算法分析习题详细答案五
- 格式:doc
- 大小:207.00 KB
- 文档页数:8
算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
Program算法设计与分析基础中文版答案习题5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次..对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.(农夫过河)P—农夫 W—狼 G—山羊 C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBin(n).n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进.算法 MinDistance(A[0..n-1])n-1]a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element., 0 for an array of positive numbers ) to mark the i th position is empty. (“lazy deletion”)第2章习题7.对下列断言进行证明:(如果是错误的,请举例)a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n))b.α>0时,Θ(αg(n))= Θ(g(n))解:a. 这个断言是正确的。
2-34、Gray码是一个长度为2n的序列。
序列中无相同元素。
每个元素都是长度为n位的串。
相邻元素恰好只有一位不同。
用分治策略设计一个算法对任意的n构造相应的Gray码。
答:设序列中元素由0、1组成。
当 n=1 时 Gray码的序列有2个元素(21=2),分别为:0,| 1当 n=2 时 Gray码的序列有4个元素(22=4),分别为:00,10,| 11,01当 n=3 时 Gray码的序列有8个元素(23=8),分别为:000,100,110,010,| 011,111,101,001当 n=4 时 Gray码的序列有16个元素(24=16),分别为:0000,1000、1100、0100,0110,1110,1010,0010,| 0011,1011,1111,0111,0101,1101,1001,0001从上面的列举可得如下规律:n=k时,Gray码的序列有2k个元素,分别为:n=k-1时的Gray码元素正向后加0,得前2k-1个元素,反向后加1的后2k-1个元素。
如 n=2时 Gray码序列的4个元素分别为:00,10, 11,01当 n=3 时 Gray码序列的前4个元素(23=8),分别为:000,100,110,010是n=2时Gray码四个元素正向后加0,即:000,100, 110,010Gray码序列的后4个元素(23=8),分别为:011,111,101,001 是n=2时Gray码四个元素反向后加1,n=2时Gray码四个元素:00,10, 11,01即:011,111,101,001可以看出,Gray码可以用分治策略,递归实现,2n的Gray码可以用2n-1的Gray码构成。
算法描述:void Gray( type a[],int n){ char a[];if (n==1) { a[0]=’0’;a[1]=’1’;}if (n>1){ Gray(a[],n-1);int k=2n-1-1; //Gray码的个数,因为数组下标从0开始int i=k;for (int x=k;x>=0;x--){char y=a[x];a[x]=y+’0’;a[i+1]=y+’1’; i++;}}}3-7 给定由n个英文单词组成的一段文章,……答:设由n 个单词组成的一段文章可以表示为 A[1:n],它的“漂亮打印”方案记为B[1:n],构成该最优解的最小空格数(最优值)记为m[1][n](1)分析最优解的结构:A[1:n]的最优解B[1:n],必然在第k个单词处断开,那么A[1:k]是“漂亮打印”,并且A[k+1:n]也是“漂亮打印”。
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;图 七桥问题for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。
本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。
1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。
2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。
算法实现题3-7 数字三角形问题问题描述:给定一个由n行数字组成的数字三角形,如图所示。
试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
编程任务:对于给定的由n行数字组成的数字三角形,编程计算从三角形的顶至底的路径经过的数字和的最大值。
数据输入:有文件input.txt提供输入数据。
文件的第1行是数字三角形的行数n,1<=n<=100。
接下来的n行是数字三角形各行的数字。
所有数字在0-99之间。
结果输出:程序运行结束时,将计算结果输出到文件output.txt中。
文件第1行中的数是计算出的最大值。
输入文件示例输出文件示例 input.txt output.txt 5 30 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5源程序:#include "stdio.h" voidmain(){ intn,triangle[100][100],i,j;//triangle数组用来存储金字塔数值,n表示行数 FILE *in,*out;//定义in,out两个文件指针变量in=fopen("input.txt","r");fscanf(in,"%d",&n);//将行数n读入到变量n中for(i=0;i<n;i++)//将各行数值读入到数组triangle中for(j=0;j<=i;j++)fscanf(in,"%d",&triangle[i][j]);for(int row=n-2;row>=0;row--)//从上往下递归计算for(int col=0;col<=row;col++)if(triangle[row+1][col]>triangle[row+1][col+1])triangle[row][col]+=triangle[row+1][col];elsetriangle[row][col]+=triangle[row+1][col+1];out=fopen("output.txt","w");fprintf(out,"%d",triangle[0][0]);//将最终结果输出到output.txt中 }算法实现题4-9 汽车加油问题问题描述:一辆汽车加满油后可行驶nkm。
习题5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d 能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次..对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.(农夫过河)P—农夫 W—狼 G—山羊 C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBin(n).n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略)对这个算法做尽可能多的改进.算法 MinDistance(A[0..n-1])n-1]a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the ith element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element., 0 for an array of positive numbers ) to mark the ith position is empty. (“lazy deletion”)习题1欧几里得算法的时间复杂度欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式gcd(a, b) = gcd(b, a mod b)其中gcd(a, b)表示a和b的最大公约数, mod是模运算, 即求a除以b的余数. 算法如下:输入: 两个整数a, b输出: a和b的最大公约数function gcd(a, b:integer):integer;if b=0 return a;else return gcd(b, a mod b);end function欧几里得算法是最古老而经典的算法, 理解和掌握这一算法并不难, 但要分析它的时间复杂度却并不容易. 我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a和b的大小有怎样的关系?我们不妨设a>b>=1(若a<b我们只需多做一次模运算, 若b=0或a=b模运算的次数分别为0和1), 构造数列{un}: u0=a, u1=b, uk=uk-2 mod uk-1(k>=2), 显然, 若算法需要n次模运算, 则有un=gcd(a, b), un+1=0. 我们比较数列{un}和菲波那契数列{Fn}, F0=1<=un, F1=1<=un-1, 又因为由uk mod uk+1=uk+2, 可得uk>=uk+1+uk+2, 由数学归纳法容易得到uk>=Fn-k, 于是得到a=u0>=Fn, b=u0>=Fn-1. 也就是说如果欧几里得算法需要做n次模运算, 则b必定不小于Fn-1. 换句话说, 若 b<Fn-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有Fn-1>n/sqrt(5), 即b>n/sqrt(5), 所以模运算的次数为O(lgb)---以b为底数 = O(lg(2)b)---以2为底数,输入规模也可以看作是b的bit位数。
1.最大子段和问题:给定整数序列 n a a a ,,,21 ,求该序列形如 jik k a 的子段和的最大值:ji k k n j i a 1max ,0max1) 已知一个简单算法如下:int Maxsum(int n,int a,int& best i,int& bestj){ int sum = 0;for (int i=1;i<=n;i++){ int suma = 0;for (int j=i;j<=n;j++){ suma + = a[j]; if (suma > sum){ sum = suma; besti = i; bestj = j; } }}return sum;}试分析该算法的时间复杂性。
2) 试用分治算法解最大子段和问题,并分析算法的时间复杂性。
3) 试说明最大子段和问题具有最优子结构性质,并设计一个动态规划算法解最大子段和问题。
分析算法的时间复杂度。
(提示:令1()max,1,2,,jki j nk ib j a j n L )解:1)分析按照第一章,列出步数统计表,计算可得)(2n O2)分治算法:将所给的序列a[1:n]分为两段a [1:n/2]、a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种可能: ①a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; ②a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同; ③a[1:n]的最大子段和为两部分的字段和组成,即j n jil n i ja a a a a122;intMaxSubSum ( int *a, int left , int right){int sum =0;if( left==right)sum = a[left] > 0? a[ left]:0 ;else{int center = ( left + right) /2;int leftsum =MaxSubSum ( a, left , center) ;int rightsum =MaxSubSum ( a, center +1, right) ;int s_1 =0;int left_sum =0;for ( int i = center ; i >= left; i--){left_sum + = a [ i ];if( left_sum > s1)s1 = left_sum;}int s2 =0;int right_sum =0;for ( int i = center +1; i <= right ; i++){right_sum + = a[ i];if( right_sum > s2)s2 = right_sum;}sum = s1 + s2;if ( sum < leftsum)sum = leftsum;if ( sum < rightsum)sum = rightsum;}return sum;}int MaxSum2 (int n){int a;returnMaxSubSum ( a, 1, n) ;} 该算法所需的计算时间T(n)满足典型的分治算法递归分式T(n)=2T(n/2)+O(n),分治算法的时间复杂度为O(nlogn)3)设}{max )(1 j ik k ji a j b ,则最大子段和为).(max max max max max 11111j b a a nj jik k ji n j j ik k nj n i},,,,max {)(11211j j j j j j j a a a a a a a a a j b最大子段和实际就是)}(,),2(),1(max{n b b b .要说明最大子段和具有最优子结构性质,只要找到其前后步骤的迭代关系即可。
},)1(max {},}{max max {},}{max {}{max )(1111111j j j j j ik k j i j j i j j i k k ji k k j i a a j b a a a a a a a j b若0)1( j b , j a j b j b )1()(;若0)1( j b ,j a j b )(。
因此,计算)(j b 的动态规划的公式为:.1},,)1(max {)(n j a a j b j b j jintMaxSum (int* a ,int n ) {int sum = 0, b = 0,j=0; for( int i=1;i<=n;i++) { if( b >0)b = b + a [i];elseb = a [i];end{if} if( b > sum)sum = b;j=i ; end{if}}return sum; }自行推导,答案:时间复杂度为O (n )。
2.动态规划算法的时间复杂度为O (n )(双机调度问题)用两台处理机A 和B 处理n 个作业。
设第i 个作业交给机器A 处理时所需要的时间是i a ,若由机器B 来处理,则所需要的时间是i b 。
现在要求每个作业只能由一台机器处理,每台机器都不能同时处理两个作业。
设计一个动态规划算法,使得这两台机器处理完这n 个作业的时间最短(从任何一台机器开工到最后一台机器停工的总的时间)。
以下面的例子说明你的算法:)4,3,11,4,8,3(),,,,,(),2,5,10,7,5,2(),,,,,(,6654321654321 b b b b b b a a a a a a n解:(思路一)删除(思路二)在完成前k 个作业时,设机器A 工作了x 时间,则机器B 最小的工作时间是x 的一个函数。
设F[k][x]表示完成前k 个作业时,机器B 最小的工作时间,则)}](1[,)](1[m in{)]([k k a x k F b x k F x k F其中k b x k F )](1[对应第k 个作业由机器B 来处理(完成k-1个作业时机器A 工作时间仍是x ,则B 在k-1阶段用时为)](1[x k F );而)](1[k a x k F 对应第k 个作业由机器A 处理(完成k-1个作业,机器A 工作时间是x-a[k],而B 完成k 阶段与完成k-1阶段用时相同为)](1[k a x k F )。
则完成前k 个作业所需的时间为)}]([,max{x k F x 1)当处理第一个作业时,a[1]=2,b[1]=3;机器A 所花费时间的所有可能值围:0 x a[0]. x<0时,设F[0][x]= ∞,则max(x, ∞)= ∞; 0 x<2时,F[1][x]=3,则Max(0,3)=3, x 2时, F[1][x]= 0,则Max(2,0)=2;2)处理第二个作业时:x 的取值围是:0 <= x <= (a[0] + a[1]), 当x<0时,记F[2][x] = ∞;以此类推下去(思路三)假定n 个作业的集合为 n S n ,,2,1 。
设J 为n S 的子集,若安排J 中的作业在机器A 上处理,其余作业在机器B 上处理,此时所用时间为J S j j Jj j b a J T \,max )(, 则双机处理作业问题相当于确定n S 的子集J ,使得安排是最省时的。
即转化为求J 使得)}({min J T nS J 。
若记 1,,2,11 n S n ,则有如下递推关系:J S j j n J j j S J J S j j J j j n S J I S j j I j j S I b b a b a a b a n n n \\\,max min ,,max min min ,max min 11--(思路四)此问题等价于求(x 1,……x n ),使得它是下面的问题最优解。
min max{x 1a 1+……x n a n ,(1-x 1)b 1+……+(1-x n )b n } x i =0或1,i=1~n基于动态规划算法的思想,对每个任务i ,依次计算集合S (i)。
其中每个集合中元素都是一个3元组(F 1,F 2,x )。
这个3元组的每个分量定义为 F 1:处理机A 的完成时间 F 2:处理机B 的完成时间 x :任务分配变量。
当x i =1时表示将任务i 分配给处理机A ,当x i =0时表示分配给处理机B 。
初始时,S (0)={(0,0,0)}令F=按处理时间少的原则来分配任务的方案所需的完成时间。
例如,当(a 1,a 2,a 3,a 4,a 5,a 6)=(2,5,7,10,5,2),(b 1,b 2,b 3,b 4,b 5,b 6)=(3,8,4,11,3,4)时,按处理时间少的原则分配任务的方案为(x 1,x 2,x 3,x 4,x 5,x 6)=(1,1,0,1,0,1) 因此,F=max{2+5+10+2,7+5}=19。
然后,依次考虑任务i ,i=1~n 。
在分配任务i 时,只有2种情形,x i =1或x i =0。
此时,令S(i)={S(i-1)+(a i,0,2i)}U{S(i-1)+(0,b i,0)}在做上述集合并集的计算时,遵循下面的原则:①当(a,b,c),(d,e,f)ЄS(i)且a=d,b<=e时,仅保留(a,b,c);②仅当max{a,b}<=F时,(a,b,c)ЄS(i)最后在S(n)中找出使max{F1,F2}达到最小的元素,相应的x即为所求的最优解,其最优值为max{F1,F2}。
当(a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2),(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)时, 按处理时间少的原则分配任务的方案为(x1,x2,x3,x4,x5,x6)=(1,1,0,1,0,1)因此,F=max{2+5+10+2,7+5}=19。
S(0)={(0,0,0)};S(1)={(2,0,2),(0,3,0)}S(2)={(7,0,6),(5,3,4),(2,8,2),(0,11,0)}S(3)={(14,0,14),(12,3,12),(9,8,10), (7,4,6), (5,7,4),(2,12,2),(0,15,0)}S(4)={(19,8,26), (17,4,22),(15,7,20),(12,12,18),(14,11,14),(9,19,10),(7,15,6),(5,18,4)}S(5)={ (19,11,46), (12,15,38), (19,11,26), (17,7,22), (15,10,20),(12,15,18),(14,14,14),(7,18,6)}S(6)={ (14,15,102),(19,7,86),(17,10,84),(14,15,82), (9,18,70),(12,19,38), (15,14,20),(12,19,18)} max(F1,F2)最小的元组为(14,15,102), (14,15,82), (15,14,20)所以,完成所有作业最短时间是15,安排有三种:(1,1,0,0,1,1),(1,0,0,1,0,1),(0,1,0,1,0,0)(思路五)C++ 源代码如下:#include<iostream>using namespace std;const int MAXS = 70;const int MAXN = 10;bool p[MAXS][MAXS][MAXS];int a[MAXS],b[MAXS];int schduleDyn(int * a,int * b,int n,int mn){ int i,j,k;//===========数组初始化===================for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ p[i][j][0] = true;for(k = 1 ; k <= n; k++)p[i][j][k] = false;}//===========动态递归=============for(k = 1; k <= n; k ++)for(i = 0; i <= mn; i++)for(j = 0; j <= mn; j++){ if( (i - a[k-1]) >= 0)p[i][j][k] = p[i - a[k-1]][j][k-1];if( (j - b[k-1]) >= 0)p[i][j][k] = (p[i][j][k] | p[i][j-b[k-1]][k-1]);}//================求结果=====================int rs = mn;int temp = 0;for(i = 0; i <= mn; i++)for(j = 0; j <= mn ; j++){if(p[i][j][n]){ temp = i > j ? i : j;if(temp < rs)rs = temp;}}return rs;}void main(){int i,n,m = 0,mn = 0;//=============初始化========================cin >> n;for(i = 0; i < n; i++){ cin >> a[i];if(a[i] > m)m = a[i];}for(i = 0; i < n; i++){cin >> b[i];if(b[i] > m)m = b[i];}mn = m * n;//=========动态规划求解=================cout << schduleDyn(a,b,n,mn) << endl;system("pause");}对于例子: n = 6 ;(a1,….,a6) = (2 5 7 10 5 2),(b,1…,b6) = (3 8 4 11 3 4); 由于求解过程比较繁锁,这里只说个大概算法执行过程,首先,用p[i][j][k],记录下对于第k 个作业,能否在对于a机器是i时间以,对于b机器是j时间以完成,如果能,则把p[i][j][k]设为true.经过了设置后,求对于n个作业的所有可能的值为p[i][j][n],对min(max(i,j)),结果为15.即为所得到的结果.3.考虑下面特殊的整数线性规划问题ni x b xa x c i ni iini ii 1},2,1,0{,max 11试设计一个解此问题的动态规划算法,并分析算法的时间复杂度。