计算方法 插值法(一)
- 格式:ppt
- 大小:1.74 MB
- 文档页数:43
[转载]插值算法(⼀):各种插值⽅法⽐较原⽂地址:插值算法(⼀):各种插值⽅法⽐较作者:稻草⼈确定性随机性确定性随机性趋势⾯(⾮精确)回归(⾮精确)泰森(精确)克⾥⾦(精确)密度估算(⾮精确)反距离权重(精确)薄板样条(精确)整体拟合利⽤现有的所有已知点来估算未知点的值。
局部插值使⽤已知点的样本来估算位置点的值。
确定性插值⽅法不提供预测值的误差检验。
随机性插值⽅法则⽤估计变异提供预测误差的评价。
对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。
也就是,精确插值所⽣成的⾯通过所有控制点,⽽⾮精确插值或叫做近似插值,估算的点值与该点已知值不同。
1、反距离加权法(Inverse Distance Weighted)反距离加权法是⼀种常⽤⽽简单的空间插值⽅法,IDW是基于“地理第⼀定律”的基本假设:即两个物体相似性随他们见的距离增⼤⽽减少。
它以插值点与样本点间的距离为权重进⾏加权平均,离插值点越近的样本赋予的权重越⼤,此种⽅法简单易⾏,直观并且效率⾼,在已知点分布均匀的情况下插值效果好,插值结果在⽤于插值数据的最⼤值和最⼩值之间,但缺点是易受极值的影响。
2、样条插值法(Spline)样条插值是使⽤⼀种数学函数,对⼀些限定的点值,通过控制估计⽅差,利⽤⼀些特征节点,⽤多项式拟合的⽅法来产⽣平滑的插值曲线。
这种⽅法适⽤于逐渐变化的曲⾯,如温度、⾼程、地下⽔位⾼度或污染浓度等。
该⽅法优点是易操作,计算量不⼤,缺点是难以对误差进⾏估计,采样点稀少时效果不好。
样条插值法⼜分为张⼒样条插值法(Spline with Tension)规则样条插值法(Regularized Spline)薄板样条插值法 (Thin-Plate Splin)3、克⾥⾦法(Kriging)克⾥⾦⽅法最早是由法国地理学家Matheron和南⾮矿⼭⼯程师Krige提出的,⽤于矿⼭勘探。
这种⽅法认为在空间连续变化的属性是⾮常不规则的,⽤简单的平滑函数进⾏模拟将出现误差,⽤随机表⾯函数给予描述会⽐较恰当。
插值法例题计算过程摘要:1.插值法的基本概念和应用场景2.插值法的计算步骤和注意事项3.插值法在财务管理中的实际运用案例4.插值法在实际问题中的优缺点分析正文:插值法是一种数学方法,通过在已知数据点之间构建插值函数来逼近或预测未知数据。
在财务管理等领域具有广泛的应用。
接下来,我们将详细介绍插值法的计算步骤,并通过一个实际案例来说明其应用。
一、插值法的基本概念和应用场景插值法是基于已有的数据点(如(x1, y1),(x2, y2),(xn, yn))来构造一个插值函数,以便在未知点处预测函数值。
插值法可以应用于诸如财务管理等领域,解决诸如净现值计算等问题。
二、插值法的计算步骤和注意事项1.确定插值函数:根据已知数据点选择合适的插值函数,如线性插值、二次插值等。
2.构建插值表:将已知数据点代入插值函数,计算出对应的函数值,并构建插值表。
3.插入未知点:将要求的点的横坐标x代入插值函数,得到所求的函数值。
4.注意事项:在选择插值函数时,应注意数据的分布情况,避免出现龙格现象;同时,插值表的密度和精度也直接影响插值结果的准确性。
三、插值法在财务管理中的实际运用案例假设我们有一个投资项目,其净现值随折现率变化而变化。
已知当折现率为12%时,净现值为116530;当折现率为10%时,净现值为121765。
我们可以使用插值法来计算其他折现率下的净现值。
四、插值法在实际问题中的优缺点分析优点:插值法简单易行,计算速度快,适用于大量数据处理。
缺点:插值法的精度受限于已知数据点的质量和分布,以及所选插值函数的类型。
在某些情况下,插值法可能无法很好地逼近真实函数。
总之,插值法作为一种有效的数学方法,在财务管理等领域具有广泛的应用。
通过掌握插值法的计算步骤和注意事项,我们可以更好地解决实际问题。