RADIAN激光跟踪仪激光跟踪仪
- 格式:pdf
- 大小:15.48 MB
- 文档页数:6
概述1.1激光跟踪测量系统(LaserTrackerSystem)是工业测量系统中一种高精度的大尺寸测量仪器。
它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。
它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量°SMART310是Leica公司在1990年生产的第一台激光跟踪仪,1993年Leica公司又推出了SMART310的第二代产品,其后,Leica公司还推出了LT/LTD系列的激光跟踪仪,以满足不同的工业生产需要。
LTD系列的激光跟踪仪采用了Leica公司专利的绝对测距仪,测量速度快,精度高,配套的软件则在Leica统一的工业测量系统平台Axyz下进行开发,包括经纬仪测量模块、全站仪测量模块、激光跟踪仪测量模[8。
]块和数字摄影测量模块等[8]激光跟踪系统在我国的应用始于1996年,上飞、沈飞集团在我国第一次引进了SMART310激光跟踪系统;2005年上海盾构公司引进了Leica公司的一套LTD600跟踪测量系统,应用于三维管模的检测。
[52激]光跟踪测量系统的基本原理1.2近年来,激光跟踪测量系统的应用领域在不断扩大,很多公司都相继推出了各自品牌的激光跟踪仪,但所有的激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成的。
在本文中,实验采用的是LTD600激光跟踪测量系统(图2.1),因此具体讨论的基本原理是基于LTD600型的激光跟踪测量系统。
图2.1LTD600激光跟踪测量系统系统的组成1.2.1激光跟踪仪的实质是一台能激光干涉测距和自动跟踪测角测距的全站仪,区别之处在于它没有望远镜,跟踪头的激光束、旋转镜和旋转轴构成了激光跟踪仪的三个轴,三轴相交的中心是测量坐标系的原点。
它的结构原理如图2.2所示。
激光跟踪仪在测量工件尺寸及形位误差上的应用文章通过对TrackerCal 4型激光跟踪仪的基本结构和工作原理的简单介绍,结合其对工件尺寸及形位误差的测量方法、测量结果分析以及误差补偿分析,从而掌握了激光跟踪仪在测量中的使用技巧,进而达到提高测量效率和测量精度的目的。
标签:激光跟踪仪;形位误差;尺寸;误差补偿引言目前我国机械加工单位用来检测工件尺寸及形位误差的工具大都还是使用千分尺,游标卡尺等配合使用数控机床打表的传统方法来测量。
传统方法虽然也能很好的检测工件误差精度,但有很多检测问题是用传统方法解决不了的,且费时费力,效率低下。
随着对工件加工精度要求的提高,传统的检测方法在提高检测精度上有一定的局限性,因此使用激光跟踪仪检测工件不仅可以提高测量精度而且简便快捷,大大的节省了人力物力。
1 基本结构和工作原理TrackerCal 4型激光跟踪仪由Radian 跟踪头和控制箱、5米接线电缆、气象站(含1根1.5米连接线、1个空气温度传感器、1个材料温度传感器、一个大气压力传感器)、连接网线、SMR-1.5英寸直径空心靶球、电缆包、防尘盖、校准三脚架、系统软件等构成。
激光跟踪仪是在激光干涉仪的基础上结合先进的伺服控制技术得到目标点相对于跟踪头的位置,工作基本原理是在工件被测位置上放置靶球(充当反射器),跟踪头发射出来的激光射到靶球上,并返回到跟踪头,当靶球移动时,跟踪头实时的转动来对准目标,与此同时,返回光束被检测系统所接收,以此来测算目标的空间位置。
注:1-跟踪头和控制箱;2-连接网线;3-电源线;4-5米接线电缆;5-电缆包;6-SMR-1.5英寸直径空心靶球;7-靶球清洁套装;8-气象站;9-防尘盖。
图12 工件尺寸的测量以测量加工孔的直径为例:(1)首先把激光跟踪仪各部件连接起来布置好位置,摆放位置必须保证被测加工孔能够接收跟踪头发出的光束且光束不中断。
如图2所示。
(2)打开控制器上的电源开关,对激光跟踪仪进行预热,预热时间大约半个小时。
激光跟踪仪原理
激光跟踪仪是一种使用激光束来跟踪目标物体的仪器。
它的工作原理基于激光的特性以及光的传播规律。
激光跟踪仪的主要组成部分包括激光发射器、接收器和信号处理器。
激光发射器发射一束激光光束,经过透镜成为平行光束,并照射到目标物体上。
当激光光束碰撞到目标物体上时,会产生反射或散射。
这些反射或散射的光被接收器接收,并转换成电信号。
接收器将电信号传输给信号处理器进行处理。
在信号处理器中,会对接收到的电信号进行分析和处理,以确定目标物体的位置、方向和运动状态。
通过计算出目标物体相对于激光跟踪仪的偏移角度和距离,可以实现对目标物体的精确定位和跟踪。
激光跟踪仪的工作原理基于三角测量原理和光的传播速度。
通过测量激光光束从激光发射器到目标物体再到接收器的时间差,可以计算出目标物体与激光跟踪仪之间的距离。
结合光束在空间中的角度信息,可以计算出目标物体的具体位置。
激光跟踪仪具有精确度高、反应速度快、适用于远距离测量等优点,在工业、航空航天等领域有着广泛的应用。
通过激光跟踪仪可以实现目标物体的检测、定位、跟踪和测量等功能,为各种应用提供了可靠的技术支持。
激光跟踪仪工作原理-回复激光跟踪仪(Laser Tracker)是一种广泛应用于精密测量和三维坐标测量领域的仪器。
它能够通过激光光束实时跟踪目标并测量其位置和姿态,具有高精度和高稳定性的特点。
在本文中,我们将介绍激光跟踪仪的工作原理,并逐步解释其实现精密测量的过程。
一、激光测距原理激光跟踪仪的工作原理基于激光测距技术。
激光是一种特殊的光源,具有高度的方向性、单色性和相干性,能够通过空气以及一些物质的透明介质传输。
激光跟踪仪利用激光束与目标表面的交互作用,通过测量激光束的入射角度和反射角度的差异来计算目标与仪器之间的距离。
二、测量系统结构激光跟踪仪的测量系统主要由激光发射器、探测器和相关器组成。
激光发射器负责发出激光光束,探测器用于接收反射光,并将其转换为电信号。
相关器用于测量入射光束和反射光束之间的相位差异,然后根据相位差计算目标与仪器之间的距离。
三、基准准直激光跟踪仪的准确性和稳定性依赖于其基准准直的精度。
在使用激光跟踪仪进行测量之前,需要进行基准准直操作,即将仪器的坐标系与实际的坐标系进行匹配。
这通常通过测量一系列已知位置的参考点来实现,然后根据这些测量结果进行坐标系的校正和校准。
四、目标反射激光跟踪仪通过测量激光束与目标表面的交互作用来确定目标的位置和姿态。
目标通常需要具备一定的反射性能,以便激光光束能够被有效地反射回探测器。
反射性能可以通过目标表面的材料和涂层来控制和改善。
五、跟踪和测量一旦目标反射激光光束被探测器接收到,相关器就会开始测量入射光束和反射光束之间的相位差异。
相位差可以通过不同的技术进行测量,例如在时间上测量或频率上测量。
根据相位差,激光跟踪仪能够计算目标与仪器之间的距离,并通过其他的测量和计算方法来确定目标的位置和姿态。
六、误差校正和数据处理激光跟踪仪的测量过程中会存在一些误差,例如仪器自身的误差、环境影响等。
为了提高测量精度,需要对这些误差进行校正和补偿。
误差校正和数据处理通常采用一些数学模型和算法,根据测量结果进行拟合和计算,以得到最终的测量结果。
激光跟踪仪原理激光跟踪仪是一种常用于测量和追踪目标运动的仪器。
它利用激光束的特性,通过发射、接收和处理光信号来实现对目标的跟踪。
本文将介绍激光跟踪仪的原理和工作过程。
激光跟踪仪的原理基于激光的特性。
激光是一种特殊的光束,具有单色、单行波、高亮度和相干性等特点。
这些特性使得激光在目标跟踪中具有很大的优势。
激光跟踪仪首先通过激光发射器产生一束激光束,然后将其发射到目标上。
当激光束照射到目标表面时,部分光束被目标表面反射回来,称为反射光。
这些反射光中包含了目标的信息,如目标的形状、大小和位置等。
接下来,激光跟踪仪通过接收器接收反射光,并将其转换为电信号。
接收器通常由光电二极管或光电倍增管等光电器件组成。
光电器件可以将光信号转换为电信号,以便进一步处理和分析。
接收到的电信号经过放大和滤波等处理后,被送入信号处理器进行处理。
信号处理器根据接收到的信号,可以计算出目标的距离、角度和速度等信息。
这些信息可以用来描述目标的位置和运动状态。
在信号处理的过程中,激光跟踪仪通常采用一些特殊的算法和技术来提高跟踪的精度和稳定性。
例如,自适应滤波、卡尔曼滤波等算法可以用来抑制噪声和滤除干扰,从而提高跟踪的准确性。
激光跟踪仪的工作过程可以分为三个主要步骤:发射、接收和处理。
在发射阶段,激光跟踪仪通过激光发射器产生激光束,并将其发射到目标上。
在接收阶段,激光跟踪仪通过接收器接收目标反射回来的光信号,并将其转换为电信号。
在处理阶段,激光跟踪仪通过信号处理器对接收到的电信号进行处理和分析,从而得到目标的位置和运动状态。
激光跟踪仪在许多领域中都有广泛的应用。
例如,它可以用于航天、航空、船舶、汽车和机器人等领域中的目标跟踪和定位。
通过激光跟踪仪,可以实时监测目标的位置和运动状态,从而提高系统的安全性和可靠性。
激光跟踪仪是一种利用激光束进行目标跟踪的仪器。
它通过发射、接收和处理光信号,可以实现对目标的跟踪和定位。
激光跟踪仪在许多领域中都有广泛的应用,对提高系统的安全性和可靠性起着重要的作用。
Radian激光跟踪仪产品简介美国API激光跟踪仪Radian是美国API公司新一代激光跟踪测量系统,具有靶球自动锁定功能,自我诊断功能等特点,Radian是建立在最新研发的INNOVO智能测量系统平台为基础,使激光跟踪仪的功能更强大,表现更卓越。
产品详细信息美国API激光跟踪仪Radian的I-Vision功能使得Radian激光跟踪仪具有自动跟踪锁定靶球的功能。
测量时,操作者可将注意力集中在待测物上,而不必担心断光、接光的问题的出现,因为具备I-Vision功能的Radian激光跟踪仪会自动锁定靶球,即便断光,也会自动搜寻到靶球的位置并迅速将激光束对准靶球的中心进行跟踪,I-Vision功能具有超过30°的工作范围,让您的测量随心所欲;精密测量要求仪器在各种工作环境中保持稳定的工作状态,所以在不同的工作环境中充分了解仪器自身的工作状态就变得十分重要。
Self-Diagnostics自我诊断功能可使Radian激光跟踪仪在工作中实时向操作者显示其自身的工作状态,从而彻底排除微震、升温、光强不足等因素给测量工作带来的影响。
美国API 激光跟踪仪Radian支持多靶球测量操作,当操作者需要让跟踪仪从一个靶球转移到另外一个靶球工作时,只需手持新的靶球对着Radian激光跟踪仪摇动,Radian的智能测量系统就会自动识别并将激光束发射至新的靶球进行跟踪测量,真正做到人性化操作,使您轻松应对测量任务。
API激光跟踪仪Radian的特点:1.Image Capture图像捕捉功能:在INNOVO智能测量平台的支持下,Radian激光跟踪仪已具备对静态、动态图像进行捕捉的功能,可对测量过程进行全方位的记录,为用户提供了极大的帮助。
2.Activity Advisor智能顾问功能:具备此功能的Radian激光跟踪仪会自动监测仪器的状态,并在预热完毕、气压过大、温度过高或仪器需要校准等状况出现时向您发出提示。
三维激光跟踪仪在核电建设的应用1.中核工程咨询有限公司北京 100089;2.中核工程咨询有限公司北京 1000891.研究理念随着现代工业的快速发展,各种工业生产自动化、大型精密机械和实验设备安装工程不断出现,这就对工业测量提出了更高的要求,如在核电厂建设过程中,主管道安装控制、蒸汽发生器制造与安装、压力容器安装就位、主泵安装就位以及核岛厂房微网测量等工作中,需要进行相对位置精度极高的精密测量工作。
这些工程测区范围较小,面积常常小于1Km2,但相对精度要求极高,点位绝对精度要求达到亚毫米甚至更高的量级,因此需要在狭小的范围内布设高精度的微型控制网。
激光跟踪仪是新型的工业测量仪器,它通过双频激光干涉来进行距离测量,测量精度可达几个微米。
此外,跟踪测量可以把测量人员从繁重的瞄准过程中解放出来,极大地提高效率。
该仪器具有精度高、实时快速、动态测量、便于移动等优点。
目前,激光跟踪仪已被广泛应用于航天、航空、汽车、造船、机械制造、核工业等精密工业测量领域。
它是实现高精度测边控制网测量的理想工具。
由于激光跟踪仪的测距精度高,测角精度相对较低,特别是布设的微型控制网边长较短,测角精度低会直接影响点位的精度,同时激光跟踪仪的有效测距较短,限制了激光跟踪仪的应用,通过多次架站,建立转换矩阵,可以建立稳定的空间模型。
这样,可以使激光跟踪仪通过多次架站完成复杂测量过程,通过直接对目标点进行高精度的距离测量,利用对控制网的平差解算直接得出目标点的三维坐标。
2.激光跟踪仪测量系统分析2.1激光跟踪测量系统的组成及原理激光跟踪测量系统主要由角度测量部分、距离测量部分、跟踪控制部分、激光跟踪仪控制部分以及支撑部分组成。
激光跟踪仪包括一个红色氦氖激光束,激光束被靶球(SMR)反射回来。
激光跟踪仪通过测量俯仰角(EL)和水平方位角(AZ)以及一个半径距离来决定反射镜中心点的球坐标。
角EL和Az用安装在激光跟踪仪仰角和方位角轴上的编码器测量。