杂散电流自动监测系统简介v2
- 格式:ppt
- 大小:4.22 MB
- 文档页数:84
广州地铁二号线杂散电流监测系统使用说明中国矿业大学二002年十月目录1系统组成 (2)1.1 系统文件组成 (2)1.2 系统功能组成 (2)2 系统运行环境 (3)3 系统运行及退出 (3)3.1 系统运行 (3)3.2 系统退出 (3)4 启动窗口操作说明 (3)4.1 系统 (4)4.2 启动设定 (4)5 杂散电流监测操作说明 (4)5.1 系统 (4)5.2 监测装置 (4)5.3 数据查阅 (4)5.4 校正设定 (7)5.5 启动设定 (8)5.6 帮助 (8)6 过渡电阻测试操作说明 (9)6.1 系统 (9)6.2 电阻测试 (9)6.3 数据查阅 (10)6.4 参数设定 (10)6.5 自动测试 (11)6.6 启动设定 (11)7 远程通讯操作说明 (12)7.1 系统 (12)7.2 电话 (12)7.3 文件收发 (13)7.4 启动设定 (13)8 程序安装 (14)杂散电流监测系统本系统为广州地铁二号线杂散电流监测系统,该系统通过微机通讯转接器,实时的将智能传感器监测的结构钢极化电位、轨道-结构钢电压、本体电位数据以及传感器状态,经监测装置自动采集并形成数据库存储在电脑硬盘内,同时可以对所采集的数据进行统计和分析。
并能对过渡电阻和纵向电阻进行自动测试,还可将数据通过网络(局域网或电话线)传输到控制中心。
1、系统组成1.1系统文件组成本系统的软件部分由以下文件组成:系统软件CurrMonII.EXE、测试数据母库.XLS、广州地铁二号线参数库.XLS、过渡电阻母库.XLS、DATA.TXT数据库 C:\SCMDatabasetD:\SCMDatabaset(备份)1.2系统功能组成本系统的软件部分包括由以下功能:杂散电流监测、过渡电阻测试和远程通讯杂散电流监测用于结构钢极化电位、轨道-结构钢电压、本体电位数据以及传感器状态的监测,对数据的统计和查询、传感器的人工和自动校正等。
杂散电流监测系统(含排流柜)、单向导通装置技术规格书(一)杂散电流监测系统(含排流柜)1. 适用范围本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。
2. 环境条件1)环境温度:-5︒C~+44.5︒C2)污秽等级:重污区3)相对湿度:日平均:95%月平均:90%有凝露发生4)海拔高度: 1000m5)雷电日:60D/年6)地震烈度:7度3. 供货规格型号4. 采用标准(但不限于此)地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92《低压电器外壳防护等级》GB4942.2-85《电工电子产品基本环境试验规程》GB2423-81《电磁兼容试验和测量技术》GB/T 17626《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210《交流电气装置的接地》DL/T621-1997《地铁设计规范》GB50157-2003《地铁直流牵引供电系统》GB10411-895. 系统构成本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。
杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。
杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。
6. 系统功能杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能:6.1 通信功能每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。
杂散电流监测系统(含排流柜)、单向导通装置技术规格书(一)杂散电流监测系统(含排流柜)1. 适用范围本技术要求适用于重庆轨道交通一号线朝沙段杂散电流监测系统,并作为投标方制定投标技术文件和供货设备的技术依据。
2. 环境条件1)环境温度:-5C~+44.5C2)污秽等级:重污区3)相对湿度:日平均:95%月平均:90%有凝露发生4)海拔高度:1000m5)雷电日:60D/年6)地震烈度:7度3. 供货规格型号序号名称规格型号备注1 排流柜FM3022 参比电极MHC3 传感器FM301A4 信号转接器FM301Z5 监测装置FM3056 管理软件4. 采用标准(但不限于此)地铁杂散电流自动监测系统有关设备所涉及的产品标准、规范;工程标准、规范;验收标准、规范等完全满足所有中华人民共和国的条例及规范,包括:《地铁杂散电流腐蚀防护技术规程》CJJ49-92《低压电器外壳防护等级》GB4942.2-85《电工电子产品基本环境试验规程》GB2423-81《电磁兼容试验和测量技术》GB/T 17626《煤矿通信、检验、控制用电工电子产品基本试验方法》MT 210《交流电气装置的接地》DL/T621-1997《地铁设计规范》GB50157-2003《地铁直流牵引供电系统》GB10411-895. 系统构成本工程杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。
杂散电流监测装置通过变电所内通信网络与电力监控系统接口,并将处理和统计后的数据传至监控中心。
杂散电流监测系统由参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、监测装置组成。
6. 系统功能杂散电流监测装置的输入端与从沿线各传感器引入的通信电缆连接,通过各监测点传感器实时采集监测分区内的结构钢筋的极化电位,参比电极自然本体电位,并对数据进行A/D转换,计算、存贮、统计并通过变电所内通信网络,将统计结果传送到变电所自动化系统,本监测系统具备以下几种功能:6.1 通信功能每个供电区间内的监测装置定期向传感器发出数据采集命令,数据按指定的格式上传到监测装置。
地铁杂散电流监测系统工作原理及调试河南邦信防腐材料有限公司技术部2017年5月河南邦信防腐材料有限公司结合北京地铁十号线对杂散电流监测系统的构成进行介绍,对监测系统参比电极、氧化钼参比电极、传感器、信号转接器、监测装置等主要部件的功能进行说明,并针对该线设备现场安装具体情况对监测系统主要部件的施工方法进行介绍,为今后地铁杂散电流监控系统的施工和运营管理提供了参考。
概述北京地铁十号线一期工程是北京轨道交通线网中一条先东西走向,后南北走向的半环线。
线路起点在北京市西北部的海淀区万柳车站,终点到达劲松车站。
线路全长24.585,全部为地下线路,共设22个车站。
地铁十号线一期工程杂散电流防护采取了正线走行轨绝缘安装,利用道床设置杂散电流收集网、变电所设置排流柜的综合防护措施。
设置杂散电流监测系统通过监测道床和地下结构杂散电流收集网极化电位等数据,实现对地铁十号线一期工程的杂散电流分布的综合监测,为运营维护部门判断杂散电流防护系统状况提供依据。
1系统构成地铁十号线杂散电流监测系统采用车站(变电所)监测和控制中心集中监测二级监测系统。
杂散电流防护系统主要由氧化钼参比电极、整体道床测防端子、地下结构测防端子、测量线、传感器、通信电缆、信号转接器、变电所监测装置组成。
2系统各部分部件功能及施工方法全线在各车站混合变电所内分别设置1台杂散电流监测装置,全线共13台。
该装置经过通信电缆与该站及该站两端各半个区间内的转接器相连,转接器下连传感器,各监测点传感器经由测量线与该点结构钢和整体道床测防端子(地下结构测防端子)对应的氧化钼参比电极相连,实现对该分区结构和整体道床结构钢筋的极化电位数据采集,数据统计并上传至转接器,再由转接器将数据整合后上传至监测装置处理。
杂散电流监测装置通过变电所内通信网络与电力监控系统接口,将处理和统计后的数据传至监控中心。
如图:在每个车站的有效站台两端以及车站边缘约200m的隧道外墙及道床上设置杂散电流测量端子,上下行各16处。
1概述地铁杂散电流监测系统由:传感器、转接器、监测装置和上位机组成。
传感器负责采集和上传数据;转接器负责传感器与监测装置之间的数据转接;监测装置负责对上传数据的存储、分析、计算和显示,在数据超标时进行报警并控制排流柜排流,同时监测装置还负责与控制中心的上位机以太网通信;上位机对整个系统设备进行完整描述,配置系统的运行参数,处理系统整个运行信息的记录,并进行分析、查询、打印等。
系统构成如图1—1所示。
图1—1 系统构成2主要规格和技术参数2.1 系统电压:220V2。
2 系统最高工作电压:220V2。
3 额定电流:1A2。
4 功率: < 20W2。
5 模拟输入信号:参比电极——道床结构钢筋:-2V——+2V DC参比电极——主体结构钢筋:—2V——+2V DC钢轨—结构钢:—100 +100V2。
6 测量精度:≤±0.5%2.7 信号通信方式: CAN总线、485总线、以太网2.8 传输速率:5000bit/s(CAN)、 4800bit/s(RS-485)、以太网(10M)2。
9 最大传输距离:2km(CAN)2.10 数据存储容量:≥640Kbyte (监测装置可满足存储一个月采样数据的要求)2.11 防护等级: IP54(传感器和转接器)、IP30(监测装置)2.12 接线端子:通信线为屏蔽双绞线2.13 重量:〈 5 kg2。
14 外形尺寸 2430mm×3220mm×930mm(传感器、转接器)2610mm×1790mm×970mm(监测装置)3结构简介和工作原理3。
1 结构简介3.1.1 传感器与转接器被安装在专门设计的金属箱中,金属箱上面可被打开,便于PCB板的安装、检修与接线。
传感器和转接器被安置在地铁沿线.3。
1。
2 监测装置也被安装在金属箱中,该金属箱又被固定在排流柜的门上,金属箱的正表面装有LCD、LED和按键,用于数据显示和控制。
I.杂散电流监测系统由杂散电流收集网、测量端子、参考电极、区
间接线盒、测量用信号电缆、信号测量端子箱和便携式微机测控装置构成。
II.主要通过阅读图纸,查阅相关资料学习了牵引供电系统杂散电流防护的原理、杂散电流收集网测防端子引出图、杂散电流防护测试电缆联系图等。
III.杂散电流防护主要采取一下防护措施:
1)建立畅通和电气连续的牵引负回流通路,以保证在每个轨缝的电阻不大于1m钢轨的电阻值;
2)钢轨绝缘安装,车辆断、停车场和车站引入及引出轨道交通系统的给排水管采用绝缘隔离开关。
3)利用新建非盾构方式施工结构钢筋和新建整体道床结构钢筋的可靠焊接作为杂散电流收集网。
4)设立完备的杂散电流监测系统。
I.在既有段主要采用杂散电流防护的“堵”、“测”两类措施,在
该段不设杂散电流收集网。
在本线开通运营后,每隔半年时间,利用综合测控装置再高峰小时期间期间测试土建结构钢筋相
对周围混凝土介质的平均电位,以此电位作为有无杂散电流对
结构钢筋腐蚀的依据;如果测到某段结构钢筋电位超过0.5V
的标准,则该区段杂散电流超标,应对钢轨回路和钢轨泄漏电
阻进行测试检查,并结合测试结果进行维护。
5.主杂散电流收集网利用整体道床结构钢筋构成;辅助杂散电流收集
网利用隧道、车站结构钢筋构成。
在既有地下线改建段(西站至新华路段),整体道床结构钢筋以及隧道和车站的结构钢筋由于纵向不连续,不进行测防端子的电缆连接来形成杂散电流防护的收集网,只能从中引出测防端子供杂散电流监测用;而且该段的牵引变电所中也不设排流柜;对于本线的地面段,由于路基采用碎石道床,在该段不设杂散电流防护的收集网。
专利名称:新型地铁杂散电流自动监测装置专利类型:发明专利
发明人:牟龙华,金敏
申请号:CN200710036656.9
申请日:20070119
公开号:CN101226682A
公开日:
20080723
专利内容由知识产权出版社提供
摘要:新型地铁杂散电流自动监测系统,包括:作为本地监测从机的多个杂散电流在线自动监测装置,与一台远方监测主机连接。
系统的处理器周围有设置在同一块PCB印刷电路板上的开关电源模块、数据采集模块、以太网通信模块、辅助硬件模块,以及人机交互模块。
开关电源模块有内置的高性能EMC滤波器。
A/D转换电路采用双极性的12位A/D转换器MAX197,MAX197内置8路采样通道。
辅助硬件模块包括EEPROM二级永久存储模块,硬件看门狗电路,自备电池日历时钟模块和串口通信接口电路。
本发明简化了系统结构;使从机之间数据共享、信息融合、协同监测,大大加强了杂散电流监测的准确度和严密性;另外也降低了监测装置的成本。
申请人:同济大学
地址:200092 上海市四平路1239号
国籍:CN
代理机构:上海智信专利代理有限公司
代理人:吴林松
更多信息请下载全文后查看。
地铁杂散电流监测系统的工作原理及调试地铁杂散电流监测系统的工作原理及调试【摘要】经过对地铁、轻轨杂散电流监测系统的施工,对其工作原理及调试进行了分析与说明。
【关键词】杂散电流,监测系统,原理,调试1.概述在我国城市地铁直流供电系统中大多采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行轨兼作回流线。
由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,由于钢轨不可能达到完全对地绝缘,所以回流轨对地存在着电位差,回流线对道床、四周土壤介质、地下建筑物、埋设管线存在着一定的泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点四周重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。
杂散电流主要是对地铁四周的埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,对已定型的地铁结构造成严重危害,甚至酿成灾难性的事故。
所以在地铁和轻轨正常运行时,应加强对杂散电流监测和有效判断腐蚀状况。
杂散电流监测系统就是对杂散电流的电化学腐蚀进行积极有效的监测。
2.杂散电流监测系统的重要参数杂散电流对埋于地下金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都是具有阳极过程和阴极过程的氧化还原反应。
即电极电位较低的金属铁失去电子被氧化而变成金属离子,同时金属四周介质中电极电位较高的去极化剂,如金属离子或非金属离子得到电子被还原。
杂散电流的泄漏是造成地铁系统埋地金属结构电化学腐蚀的主要原因,在埋地金属结构的电化学腐蚀检测参数中,金属结构对地电位(极化电位)参数是最重要的,因为它既可以反映金属结构的腐蚀特性,又可以反映杂散电流的干扰特性。
轨道电位又是影响极化电位的主要原因,通过测量和分析钢轨、大地金属件电位的分布,就可以综合地分析杂散电流干扰状态和发生杂散电流腐蚀的状况。
地铁杂散电流监测系统的构成及综合治理陈静【摘要】针对杂散电流产生的原因,阐述了杂散电流监测系统的基本构成,提出了杂散电流的防护综合治理的方法.同时,根据杂散电流产生的危害,通过"以防为主、以排为辅、防排结合、加强监测"的途径,结合杂散电流的监测与防护,着重从"防"、"排"两个方面采取措施,对其进行了有效的治理.研究表明,通过杂散电流监测系统的应用,有效控制了地铁杂散电流产生的危害.【期刊名称】《电子设计工程》【年(卷),期】2010(018)008【总页数】3页(P68-70)【关键词】杂散电流;源控法;排流法;监测系统【作者】陈静【作者单位】西安铁路职业技术学院,陕西,西安,710014【正文语种】中文【中图分类】U231随着我国经济战略布局的调整,地铁以其快捷、环保、高效等特点,作为城市的基础设施建设迅速发展,极大地缓解了日益突出的城市交通问题。
地铁大多采用直流牵引供电系统,并将走行轨作为牵引回流线。
在列车运行的不同过程(启动、加速、惰行、制动等)和不同负载(空载、轻载、重载)的情况下,走行轨的工作电流差别很大。
该电流绝大部分能经过走行轨流回到牵引变电所的负极,但仍然会有一小部分电流从轨道与地面绝缘不良的位置泄漏到道床及周围土壤介质中,形成杂散电流,俗称迷流。
杂散电流会对地下隧道结构钢筋、高架桥结构钢筋、沿线金属管线、屏蔽网等金属设施产生严重的电化学腐蚀。
如果不及时治理将会造成巨大的经济损失,甚至危及建筑设施的安全,酿成灾难性的后果。
因此,杂散电流的腐蚀防护、监测及综合治理是地铁建设和运营中的一个重大课题。
1 杂散电流监测系统的构成杂散电流监测系统由上位机、参比电极、信号电缆、传感器、信号转换器、排流柜等组成,其系统结构图如图1所示。
图1 地铁杂散电流监测系统原理图Fig.1 Metro stray current monitoring system schematic diagram由于杂散电流本身很难被检测到,所以通常的方法是测量钢轨对地的极化电压[1]。
城市轨道交通杂散电流监测系统概述
殷爽
【期刊名称】《地下工程与隧道》
【年(卷),期】2011(000)003
【摘要】介绍了城市轨道交通工程中杂散电流不同的监测系统的构成,分析了集中式、分散式和智能型等监测系统的配置和功能,以及智能型实时在线监测系统的重要意义,为轨道交通工程杂散电流监测系统的选择与应用提供参考。
【总页数】4页(P49-51,53)
【作者】殷爽
【作者单位】上海市隧道工程轨道交通设计研究院
【正文语种】中文
【中图分类】U239.5
【相关文献】
1.城市轨道交通线路杂散电流监测系统研究
2.城市轨道交通杂散电流监测系统及其应用
3.城市轨道交通线路杂散电流监测系统研究
4.城市轨道交通杂散电流监测防护系统分析
5.城市轨道交通杂散电流监测防护系统分析
因版权原因,仅展示原文概要,查看原文内容请购买。