超级电容规格书
- 格式:pdf
- 大小:271.06 KB
- 文档页数:10
R & D May.06. 2019 Paul LinR & DMay.06. 2019Matt ChienR & DMay.06. 2019Vera Huang1. Part Number System 料号说明Product Code Guide –SVLT Series (-25~+85 ℃ 0.1F~1.50F) For example:① SCM means supercapacitor module ② Supercapacitor Type: D means EDLC type ③ Series : VLT means SVLT series -25~+85 ℃ ④ Rated Voltage : 5R5 means 5.5 V / 3R6 means 3.6V ⑤ Rated Capacitance:For example:⑥ Capacitance Tolerance:⑦ Lead Form & & ⑧ Dimension Code:⑨ ⑩ Special Notes: Defaulted without any note2. Product Dimensions: 产品尺寸SCM □□□ ① D □ ② VLT □□□ ③ 5R5 □□□ ④ 334 □□□ ⑤ Z □ ⑥ VH □□ ⑦ 115004□□□□□□ ⑧ E □ ⑨ XX □□ ⑩ HTYPE3.General Characteristics/一般特性4.Environmental Characteristics/环境特性5.Test Methods 测试方法5.1Capacitance 容量Charge capacitor with constant current to rated voltage, then charge it with constant voltage for 30 minutes, and then discharge it with constant current to 0.1V (safe voltage). 将电容器恒流充至额定电压,并恒压30min,然后恒流放至0.1V(安全电压)Recording time t1 and t2 corresponding to V2 and V1 during discharge(where V2=80%VR, V1=40%VR)。
XLR-48 Supercapacitor48 V, 166 F Rugged moduleDescriptionEaton supercapacitors are high reliability, high power, ultra-high capacitance energy storage devices utilizing electricl double layer capacitor (EDLC) construction combined with proprietary materials and processes. This combination of advanced technologies allows Eaton to offer a wide variety of capacitor solutions tailored to applications for back up power, pulse power and hybrid power systems. They can be applied as the sole energy storage or in combination with batteries to optimize cost, life time and run time. System requirements can range from a few micro-amps to megawatts. All products feature low ESR for high power density with environmentally friendly materials for a green power solution. Eaton supercapacitors aremaintenance-free with design lifetimes up to 20 years*.Features•Ultra low ESR provides high efficiency, high power• Industry standard form factor for easy integration •High power density to optimize system size and low operating costs•Millions of charge/discharge cycles for life of application•No heavy metals, RoHS compliant, non-hazardous energy storage•Heavy duty metal housing for high vibration, high current applications•IP65 environmental rating for high dust areas and water jet washable •UL recognizedApplications• Hybrid and electric vehicles • Grid storage• Commercial vehicles: trucks, mining, construction • Automated guided vehicle (AGV)• Trolley, subway •MarineEnvironmental complianceAgency information*Supercapacitor lifetimes vary based on charge voltage and temperature. See Eaton’s application guidelines or contact your local Eaton sales representative for more information on lifetime estimates2Technical Data 10510Effective July 2023XLR-48 Supercapaci tor 48 V, 166 F Rugged module/electronicsRatingsCapacitance166 F Maximum working voltage 48.6 V Surge voltage 51.3 VCapacitance tolerance -0% to 20% (+20 °C)Operating temperature range -40 °C to +65 °CExtended temperature range-40 °C to +85 °C (with linear derating to 41.0 V @ +85 °C)SpecificationsCapacitance 1 (F)Part numberMaximum initial ESR 1 (mΩ)Nominal leakage current 2 (mA)Stored energy 3(Wh)Peak power 4(kW)Pulse current 5(A)Continuous current 6 (A)Typical thermal resistance 7Rth (°C/W)Short circuitcurrent 8 (A)166XLR-48R6167-R 5 5.2541182200860.49700PerformanceParameter (F)Capacitance change (% of initial value)ESR (% of maximum initial value)Life (1500 hours @ +65 °C, 48.6 Vdc)≤ 20%≤ 200%Storage (3 years, uncharged, <+35 °C)≤ 5%≤ 10%Cycle Life 9 (1,000,000 cycles)≤ 20%≤ 200%1. Capacitance and Equivalent series resistance (ESR) measured according to IEC62391-1 at +20 °C, with current in milliamps (mA) = 8*C*V2. Leakage current at +20 °C after 72 hour charge and hold3. Energy (Wh) = ½*C*V 2 36004. Peak power (W) = V 2 4*ESR5. Pulse Current in Amps (A), 1 second discharge from rated voltage to half rated voltage = ½*C*V (1+ESR*C)6. Continuous current with a 15 °C temperature rise. Continuous current (A) =8. Short circuit current is for safety information only. Do not use as operating current.9. Cycling between rated voltage and half voltage, 3 seconds rest at +25 °C10.Testing and verification of product under end application conditions is recommendedSafety and certificationsRegulatory UL 810A, file number MH46887, E-mark (UN-ECE Regulation 10 - Rev. 5 & UN-ECE Regulation 100 - Rev. 2)Shock and vibration IEC 61373 Cat. 1, Class B, SAE J2380, ISO16750-3 Table 14, SAE J2464Warnings Do not overvoltage, do not reverse polarity.Environmental IP65, RoHSShippingUN3499, <10 Wh, Non-hazardous when shipped with shorting wire.EatonElectronics Division 1000 Eaton Boulevard Cleveland, OH 44122United States/electronics© 2023 EatonAll Rights Reserved Printed in USAPublication No. 10510 PCN21003 July 2023Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express writtenapproval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.Technical Data 10510Effective July 2023XLR-48 Supercapacitor 48 V, 166 F Rugged module Eaton is a registered trademark.All other trademarks are property of their respective owners.Follow us on social media to get thelatest product and support information.Dimensions (mm) and Mass (kg)Part numberL ±1.0L1 ±1.0W ±1.0W1 ±1.0H ±1.0H1 ±1.0H2 ±1.0Typical mass (kg)XLR-48R6167-R 419.5396.2194.5170.0177.0146.5157.014.7Part numbering systemXLR-48R6167-RFamily code Voltage (V)R = decimal Capacitance (μF)Standrd productValueMultiplierXLR = Family code48R6 = 48.6 VExample 16 = 16.6 x 107 (μF) or 166 FPackaging information•Standard packaging: 1piece per boxPart marking• Manufacturer • Capacitance (F)• Max operating voltage (V)• Part number • Polarity•Serial number。
Nesscap 株式会社韩国京畿道龙仁市器兴区古梅洞 750-8 ( 邮编:446-901 )产品说明书应用于变桨距控制的75V/24F超级电容器模块5.0版[EMHSR-0024C0-075R0]2008年7月10日NESSCAP 株式会社Version: AT-52-523-100708, Rev. 01目 录1. 概述 (I n t r o d u c t i o n ) ---------------------------------------------- 22. Nesscap 超级电容器整体描述 (General Description of Nesscap Ultracapacitor Module) -22.1 特点 (Features) ------------------------------------------------------ 2 2.2 规格 (Specifications) ------------------------------------------------ 3 2.3 电学性能 (Electrical Performance) -------------------------------------- 43. 75V/24F超级电容器机械的特性 (Mechanical Characteristics of 75V/24F UltracapacitorM o d u l e ) ------------------------------------------------------- 7 3.1 原理图 (Schematic Drawings) ----------------------------------------- 7 3.2 外观 (Appearance) ---------------------------------------------------- 8 3.3 内部结构 (Internal Structure) -------------------------------------- 9 4. 序列号和标记 (T h e N o t a t i o n o f S e r i a l N u m b e r a n d L a b e l i n g ) ------ 11 5. 逻辑输出 (L o g i c O u t p u t s ) --------------------------------------- 125.1 逻辑输出识别码 (Identification Number for Logic Outputs) ------------ 12 5.2 电压监测 (Logic Outputs) ---------------------------------------------- 13 5.3 温度监测 (Temperature Monitoring) ------------------------------------ 14 5.4 极性反转探测 (Polarity Reversal Detection) ------------------------- 14 5.5 静电放电和良涌崩溃电压保护 (ESD and Surge Voltage Protection) ----------- 17 5.6 介电强度测试 (Dielectric Strength Test) ---------------------------- 186. 安装 (I n s t a l l a t i o n ) --------------------------------------------- 196.1 装卸 (Handling) ---------------------------------------------------- 19 6.2 装配 (Mounting) ------------------------------------------------------- 19 6.3 主要连接电缆 (Main Cable Connection) ------------------------------- 20 6.4 监视系统连接 (Monitoring Wire Connection) ----------------------------- 207. 操作 (Operation) -------------------------------------------------- 218. 安全须知 (S a f e t y ) ------------------------------------------------ 219. 存放 (S t o r a g e ) ------------------------------------------------ 21 10. 联系方式 (C o n t a c t I n f o r m a t i o n ) ---------------------------------- 221. 概述本说明书提供超级电容器作为储能装置的电子和机械特性,包括符合在风力发电机组变桨距控制应用上的参数和有关安装信息。
....................................................................... SPECIFICATIONSMODEL NO.: PCX-10F10 Farad Hybrid Super Capacitor with 3-Digit Blue Voltage Meter Capacitance.............................. 10,000.000 micro farad (10 Farad)Working Voltage........................................... 16 DCVSurge Voltage................................................. 20 DCVE. S. R. (Equivalent Series Resistance)......... 0.0015 ohm @ 120Hz / 25°CCapacitance Tolerance....................................± 10 %MODEL NO.: PCX-20F20 Farad Hybrid Super Capacitor with 3-Digit Blue Voltage Meter Capacitance.............................. 20,000.000 micro farad (20 Farad)Working Voltage........................................... 16 DCVSurge Voltage................................................. 20 DCVE. S. R. (Equivalent Series Resistance)…..... 0.0015 ohm @ 120Hz / 25°CCapacitance Tolerance...................................± 10 %MODEL NO.: PCX-30F30 Farad Hybrid Super Capacitor with 3-Digit Blue Voltage Meter Capacitance.............................. 30,000.000 micro farad (30 Farad)Working Voltage........................................... 16 DCVSurge Voltage................................................. 20 DCVE. S. R. (Equivalent Series Resistance)……. 0.0015 ohm @ 120Hz / 25°CCapacitance Tolerance...................................± 10 %DETAILED FEATURES:a) 3 digit super bright blue voltage meter measures 0.1V DVC range.b) Blue LED lighting window illuminates, and goes to sleep status when the amplifier isswitched off and there’s no voltage variation within 3 minutes.c) Reverse polarity connection warning buzzer. If the capacitor is connected incorrectlyby reversing the positive and negative wires during the installation process, the buzzer on the PCB will ring till you correct polarity connection.d) Over voltage limit and low battery voltage limit warning. When the system voltagegoes ABOVE 17 DCV or BELOW 10 DCV, the buzzer will issue warning sound.INSTALLATION AND MOUNTING:Securely mount the capacitor using supplied hardware. Be careful when choosing mounting location to avoid moving parts and possible exposure to moisture.CHARGING THE CAPACITOR AND WIRING:The capacitor must be charged before connecting the Power and Ground cables to the capacitor. Failure to charge the capacitor will result in a large spark generated from the rapid inflow of current.1. To charge the capacitor:Make capacitor positive terminal connections with amplifier and tighten the bolt. Do not over-tighten the bolt!Caution: Stripped terminals are not covered under the capacitor’s warranty.2. Connect the ground cables of the battery, amplifier, and capacitor separately tochassis.3. Place the supplied charging resistor between the positive terminal of the capacitor andthe battery’s positive terminal. After 5~60 seconds, the capacitor will be fully charged.Caution: The resistor will become hot!4. Immediately after the charging process, take away the charging bulb from theconnecting wire, and connect the positive cable to the positive terminal on the capacitor.CAPACITOR WIRING DIAGRAM:DISCHARGING THE CAPACITOR:Never remove the capacitor without discharging the stored power – it can give adangerous electrical shock!To disconnect the capacitor, follow these instructions:1. Disconnect the cables from the capacitor in the following order:a) positive (+) cableb) ground (-) cable2. Holding the resistor provided, touch the leads to the positive (+) and ground (-)terminals of the capacitor. After 1~5 minutes, the capacitor will be discharged (Thecharging resistor will become hot!) Then you can safely remove and handle it.WARNING!!THIS POWER CAPACITOR MAY EXPLODE AND CAUSE SERIOUS INJURY IF ABUSEDOR CONNECTED IMPROPERLY. PLEASE REFER TO THE INSTRUCTIONS CONTAINEDIN THIS MANUAL FOR CORRECT OUNTING, CHARGING/DISCHARGING AND WIRINGCONNECTION FOR THIS CAPAPCITOR PRIOR TO INSTALLATION.POWER ACOUSTIK AUDIO ACCESSORIES CAR AUDIO ACCESSORIES。
产品规格书产品名称: 超级电容器产品型号: WTC5V51F5Z-0720C变更履历表版本修订人变更内容变更日期R21.1 任倩倩1、增加了最大峰值电流(1s) 2021.09.24目录质量声明 (4)1. 适用范围 (5)2. 标准测试条件 (5)3. 一般特性 (5)4. 包装方式 (5)5. 环境性能指标 (6)6. 产品尺寸及外形 (6)7. 命名规则 (7)8. 测试方法 (7)9. 注意事项和使用指导 (9)10. 免责声明 (11)质量声明正确的使用和维护保养才能确保您的电容(或电容系统)长期可靠稳定地运行。
⚫收到产品后,请检查包装是否完好,若包装破损,可能导致产品损坏。
若有损坏,请于五个工作日内联系我司售后或销售人员。
⚫凡不按本说明书规定进行使用或维护保养者,视同放弃保修权利,上海闻亭实业有限公司及其服务站有权不再予以保修,对由此而产生的一切损失也不予以赔偿,但可以根据情况提供相应的有偿服务。
⚫贵司在收到产品及产品说明书后,请于7日内回复。
7日内未回复,我司将视客户承认此产品及产品说明书符合贵司要求。
公司信息地址:上海市黄浦区广西北路528号电话:+86-021-********邮编:200001邮箱:******************网址:1. 适用范围本产品规格书描述了上海闻亭实业有限公司(以下简称闻亭信息)生产的圆柱式超级电容器的产品性能指标。
2. 标准测试条件一般情况下,在标准大气压下,温度15~35 o C,相对湿度在25%~75%条件下进行测试;测试前样品应该在测试温度下放置12 h以上,本规格书的测试条件为标准大气压,温度为25±2 o C,相对湿度为60±15%。
3. 一般特性测试项目规格/条件1 型号WTC5V51F5Z-0720C2 额定容量 1.5 F3 容量偏差-20 % ~ + 80 %4 工作电压 5.5V5 浪涌电压 6.0 V6 标称内阻交流阻抗20 Ω直流阻抗30 Ω7 产品重量8.5±0.05g8 最大峰值电流(1 s) 90mA9 漏电流(24 h) ≤0.02mA10 工作温度-40 ~ 70 o C11 储存温度-40 ~ 85 o C12 循环寿命25ºC,额定电压到半额定电压间循环充放电50万次,|∆C/C|≤30%,ESR≤4倍初始值(25ºC)4. 包装方式产品型号包装数量(只)包装箱尺寸(L×W×H, mm)整箱重量(Kg)每外箱每吸塑盘每内箱每外箱每吸塑盘每内箱WTC5V51F5Z-0720C80 400 1600 331×228×117 485×355×265 16±15. 环境性能指标项目规格/条件1 温度特性+70 o C时|∆C/C|≤30 %,ESR≤规定值(25 o C)-25 o C时|∆C/C|≤50 %,ESR≤4倍初始值(25 o C)2 高温负荷特性+70 o C ± 2加额定电压,1000h后,|∆C/C|≤30%,ESR≤4倍规定值。
Unit 9, 12 Mars Rd Tel: +61 2 9420 0690 CAP-XX (Australia) Pty LtdLane Cove NSW 2066 Fax: +61 2 9420 0692 ABN 28 077 060 872Australia ACN 077 060 872 GW109 / GW209 SUPERCAPACITORDatasheet Rev 4.1, October 2015This Datasheet should be read in conjunction with the CAP-XX Supercapacitors Product Guide whichcontains information common to our product lines.Electrical SpecificationsThe GW109 is a single cell supercapacitor. The GW209 is a dual cell supercapacitor with two GW109 cellsin series, so GW209 capacitance = Capacitance of GW109/2 and GW209 ESR = 2 x GW109 ESR.Definition of TermsIn its simplest form, the Equivalent Series Resistance (ESR) of a capacitor is the real part of the complex impedance. In the time domain, it can be found by applying a step discharge current to a charged cell as in Fig. 1. In this figure, the supercapacitor is pre-charged and then discharged with a current pulse, I =1A for duration 0.01 secs.Figure 1: Effective capacitance, instantaneous capacitance and ESR for a GW209The ESR is found by dividing the instantaneous voltage step (∆V) by I. In this example = (4.492V-4.447V)/1.03A = 43.7mΩ.The instantaneous capacitance (C i) can be found by taking the inverse of the derivative of the voltage, and multiplying it by I.The effective capacitance for a pulse of duration ∆t n, Ce(∆t n) is found by dividing the total charge removed from the capacitor (∆Q n) by the voltage lost by the capacitor (∆V n). For constant current Ce(∆t n) = I x∆t n/∆V n. Ce increases as the pulse width increases and tends to the DC capacitance value as the pulse width becomes very long (~10 secs). After 2msecs, Fig 1 shows the voltage drop V2ms = (4.447V – 4.414V) =33mV. Therefore Ce(2ms) = 1.03A x 2ms/33mV = 62.4mF. After 10ms, the voltage drop = 4.447 V –4.349V = 98mV. Therefore Ce(10ms) = 1.03A x 10ms/98mV = 105mF. The DC capacitance of a GW209 = 160mF. Note that ∆V, or IR drop, is not included because very little charge is removed from the capacitor during this time. Ce shows the time response of the capacitor and it is useful for predicting circuit behavior in pulsed applications.Measurement of DC CapacitanceFig 2: Measurement of DC Capacitance for a GW209Fig 2 shows the measurement of DC capacitance by drawing a constant 100mA current from a fully charged supercapacitor and measuring the time taken to discharge from 1.5V to 0.5V for a single cell, or from 3V to 1V for a dual cell supercapacitor. In this case, C = 0.1A x 3.406s /2V = 170.3mF, which is well within the 160mF +/- 20% tolerance for a GW209 cell.Measurement of ESRFig 3: Measurement of ESR for a GW209Fig 3 shows DC measurement of ESR by applying a step load current to the supercapacitor and measuring the resulting voltage drop. CAP-XX waits for a delay of 50µs after the step current is applied to ensure the voltage and current have settled. In this case the ESR is measured as 50mV/1.03A = 48.5mΩ.Effective CapacitanceFigure 4: Effective CapacitanceFig 4 shows the effective capacitance for the GW109, GW209 @ 23°C. This shows that for a 1msec PW,you will measure 22.6% of DC capacitance or 63.3mF for a GW109 or 31.6mF for a GW209. At 10msecsyou will measure 60% of the DC capacitance, and at 100msecs you will measure 85% of DC capacitance.Ceffective is a time domain representation of the supercapacitor's frequency response. If, for example, youwere calculating the voltage drop if the supercapacitor was supporting 1A for 10msecs, then you would usethe Ceff(10msecs) = 60% of DC capacitance = 96mF for a GW209, so Vdrop = 1A x ESR + 1A x duration/C= 1A x 45mΩ + 1A x 10ms / 96mF = 149mV. The next section on pulse response shows how the effective capacitance is sufficient for even short pulse widths.Pulse ResponseFig 5 shows that the GW209supercapacitor does an excellent jobsupporting a GPRS class 10 pulsetrain, drawing 1.8A for 1.1ms at25% duty cycle. The source iscurrent limited to 0.6A and thesupercapacitor provides the 1.2Adifference to achieve the peakcurrent. At first glance the freqresponse of Fig 8 indicates thesupercapacacitor would not supporta 1ms pulse, but the Ceff of 31.6mFcoupled with the low ESR supportsthis pulse train with only ~117mVdroop in the supply rail. Fig 5: GW209 Pulse Response with GPRS Class 10 Pulse TrainDC Capacitance variation with temperatureFigure 6: Capacitance change with temperatureFig 6 shows that DC capacitance is approximately constant with temperature.ESR variation with temperatureFigure 7: ESR change with temperatureFig 7 shows that ESR at -40°C is ~2.2 x ESR at room temp, and that ESR at 70ºC is ~0.82 x ESR at room temperature.Frequency ResponseFig 8: Frequency Response of Impedance (biased at 2.3V with a 50mV test signal)Fig 9: Frequency Response of ESR, Capacitance & InductanceFig 8 shows the supercapacitor behaves as an ideal capacitor until approx 10 Hz when the magnitude no longer rolls off proportionally to 1/freq and the phase crosses -45°. Performance of supercapacitors with frequency is complex and the best predictor of performance is Fig 4 showing effective capacitance as a function of pulsewidth.Leakage CurrentFig 10: Leakage CurrentFig 10 shows the leakage current for GW109 at room temperature. The leakage current decays over time and the equilibrium value leakage current will be reached after ~120hrs at room temperature. The typical equilibrium leakage current is 0.5µA at room temperature. At 70°C leakage current will be ~5µA. Charge CurrentFig 11: Charging an GW109 with low currentThe corollary to the slow decay in leakage currents shown in Fig 10 is that charging a supercapacitor at very low currents takes longer than theory predicts. At higher charge currents, the charge rate is as theory predicts. For example, it should take 0.32F x 2.3V / 0.00002A = 10 hrs to charge a 0.16F supercapacitor to 2.3V at20µA, but Fig 11 shows it took 14hrs. At 100µA charging occurs at a rate close to the theoretical rate.RMS CurrentFig 12: Temperature rise in GW209 with RMS currentContinuous current flow into/out of the supercap will cause self heating, which limits the maximum continuous current the supercapacitor can handle. This is measured by a current square wave with 50% duty cycle, charging the supercapacitor to rated voltage at a constant current, and then discharging the supercapacitor to half rated voltage at the same constant current value. For a square wave with 50% duty cycle, the RMS current is the same as the current amplitude. Fig 12 shows the increase in temperature as a function of RMS current. From this, the maximum RMS current in an application can be calculated, for example, if the ambient temperature is 40︒C, and the maximum desired temperature for the supercapacitor is 70︒C, then the maximum RMS current should be limited to 4.5A, which causes a 30︒C temperature increase. CAP-XX Supercapacitors Product GuideRefer to the package drawings in the CAP-XX Supercapacitors Product Guide for detailed information of the product’s dimensions, PCB landing placements, active areas and electrical connections.Refer to the CAP-XX Supercapacitors Product Guide for information on endurance and shelf life, transportation and storage, assembly and soldering, safety and RoHS/EREACH certification.。
WRITTEN CHECKED APPROVEDTo. : DATE : 200 . . .SPECIFICATIONPRODUCT : STARCAPMODEL : DMS seriesKORCHIP CORP.KORCHIP B/D, 817-38, Anyang 2-dong, Manan-gu, Anyang-si, Gyeonggi-do, KOREA TEL : 82 - 31 - 361 - 8000 FAX : 82 - 31 - 361 - 8080Page No.ITEM etc.1Cover Page2Index3 1. Scope2. Part Number System3. Product Model Name4. Photo5. Nominal Specifications4 6. Cell Structure7. Product Construction And Dimension5 8. Packing Specifications6 9. Specifications And Test Method7 10. Measuring Method Of Characteristics8 11. Mounting And Soldering9 12. Cautions For Use10 13. Environmental ManagementIndexItems DMS 3R3 204 R DMS 3R3 224 R Cell SizeØ6.8 × 1.4mm Ø6.8 × 1.4mm OPERATING TEMPERATURE-10 ~ +60 ℃-10 ~ +60 ℃RATED VOLTAGE3.3 VDC 3.3 VDC ELECTROSTATIC CAPACITANCE (F)0.20 F 0.22 F CAPACITANCE TOLERANCE -20 ~ 80 %-20 ~ 80 %EQUIVALENT SERIES RESISTANCE (ESR)LESS THAN 200ΩLESS THAN 200ΩLEAKAGE CURRENT (LC)LESS THAN 150㎂LESS THAN 150㎂1. ScopeThis specification applies to STARCAP(Electric Double Layer Capacitor), submitted to specified customer in cover page.2. Part Number SystemDMS 3R3 204 R (Example)① ② ③ ④① Series Name② Rated Voltage : 3.3VDC③ Capacitance : 0.20 F (204 = 20 × 10+4uF) ④ Terminal Type : R-type3. Product Model Name1) Product : Electric Double Layer Capacitor 2) Model name : DMS3R3204R, DMS3R3224R4. Photo5. Nominal SpecificationsPart Number Dimension (mm)ØD H DMS 3R3 204 R 6.8 Max 1.8 Max DMS 3R3 224 R6.8 Max1.8 Max6. Cell Structure7. Product Construction And DimensionPRODUCTQUANTITY(PCS)SIZE(WxLxH mm)Weight(Kg) Tray Inner Box Outer Box Inner Box Outer BoxDMS 3R3 204 R1001,00016,000180×170×75375×340×350≃ 9 DMS 3R3 224 R1001,00016,000180×170×75375×340×350≃ 9 8. Packing Specification9. Specifications And Test Method10. Measuring Method Of CharacteristicsE0 : VdcR C : 100Ω11. Mounting And SolderingWhen you solder DMS series STARCAP to a printed circuit board, excessive thermalstress could cause the STARCAP's electrical characteristics to deteriorate, compromisethe integrity of the seal or cause the electrolyte to leak due to increased internal pressure.① Recommended condition of mountingIf you want to set or mount DMS series STARCAP on a PCB with resin before soldering for ease of soldering process, follow the thermal condition below.- Hardening Temp. of Resin : 80℃ or below- Hardening Time of Resin : 10 min. or less② Recommended condition of soldering- Soldering Tip Temp. : 350℃ or below- Soldering Time : 3 sec. or less- Times : Three times or less at intervals of 9 sec. or more※ Do not touch the metal case of STARCAP with a soldering iron.③ It is not allowed to go through flow or reflow(IR, Atmosphere heating methodsetc.) process.④ The terminals are plated for good solderability. Rasping terminals may damage the plating layer and degrade the solderability.Do not apply a large force to the terminals. Otherwise, they may break or come off or the STARCAP characteristics may be deteriorated.12. Cautions For UsePlease be careful for following points when you use STARCAP.1) Do not apply more than rated voltage.If you apply more than rated voltage, STARCAP's electrolyte will be electrolyzed and itsESR increase. At the worst, it may be broken.2) Do not use STARCAP for ripple absorption.3) PolarityThe STARCAP is non-polar fundamentally, however STARCAP gets polarity throughaging process before it is packed. Please mount it in accordance with its polarity to maintain the best condition.4) Operating temperature and lifeGenerally, STARCAP has a lower leakage current, longer back-up time and longer life in the low temperature i.e. the room temperature. But it has a higher leakage current, shorter back-up time and shorter life in the high temperature.Please design to keep STARCAP away from calorific parts.5) CleaningSome detergent or high temperature drying causes deterioration of STARCAP.If you wash STARCAP, Consult us.6) Following figure shows the general back-up circuit.D : Diode to prevent the reverse currentR : Resistor to control the chargingcurrentSeries RoHS directivePb, Cr+6, Hg, Cd, PBB,PBDEELV directive Pb, Cr+6, Hg, CdPVC etc.DMSN.D.N.D.N.D.7) Short-circuit STARCAPYou can short-circuit between terminals of STARCAP without resistor. However when you short-circuit frequently, please consult us.8) StorageIn long term storage, please store STARCAP in following condition; ① TEMP. : 15 ~ 35 ℃ ② HUMIDITY : 45 ~ 75 %RH ③ NON-DUST ENVIRONMENT9) Do not disassemble STARCAP. It contains electrolyte. 10) Series connection of STARCAPOver-rated voltage may be applied to a single STARCAP in series connection due to the deviation of capacitance and ESR of each STARCAP. Please inform us if you are using STARCAP in series connection and please design so as not to apply over-rated voltage to each STARCAP, and use STARCAPs from same lot.11) The tips of STARCAP terminals are very sharp. Please handle with care.13. Environmental ManagementAll STARCAP products are RoHS compliant and environment friendly.By changing the solder plating from leaded solder to lead-free solder, our new STARCAP has became even more friendly to the environment.* N.D. : Not detected。
WRITTEN CHECKED APPROVEDTo. : DATE : 200 . . .SPECIFICATIONPRODUCT : STARCAPMODEL : DMS seriesKORCHIP CORP.KORCHIP B/D, 817-38, Anyang 2-dong, Manan-gu, Anyang-si, Gyeonggi-do, KOREA TEL : 82 - 31 - 361 - 8000 FAX : 82 - 31 - 361 - 8080Page No.ITEM etc.1Cover Page2Index3 1. Scope2. Part Number System3. Product Model Name4. Photo5. Nominal Specifications4 6. Cell Structure7. Product Construction And Dimension5 8. Packing Specifications6 9. Specifications And Test Method7 10. Measuring Method Of Characteristics8 11. Mounting And Soldering9 12. Cautions For Use10 13. Environmental ManagementIndexItems DMS 3R3 204 R DMS 3R3 224 R Cell SizeØ6.8 × 1.4mm Ø6.8 × 1.4mm OPERATING TEMPERATURE-10 ~ +60 ℃-10 ~ +60 ℃RATED VOLTAGE3.3 VDC 3.3 VDC ELECTROSTATIC CAPACITANCE (F)0.20 F 0.22 F CAPACITANCE TOLERANCE -20 ~ 80 %-20 ~ 80 %EQUIVALENT SERIES RESISTANCE (ESR)LESS THAN 200ΩLESS THAN 200ΩLEAKAGE CURRENT (LC)LESS THAN 150㎂LESS THAN 150㎂1. ScopeThis specification applies to STARCAP(Electric Double Layer Capacitor), submitted to specified customer in cover page.2. Part Number SystemDMS 3R3 204 R (Example)① ② ③ ④① Series Name② Rated Voltage : 3.3VDC③ Capacitance : 0.20 F (204 = 20 × 10+4uF) ④ Terminal Type : R-type3. Product Model Name1) Product : Electric Double Layer Capacitor 2) Model name : DMS3R3204R, DMS3R3224R4. Photo5. Nominal SpecificationsPart Number Dimension (mm)ØD H DMS 3R3 204 R 6.8 Max 1.8 Max DMS 3R3 224 R6.8 Max1.8 Max6. Cell Structure7. Product Construction And DimensionPRODUCTQUANTITY(PCS)SIZE(WxLxH mm)Weight(Kg) Tray Inner Box Outer Box Inner Box Outer BoxDMS 3R3 204 R1001,00016,000180×170×75375×340×350≃ 9 DMS 3R3 224 R1001,00016,000180×170×75375×340×350≃ 9 8. Packing Specification9. Specifications And Test Method10. Measuring Method Of CharacteristicsE0 : VdcR C : 100Ω11. Mounting And SolderingWhen you solder DMS series STARCAP to a printed circuit board, excessive thermalstress could cause the STARCAP's electrical characteristics to deteriorate, compromisethe integrity of the seal or cause the electrolyte to leak due to increased internal pressure.① Recommended condition of mountingIf you want to set or mount DMS series STARCAP on a PCB with resin before soldering for ease of soldering process, follow the thermal condition below.- Hardening Temp. of Resin : 80℃ or below- Hardening Time of Resin : 10 min. or less② Recommended condition of soldering- Soldering Tip Temp. : 350℃ or below- Soldering Time : 3 sec. or less- Times : Three times or less at intervals of 9 sec. or more※ Do not touch the metal case of STARCAP with a soldering iron.③ It is not allowed to go through flow or reflow(IR, Atmosphere heating methodsetc.) process.④ The terminals are plated for good solderability. Rasping terminals may damage the plating layer and degrade the solderability.Do not apply a large force to the terminals. Otherwise, they may break or come off or the STARCAP characteristics may be deteriorated.12. Cautions For UsePlease be careful for following points when you use STARCAP.1) Do not apply more than rated voltage.If you apply more than rated voltage, STARCAP's electrolyte will be electrolyzed and itsESR increase. At the worst, it may be broken.2) Do not use STARCAP for ripple absorption.3) PolarityThe STARCAP is non-polar fundamentally, however STARCAP gets polarity throughaging process before it is packed. Please mount it in accordance with its polarity to maintain the best condition.4) Operating temperature and lifeGenerally, STARCAP has a lower leakage current, longer back-up time and longer life in the low temperature i.e. the room temperature. But it has a higher leakage current, shorter back-up time and shorter life in the high temperature.Please design to keep STARCAP away from calorific parts.5) CleaningSome detergent or high temperature drying causes deterioration of STARCAP.If you wash STARCAP, Consult us.6) Following figure shows the general back-up circuit.D : Diode to prevent the reverse currentR : Resistor to control the chargingcurrentSeries RoHS directivePb, Cr+6, Hg, Cd, PBB,PBDEELV directive Pb, Cr+6, Hg, CdPVC etc.DMSN.D.N.D.N.D.7) Short-circuit STARCAPYou can short-circuit between terminals of STARCAP without resistor. However when you short-circuit frequently, please consult us.8) StorageIn long term storage, please store STARCAP in following condition; ① TEMP. : 15 ~ 35 ℃ ② HUMIDITY : 45 ~ 75 %RH ③ NON-DUST ENVIRONMENT9) Do not disassemble STARCAP. It contains electrolyte. 10) Series connection of STARCAPOver-rated voltage may be applied to a single STARCAP in series connection due to the deviation of capacitance and ESR of each STARCAP. Please inform us if you are using STARCAP in series connection and please design so as not to apply over-rated voltage to each STARCAP, and use STARCAPs from same lot.11) The tips of STARCAP terminals are very sharp. Please handle with care.13. Environmental ManagementAll STARCAP products are RoHS compliant and environment friendly.By changing the solder plating from leaded solder to lead-free solder, our new STARCAP has became even more friendly to the environment.* N.D. : Not detected。