。
然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。
二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。
它通过在可行域内进行边界移动来寻找最优解。
然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。
2. 内点法内点法是一种改进的线性规划问题求解方法。
与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。
内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。
三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。
它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。
信赖域算法既考虑了收敛速度,又保持了数值稳定性。
2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。
它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。
遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。
遗传算法遗传算法是一种借鉴生物遗传和进化机制寻求最优解的计算方法。
该方法模拟生物进化中的复制、交换、变异等过程,并通过模拟自然选择压力的方式推动问题解集向最优解方向移动。
遗传算法为解决多种难以采用传统数学方法求解的复杂问题提供了新的思路。
1. 遗传算法的发展历史研究者采用计算机模拟生物进化过程并解决优化问题的尝试始于20世纪40至50年代。
20世纪60年代中期,美国密歇根大学的Holland教授提出了位串编码技术,这种编码技术适用于变异操作和交叉操作,他指出在研究和设计人工自适应系统时可借鉴生物遗传的机制,以群体的方式进行自适应搜索。
70年代中期,Holland提出遗传算法的模式定理(Schema Theorem),奠定了遗传算法的理论基础。
11967年,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,2设计了遗传算法执行策略和性能评价指标。
他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指标则仍是目前衡量遗传算法优化性能的主要手段。
1989年,Goldberg出版专著“Genetic Algorithm in Search, Optimization, and Machine learning”3。
该书全面阐述了遗传算法的基本原理及应用,并系统总结了遗传算法的主要研究成果。
该书对遗传算法科学基础的奠定做出了重要贡献。
1991年,Davis编辑出版了专著“Handbook of Genetic Algorithms”,该书中介绍了遗传算法在工程技术和社会生活中的大量应用实例。
41992年,美国斯坦福大学的Koza出版专著“Genetic Programming, on the Programming of Computers by Means of Natural Selection”,在此书中,他将遗传算法应用于计算机程序的优化设计和自动生成,并在此基础上提出遗传编程(Genetic Programming, GP)的概念5。
遗传算法研究综述罗九晖统计学 132111059优化是科学研究、工程技术以及经济管理等等领域的重要研究对象。
优化问题广泛存在于各个领域中,学者对该问题的求解研究从未停止。
一、优化算法概述优化问题是个古老的课题,目前,对优化问题的求解研究主要有三个方向:(1)经典精确优化算法(数值最优化)该算法主要用来处理目标函数以及约束条件有具体的解析表达式且存在导数的情况。
它是先利用求导或者变分法得到极值点存在的必要条件(通常是一组方程或不等式),然后再求解细方程或不等式。
(2)经典近似优化算法(解析最优化)通过最优解的性质建立迭代公式求最优解。
(3)智能算法(仿生算法、演化算法、进化算法)数值优化算法和解析优化算法必须建立在目标函数存在导数的性质条件下进行,而在实际中碰到的很多优化问题的目标函数并不存在导数。
因此,近年来,学者们以模拟物质变化过程或模拟生命体而设计的搜索方式为基础,提出各种算法,这类算法就是智能算法。
二、智能算法概述智能是在任意给定的环境和目标条件下,正确制定决策和实现目标的能力。
智能优化算法则是将生物行为与计算机科学相结合,解决优化问题,制定最优化决策。
目前,智能算法有以下几类:(1)模拟退火算法模拟退火算法是基于蒙特卡洛迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性(即:退火过程中,固体最终达到能量最小的状态,对应于优化算法最终找到了最优解)而设计的一种智能优化算法,该算法将固体的退火过程与优化问题的求解过程有机的结合起来,因此该算法被称为模拟退火算法。
(2)禁忌搜索算法所谓禁忌就是禁止重复前面的工作。
为了回避局部邻域搜索陷入局部最优的主要不足,禁忌搜索算法用一个禁忌表来记录已经达到过的局部最优点,在下一次的搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来跳出局部最优点。
(3)蚁群算法蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度, 并以此指导自己的运动方向。
五种最优化方法1.最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法:3)是一种函数逼近法。
原理和步骤3.最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4•模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),…,f_k(x)).g(x)<=o传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。
最优化计算方法---遗传算法1 遗传算法的历史简介二十世纪六十年代,I.Rechenberg在他的《演化战略》中第一次引入了进化算法的思想(起初称之为Evolutionsstragegie)。
他的这一思想逐渐被其他一些研究者发展。
遗传算法(Genetic Algorithms)是John Holland发明的,后来他和他的学生及他的同事又不断发展了它。
终于,在1975年John Holland出版了专著《自然系统和人工系统中的自适应》(Adaptation In Natural and Artificial Systems)。
1992年,John Koza曾经使用遗传算法编出新的程序去做一些具体的工作。
他称他的这种方法为“进化规划”(Genetic Programming,简称GP)。
其中使用了LISP规划方法,这是因为这种语言中的程序被表示为“分析树”(Parse Tree),而这种遗传算法就是以这些分析树为对象的。
2 生物学与进化论背景1)基因所有的生物都是由细胞组成的。
在每一个细胞中都有想同序列的染色体。
染色体是一串DNA的片断,它为整个有机体提供了一种复制模式。
染色体是由基因组成的,或者说染色体就是一块块的基因。
每一个基因为一个特定的蛋白质编码。
或者更简单的说,每一个基因为生物体的某一特定特征编码,比如说眼睛的颜色。
所有可能的某一特定特征的属性(比如:蓝色,桔黄色等)被称之为等位基因。
每一个基因在染色体上都有其特定的位置,这个位置一般被称作位点(Locus)。
全部序列的基因物质(或者全部的染色体)称之为基因组(或染色体组)(Genome)。
基因组上特定序列的基因被称作基因型(Genotype)。
基因型和后天的表现型两者是有机体的显性、生理和心理特征。
比如说眼睛的颜色、智力的基础。
2)复制(Reproduction)在复制中,首先发生的是交叉(Crossover)。
来自于父代的基因按照一定的方式组成了新的基因。
组合优化问题的遗传算法求解一、简介组合优化问题指的是在有限个元素中选取某些元素,以达到最优化的目标。
组合优化问题的求解在实际中应用广泛,如旅行商模型、调度问题、网络优化等领域。
但是这类问题求解面临着复杂度高、难以精确求解等困难。
在这种情况下,遗传算法是一种有效的求解方法。
遗传算法是一种基于达尔文进化论的计算方法,通过模拟生物进化的方式求解组合优化问题。
本文将介绍遗传算法在组合优化问题求解中的应用,着重介绍遗传算法基本框架、编码方法、适应度函数的构建以及遗传算法的优化策略等。
二、遗传算法基本框架遗传算法的求解过程主要包括初始种群生成、适应度评价、选择操作、交叉操作和变异操作等基本步骤。
(1)初始种群生成遗传算法首先需要生成一定数量的初始种群,初始种群可以通过随机生成或其他启发式算法生成。
例如,在旅行商问题中,初始种群可以随机生成多条路径。
(2)适应度评价适应度函数是遗传算法的核心,适应度函数的构建直接关系到遗传算法的性能。
适应度函数是对每个染色体的优劣进行量化评价,用以指导后续优化操作。
适应度函数构建需要根据问题特点进行设计。
(3)选择操作选择操作是指将上一代种群中的某些个体复制到下一代种群中,个体复制的概率与其适应度大小有关。
适应度越高的个体被选择的概率越大,从而使适应度高的个体更有机会进化到下一代。
选择操作可以通过轮盘赌选择、锦标赛选择等方式实现。
(4)交叉操作交叉操作是指对选择后的个体进行杂交,交叉操作是遗传算法的核心,它通过随机杂交个体的染色体,产生新的杂交染色体,从而增加搜索空间。
交叉操作可分为单点交叉、多点交叉、均匀交叉等。
(5)变异操作变异操作是指在交叉操作之后对个体发生变异,从而产生新的个体。
变异操作是通过随机改变染色体中的基因,从而增加多样性。
变异操作可以是简单变异、非一致变异、高斯变异等。
以上是遗传算法的基本框架,遗传算法的性能因素有适应度函数的设计、进化代数、群体大小、交叉概率、变异概率等。