纳米技术对镁碳耐火材料的改进研究
- 格式:docx
- 大小:43.25 KB
- 文档页数:8
冶金工业炉窑耐火材料新技术新材料
冶金工业炉窑耐火材料的新技术和新材料涉及以下几个方面的进展:
1. 材料组分优化:通过研究和改进材料的化学成分,以获得更好的耐火性能。
例如,添加具有良好高温稳定性和耐腐蚀性的化合物,如氧化镁和碳化硅。
2. 材料结构设计:使用新的结构设计方法来提高耐火材料的性能。
比如,采用多孔结构来增加材料的热稳定性和抗侵蚀性。
3. 纳米技术应用:通过纳米技术改变材料的微观结构,提高其力学性能和耐火性能。
纳米材料具有更高的比表面积和优异的机械性能,可以增强材料的耐热性和抗侵蚀性。
4. 涂层技术:利用涂层技术在耐火材料表面形成保护层,提高其抗热腐蚀和抗侵蚀性能。
例如,采用化学气相沉积或物理气相沉积方法在材料表面形成稳定的氧化层。
5. 复合材料应用:利用不同性能的材料进行复合,以提高整体材料的性能。
例如,将高温强度高的碳化硅颗粒与耐火砖基体组合,形成复合材料。
6. 先进制备技术:采用先进的制备技术来提高耐火材料的性能。
例如,采用溶胶-凝胶法、电渣熔化法等制备方法,可以获得
具有良好微观结构和均匀性的耐火材料。
这些新技术和新材料的应用,可以大大提高冶金工业炉窑的热效率、耐火性和抗腐蚀性,有助于提高工业生产的效益和环境友好性。
Aug.2007Vo l.32No.4REFRACTORIES&L IME1前言在钢铁工业中碳结合M gO-C质耐火材料因其依靠其较高的机械性能、热性能和化学性能而取得良好效果而著称。
基于上述情况,可以将其应用于转炉、电弧炉及盛钢桶中。
因为碳易于受到氧化,故向此类耐火材料中加入抗氧化剂。
由于此类加入剂可使氧的数量减少或者在碳素相表面形成不活泼层,从而阻止了碳的氧化。
在M g O-C质耐火材料中,为了提高其抗氧化性及机械强度,经常采用Al、Si、M g等作抗氧化剂,或者采用碳化物类抗氧化剂,诸如B4C及SiC等。
众所周知,在1200℃以下进行焙烘时,在M gO-C耐火材料中形成Al4C3和Al2O3。
除了Al4C及Al2O3之外,在石墨鳞片之间及在Al4C3颗粒表面上还形成了AlN的线状晶体。
曾报道了关于耐火材料中的氧化物对石墨及无定形碳的抗氧化性影响的研究结果。
该报道中指出,Al2O3是如何加速石墨氧化的,以及TiO2、ZrO2和Mg O是如何抑制其氧化的。
我们完成的上述工作结果表明,借助加入剂TiO2可显著地提高其抗氧化性,而联合采用Al和T iO2加入剂时则可达到最好的效果。
本论文中研究了由于加入铝和粒度约为1nm 的金属氧化物形成的碳化物和氧碳化物以及形态对镁碳质耐火材料抗热震性的影响。
基于此种目的,研究了工业中以酚醛树脂、煤焦油沥青为原料加入TiO2和Al制造的结合剂的状况。
列出了抗折强度、炭化后的开口气孔率及抗热震性的测定结果。
在占强度的%和%荷重的条件下以三点法测定抗折强度的试验的信息数据表明,在不同的变形值及变形塑性组成的情况下,其静力学弹性模量发生了变化。
2实验作为原料,采用了工业中生产的优质电熔方镁石砂,体积密度为3.52g cm-3,以及鳞片状天然石墨,含碳94%,单位表面积1m2g-1。
作为结合剂,采用液态线型酚醛树脂和由煤焦油制成的变性粉。
表1中列出了所研究的三种配料组成。
现代纳米镁合金材料的研究与应用分析一、导言随着科学技术的不断发展,材料科学领域也得到了快速发展。
纳米科技作为其中重要的一个分支,在近年来得到了广泛的关注和研究。
纳米科技以其极小的尺寸和超强的物理、化学特性,对材料的性能改善、新型材料的开发有着巨大的潜力。
其中,纳米镁合金材料是一种具有巨大应用潜力的新型材料,在能源、汽车、电器等领域的应用将得到广泛的推广和应用。
本文旨在对现代纳米镁合金材料进行深入的研究和应用分析。
二、纳米镁合金材料的研究1、纳米材料的概念及其特性纳米材料是指直径小于100纳米的材料。
与传统材料相比,纳米材料具有许多独特的物理、化学、力学、光电等性能。
首先,纳米材料的比表面积大大增加,因此具有特殊的表面能、吸附能等性质,有利于吸附化学反应的原料,改善化学反应的速率和效果。
其次,纳米材料大小与量子效应有关,量子效应后的纳米材料有更多的能级、更大的能带宽度,使得纳米材料的电学和光学性能得到显著改善。
最后,由于纳米材料是由许多非常小的单元组成的,其宏观物理性质与微观单元相互作用有关,材料具有改变原始物理性质的能力。
2、纳米镁合金材料的研究镁是一种轻质、高强度、耐腐蚀的金属。
然而,传统的镁合金材料却容易腐蚀、疲劳。
由于镁易氧化,生产和加工过程困难,同时,镁合金材料成份的不稳定性使得铸造工艺受到了限制。
纳米科技的出现为解决上述问题提供了新途径。
将纳米材料与镁合金材料结合,可以大大改善镁合金材料的特性,并产生出更为广泛的应用。
目前,纳米镁合金材料的研究主要集中在以下几个方面:(1)纳米化制备技术:纳米化制备主要通过机械合金化、热机械合金化等方法实现。
其中,机械合金化是利用球磨机将材料球磨成纳米尺寸。
该方法不仅适用于纯金属材料,也适用于合金材料。
热机械合金化是通过热处理和冷变形等方法制备纳米材料。
该方法不仅可以制备出纯金属材料和合金材料。
(2)合金结构设计:科学的合金结构设计能够大大提高纳米镁合金材料的特性。
论文题目:镁质耐火材料学院:化学与化工学院专业:无机非金属材料工程122年级:2012级学号: 1208110476 学生姓名:李文雪指导教师:杨林镁质耐火材料以菱镁矿、海水镁砂和白云石等作为原料,以方镁石为主晶相、氧化镁含量在80%以上的耐火材料。
属于碱性耐火材料,即为镁质耐火材料。
以下文章就镁质耐火材料的熔点,抗热震性,耐火度,水化反应,制备,储存等所得心得。
随着工业的进步,镁质耐火材料需要适应这个情况而逐步改善其各种性能,文章就其抗腐蚀性,抗渣性等等的改善提出了一些改善的方法。
最终知道,添加一些添加剂,可以很大程度的改善镁质耐火材料的某些性能,所以在镁质耐火材料的生产过程中,我们可以考虑加入一定的添加剂。
1、陈肇友,李红霞.镁资源的综合利用及镁质耐火材料的发展[J]. 耐火材料,2005,01:6-15.本文介绍了镁资源综合利用的途径及镁质耐火材料在高温工业中的发展情况。
在镁质耐火材料的发展情况中,从应用理论系统地分析并介绍了镁质耐火材料在高温工业:炼钢、有色金属冶炼、水泥窑及垃圾焚烧熔融炉的应用情况及其发展,并介绍了MgO-CaO材料的抗侵蚀和水化问题,以及尖晶石材料与镁质不定形耐火材料的研究现状和发展趋势。
镁质耐火材料一般是由菱镁矿高温煅烧后的镁砂制做的烧成镁砖,由于热膨胀系数大,抗热震性差,易吸潮水化,以及熔渣易渗入砖内甚深,抗热剥落与结构剥落性不好,现在除在一些温度比较稳定的连续式生产的高温炉中仍部分使用外,随着钢铁冶炼、有色冶炼、水泥窑的发展,使用的镁质耐火材料多为镁质复合材料,如镁碳砖、镁钙碳砖、镁钙砖、镁钙锆砖、镁铝尖晶石砖、镁铬砖等。
在以后的发展中,我们要着重发展镁质耐火材料的抗侵蚀性能,还有抗震性,逐步改善镁质耐火材料各方面的性能,使镁质耐火材料发挥自身最大的优点同时使其他材料的性能提升。
2、乌志明,马培华. 镁、镁资源与镁质材料概述[J]. 盐湖研究,2007,04:65-72.本文从中国盐湖卤水镁资源的开发形势十分严峻说起。
镁碳质耐火材料在钢铁行业中的应用钢铁行业是世界各国的重要工业基础,而耐火材料是钢铁行业中不可或缺的一部分。
在钢铁生产过程中,高温、腐蚀和氧化是常见的问题,这就需要使用耐火材料来保护工业设备和提高生产效率。
在耐火材料的种类中,镁碳质耐火材料因其良好的性能一直备受钢铁行业的青睐。
本文将从镁碳质耐火材料的特点、在钢铁行业中的应用和未来发展方向等方面详细介绍。
一、镁碳质耐火材料的特点1.抗高温镁碳质耐火材料由镁砂和炭素质原料制成,具有很高的耐高温性能。
在钢铁冶炼过程中经常会遇到高温炉火、高温熔炼,而镁碳质耐火材料具有良好的耐高温性能,可以有效地保护炉缸内壁和冶炼设备,延长设备使用寿命。
2.抗腐蚀镁碳质耐火材料还具有优良的抗腐蚀性能。
在钢铁冶炼过程中,炉渣和熔池中含有大量的酸性成分,会对冶炼设备造成腐蚀,而镁碳质耐火材料可以有效地抵抗这种腐蚀,保护设备不受侵蚀。
3.良好的导热性能镁碳质耐火材料具有良好的导热性能,可以有效地分散和排除设备内部的热量,防止热量积聚导致设备破损,同时也有利于加热和熔炼过程的进行。
4.轻质镁碳质耐火材料相比其他耐火材料来说相对轻质,这有利于减少设备的自重,节约设备建造成本,同时也有利于设备的保养和更换。
二、镁碳质耐火材料在钢铁行业中的应用1.转炉砌筑钢铁炼钢的主要设备之一就是转炉,而镁碳质耐火材料因其优良的耐高温和抗腐蚀性能被广泛应用于转炉的砌筑中。
转炉的工作温度很高,常规的耐火材料很难满足要求,而镁碳质耐火材料因其优异的性能可以很好地满足转炉的使用需求。
2.熔炼炉砌筑钢铁冶炼的另一重要设备是熔炼炉,而镁碳质耐火材料也被广泛应用于熔炼炉的砌筑中。
熔炼炉的工作环境很苛刻,需要具有很高的耐高温和抗腐蚀性能的耐火材料来保护设备不受破损,而镁碳质耐火材料正是满足这一需求的理想选择。
3.鼓风炉砌筑在炼钢过程中,鼓风炉是不可或缺的设备,而镁碳质耐火材料也应用于鼓风炉的砌筑中。
鼓风炉需要能够承受高温高压的工作环境,而镁碳质耐火材料以其耐高温、抗腐蚀、导热性好的特点,为鼓风炉提供了良好的保护。
纳米技术在材料科学中的应用及前景展望引言:纳米技术是近年来发展迅猛的科技领域之一,其对材料科学的应用带来了革命性的影响。
纳米技术通过控制和操纵物质的结构和性质,使材料具备了许多独特的优异性能,广泛应用于材料科学的各个领域。
本文将介绍纳米技术在材料科学中的应用,并展望其前景。
一、纳米技术在材料改性中的应用1.1 纳米粒子增强材料强度纳米粒子作为增强材料的一种方式,可以提高材料的强度和硬度。
由于纳米粒子的巨大表面积,能有效地抑制位错的移动,并导致晶粒的细化。
纳米粒子还可以在晶界上形成位错堆积,阻止晶格的滑移和压痕形成,从而提高材料的塑性和硬度。
因此,纳米颗粒增强的材料在航空航天、汽车、电子等领域中得到了广泛应用。
1.2 纳米涂层提高材料表面性能纳米技术还能通过制备纳米涂层来改善材料的表面性能。
纳米尺度的涂层能够提供材料更大的比表面积、优异的界面特性和化学稳定性。
例如,使用纳米涂层可以提高材料的耐磨性、耐腐蚀性和防护性能。
因此,纳米涂层在船舶、建筑、航空航天等行业中得到了广泛的应用。
二、纳米技术在材料先进制造中的应用2.1 纳米材料的3D打印纳米技术为3D打印技术的发展提供了新的可能性。
利用纳米材料,可以制备出具有复杂形状和高精度的微纳米结构。
纳米粒子的高比表面积和特殊的物理化学性质,使其成为一种理想的3D打印材料。
通过控制打印参数和纳米材料的组成,可以制备出具有特殊功能和性能的纳米材料。
2.2 纳米晶体的薄膜制备纳米晶薄膜是一种在表面上形成纳米尺度结构的材料。
利用纳米技术,可以制备出具有不同晶粒尺寸的纳米晶薄膜,并通过调控晶粒尺寸、形状和结构,来改善薄膜的光学、电学和磁学性能。
纳米晶薄膜在光电子技术、显示器件和传感器等领域中具有广阔的应用前景。
三、纳米技术在材料科学中的前景展望3.1 纳米技术与绿色材料的结合纳米技术与绿色材料的结合将成为未来材料科学的一个重要方向。
绿色材料是指具有低能耗、可再生和环境友好的特点的材料。
耐火材料现有原材料加工工艺的优化和改进在现有原材料的基础上对生产工艺进行优化和改进,或选择全新的生产工艺,从而使原材料具有改进的特性或低的成本。
近期这方面的进展较多,下面从工艺角度,包括改进生产工艺、添加生产工序和采纳全新生产工艺等方面分别予以简单介绍。
1改进生产工艺工艺改进是在原材料现有工艺基础上,通过调整工艺参数、添加外加剂等,使原材料具有特别的性能或性能更为稳定。
这方面的例子有:1.1具有增塑性的煅烧氧化铝在传统的喷补料中,通常加入含SiO2的物质如硅灰和软质粘土等(称之为增塑剂)来改善喷补料的流变性,从而加添喷补料的粘性和削减物料反弹。
当采纳铝酸盐水泥作为结合剂时,加入含SiO2的增塑剂由于低熔物相的形成会降低材料的高温性能,从而降低喷补料的使用寿命。
某厂家的CT10SG型煅烧氧化铝是一种可以取代硅灰和软质粘土的新型增塑剂,它具有高的比表面积(13m/g),d50为3m,并且具有独特的保水性能,可以加添喷补料的粘性。
1.2易施工活性氧化铝刚玉和尖晶石基高性能高纯泵送浇注料的关键技术问题是在低加水量的情况下具有可泵送本领。
但一般刚玉和尖晶石质高纯浇注料在不含硅微粉时,浇注料的剪切应力过大,有时还存在严重的胀性现象,使得浇注料的加水混合和泵送变得困难。
虽然二氧化硅微粉的加入可使浇注料获得理想的流变性(较低的屈服应力和塑性粘度),可以实现泵送,但它将降低高温下的热机械性能和抗侵蚀性。
国外某公司开发了新型氧化铝微粉,使得浇注料在双活塞泵的极大压力下也能表现出适合的流变行为。
1.3抗老化铝酸盐水泥“老化”是浇注料干混料在保存期间,水泥、浇注料原材料以及保存环境氛围之间相互作用,对水泥反应以及浇注料性能影响的通称。
老化导致浇注料施工性能变化,如硬化和脱模时间延长。
依据铝酸盐水泥老化机理的讨论,某水泥厂家在原铝酸钙水泥的基础上开发了新型铝酸钙水泥。
这种新的水泥基本性能同原铝酸钙水泥相当,但能够有效防范老化,为低水泥浇注料供给一个稳定的施工性能,延长浇注料的保存期。
镁碳砖发展及生产工艺改进的研究李亮;王世峰;陈士冰【摘要】镁碳砖是广泛使用的耐火材料,上世纪70年代始在结合剂、低碳化、抗氧化剂及新型添加剂等方面都进行了深入研究.目前,生产中仍存在易层裂、韧性差等问题.调整镁碳砖配合料颗粒级配、控制混合料湿度与优化压制过程等措施可以提高生产质量.【期刊名称】《山东轻工业学院学报(自然科学版)》【年(卷),期】2010(024)003【总页数】4页(P25-28)【关键词】镁碳砖;耐火材料;内部层裂;压制成型;生产工艺【作者】李亮;王世峰;陈士冰【作者单位】山东轻工业学院,山东省玻璃与功能陶瓷加工与测试技术重点实验室,山东,济南,250353;山东轻工业学院,山东省玻璃与功能陶瓷加工与测试技术重点实验室,山东,济南,250353;山东轻工业学院,山东省玻璃与功能陶瓷加工与测试技术重点实验室,山东,济南,250353【正文语种】中文【中图分类】TQ175.60 引言镁碳砖是一种优质耐火材料,由于该种含碳耐火制品具有耐火度高、抗渣侵性能好、耐热震性强及高温蠕变小等优点,在电炉、转炉及精炼炉上广泛得到应用,使用寿命大幅度提高。
同时,由于镁碳砖不需高温烧成,节省能源,制作工艺简单,因而被全世界许多国家迅速推广应用[1]。
1 镁碳砖的发展自上世纪 70年代起,镁碳砖行业不断发展。
日本的渡边明等人首先研制成功了镁碳砖。
1988年岛田康平[2]等提出将高纯烧结镁砂制镁碳砖用于转炉上。
同年,联邦德国的 Arno Gardziella博士[3]提出耐火制品中作为结合剂和碳形成剂的酚醛树脂的选择标准;Tadeusz Rymon Lipinski等[4]研究了吹氧转炉镁碳砖中金属添加物的反应。
意大利的B.DE Benedetti等[5]研究了树脂结合镁碳砖的耐侵蚀性。
1991年鹿野弘等[6]对镁碳砖的透气性进行了一系列的研究。
1992年 Gunar Klop等[7]研究了不同碳含量及镁砂成分对镁碳砖微观结构的影响。
耐火材料的创新技术有哪些耐火材料在高温工业中发挥着至关重要的作用,如钢铁、水泥、玻璃、陶瓷等行业。
随着科技的不断进步和工业需求的日益增长,耐火材料领域也在不断创新和发展,涌现出了一系列新技术。
首先,纳米技术在耐火材料中的应用是一项重要的创新。
通过将材料的颗粒尺寸减小到纳米级别,可以显著改善耐火材料的性能。
纳米颗粒具有较大的比表面积和表面能,这使得它们在高温下能够更快地发生反应,形成更稳定的物相结构。
例如,纳米氧化铝的加入可以提高耐火材料的强度和抗热震性能。
因为纳米颗粒能够填充微小的孔隙,减少材料中的缺陷,从而增强整体的结构稳定性。
其次,复合耐火材料技术的发展也为行业带来了新的突破。
将不同性质的耐火材料进行复合,能够综合各自的优点,弥补单一材料的不足。
比如,将氧化镁和氧化铝复合,可以形成镁铝尖晶石,这种复合结构既具有氧化镁的高耐火度,又具备氧化铝的良好抗侵蚀性能。
此外,碳复合耐火材料也是近年来的研究热点。
通过将碳材料与传统耐火氧化物结合,既能提高材料的抗热震性,又能增强其抗渣侵蚀能力。
再者,溶胶凝胶技术在耐火材料制备中的应用逐渐受到关注。
这一技术能够在分子水平上对材料进行设计和合成,从而精确控制材料的组成和结构。
利用溶胶凝胶法制备的耐火材料通常具有均匀的微观结构和优异的性能。
例如,可以制备出具有高纯度和均匀分散的耐火氧化物凝胶,经过后续处理得到性能优良的耐火制品。
另外,自蔓延高温合成技术在耐火材料领域也展现出了独特的优势。
这种技术利用化学反应自身放出的热量使反应持续进行,从而快速合成所需的耐火材料。
它具有合成速度快、能耗低、产物纯度高等优点。
通过自蔓延高温合成技术制备的耐火材料往往具有独特的微观结构和出色的性能。
在耐火材料的创新技术中,3D 打印技术也逐渐崭露头角。
它能够实现复杂形状耐火制品的定制化生产,大大提高了生产效率和产品的精度。
与传统的制造方法相比,3D 打印可以根据具体的使用需求,精确地构建出具有特定结构和性能的耐火部件,减少了材料的浪费和加工成本。
In2O3纳米材料的改性及其光催化还原CO2的研究In2O3纳米材料的改性及其光催化还原CO2的研究随着全球环境问题的日益严重,减少温室气体CO2排放成为了重要的任务。
同时,可再生能源的开发也变得越来越重要。
光催化技术作为一种绿色能源利用方式,因其高效、可再生的特点受到了广泛关注。
其中,In2O3纳米材料因其优异的光学和电学特性,成为了一种潜在的光催化剂,并在光催化还原CO2方面显示出了巨大的潜力。
In2O3纳米材料的改性方法有很多种,包括表面修饰、掺杂等。
表面修饰是通过在In2O3纳米材料表面引入其他材料,如金属、无机氧化物等,来提高In2O3的光催化活性。
通过表面修饰,可以增加In2O3纳米材料的比表面积,提高光吸收能力和电子传输速率,从而增强光催化性能。
另一种改性方法是掺杂,通过将其他元素引入In2O3晶格,改变其能带结构和电子结构,从而调控In2O3纳米材料的光催化性能。
不同改性方法对In2O3纳米材料的光催化性能产生不同的影响。
例如,在表面修饰方面,金属修饰是一种常见的方法。
研究表明,Pt修饰的In2O3纳米材料表面具有更多的自由金属态氧缺陷,这些缺陷能提供更多的活性位点来吸附和激活CO2分子,加速光催化还原CO2反应。
此外,Pt修饰还可以提高In2O3纳米材料的导电性,改善载流子传输,从而提高光生电子的利用率。
除了金属修饰,其他材料的修饰,如Co3O4、CeO2等,在In2O3纳米材料的光催化性能改善方面也取得了显著进展。
除了表面修饰,掺杂也被广泛应用于In2O3纳米材料的改性。
研究发现,氮和金属掺杂是最常见的掺杂方式。
氮掺杂可以调节In2O3纳米材料的能带结构,降低带隙能量,提高可见光吸收能力。
此外,氮掺杂还可以增加In2O3纳米材料的活性位点,提高光催化性能。
另一方面,金属掺杂,如Sn、Cu等金属,可以调节In2O3纳米材料的导电性和能带结构,增强载流子传输和光吸收能力。
利用改性后的In2O3纳米材料的光催化性能,目前主要用于CO2的光催化还原。
RH炉外精炼用耐火材料发展现状和趋势王堂玺,李享成,姜广坤武汉科技大学耐火材料与高温陶瓷国家重点实验室培育基地,武汉430081摘要随着冶炼洁净钢的发展,炉外精炼主要用耐火材料发展迅速。
RH炉用耐火材料以前以镁铬砖为主,但由于环境污染,目前无铬耐材越来越受到耐火材料专业人员的重视。
本文结合我国钢铁行业尤其是不锈钢及特殊钢的发展,对炉外精炼用耐材发展和趋势进行分析。
关键词炉外精炼镁尖晶石刚玉尖晶石材料1、前言近年来,随着我国国民经济快速发展,不锈钢及其他特殊钢的需求增长很快,这对钢产品质量也提出了更高的要求。
据统计,2009年我国钢铁行业的粗钢产量为56784万吨,其中32家主要特殊钢企业的粗钢产量为7610.84吨(占13%),而世界上OECD国家的特殊钢占其钢总产量约15-22%,其中瑞典达到45%左右[1],预计我国未来的特殊钢生产仍有很大的发展空间。
不锈钢及其它特殊钢产品的生产工艺主要采用炉外精炼工艺。
经过几十年的发展,炉外精炼领域逐渐开发了DH、RH、AOD、VOD、LF、V AD、ASEA-SKF等技术,各种炉外精炼设备也不断涌现。
炉外精炼工况比较苛刻,耐火材料要具有高温强度高、在真空下体积稳定性好,耐冲刷、耐剥落性好、抗侵蚀性强等,目前国内外已经开发和使用了各种优质的炉外精炼用耐火材料。
2、RH炉外精炼用主要耐火材料2.1镁铬系耐火材料镁铬系耐火材料分直接结合镁铬砖、再结合和半再结合镁铬砖。
镁铬砖在炉外精炼炉如VOD、AOD以及RH浸渍管、真空室使用效果较好。
镁铬砖的损毁原因主要考虑熔渣渗入而使砖体变质引起的结构剥落。
目前,大部分国家限制使用镁铬砖,一方面是由于其中的铬会造成环境污染,另一方面价格相对镁尖晶石砖或刚玉尖晶石浇注料更高,再有我国《产业结构调整指导目录》(2007年本)也将“含铬质耐火材料生产线”列限制类生产项目。
2.2 镁锆系耐火材料镁锆系耐火材料主要为烧成镁锆砖。
镁锆砖在炉外精炼炉如RH浸渍管、真空室使用效果较好。
我知道的高温材料之——MgO-C质耐火材料重庆大学一.MgO-C质耐火砖的起源及其发展第一次使用氧化物和碳的复合耐火材料是在15世纪初所制造的碳氧化物坩埚。
钢铁工业用的碳氧化物复合耐火材料是很早用铸锭用耐火材料的石墨塞头砖。
后来随着连铸技术的推广应用,氧化物和碳复合起来使用的耐火材料用的更广泛。
MgO–C砖是20世纪70年代兴起的新型耐火材料,最早由日本九洲耐火材料公司渡边明首先开发,它是以镁砂(高温烧结镁砂或电熔镁砂)和碳素材料为原料,用各种碳质结合剂制成的耐火材料。
由于MgO–C砖具有耐火度高、抗热震性优良和抗侵蚀能力强等优良特性而被广泛应用于钢铁企业,如转炉炼钢和电炉炼钢。
在日本研发出树脂结合MgO–C砖后,西欧开发了沥青结合的MgO–C砖,其残碳量约为10%,由于价格低于树脂结合MgO–C砖,故被成功地用于水冷电炉中的高温热点部位,同时也用于转炉。
我国在1980前后年开始研究含碳耐火材料[2],并被列入国家“七五”(1985~1989)科技攻关项目。
1987年鞍钢三炼钢厂在转炉上试用MgO–C砖后,仅用一年时间就超额完成了“七五”转炉炉龄达千次的攻关目标。
发展到目前,全国各大中小钢厂已普遍推广使用MgO–C质耐火材料作为转炉和电炉的炉衬。
二.MgO-C质耐火砖的生产MgO-C砖的制造工艺主要包括原料准备,配料,混练,成型和热处理。
生产MgO–C砖的主要原料包括镁砂、鳞片状石墨、有机结合剂以及抗氧化剂。
1 镁砂镁砂是生产MgO–C砖的主要原料,有电熔镁砂和烧结镁砂之分。
电熔镁砂与烧镁砂相比具有方镁石结晶粒粗大、颗粒体积密度大等优点,是生产镁碳砖中主要选用的原料。
2 碳源不论是在传统的MgO-C砖还是在目前大量使用的低碳MgO-C砖,主要利用鳞片状石墨作为其碳源。
3 结合剂结合剂是生产MgO-C砖的关键,现在生产MgO-C砖多选用合成酚醛树脂作为结合剂,其他较为常用的还有含碳结合剂。
三.MgO-C耐火材料在炼钢转炉中的应用现在的MgO-C耐火材料在钢铁行业主要用于转炉、交流电弧炉、直流电弧炉的内衬,钢包的渣线等部位。
如何应用纳米科技改善材料性能纳米科技是一门研究和应用材料的领域,通过使用纳米尺度下的材料和结构改变,可以显著改善材料的性能和功能。
纳米科技在各个领域都有广泛的应用,如电子、医学、能源等。
本文将探讨如何应用纳米科技来改善材料的性能,并给出一些实际的例子。
首先,纳米科技可以改善材料的强度和硬度。
纳米颗粒具有较大的比表面积,这意味着相同质量的纳米材料可以比普通材料具有更多的原子和分子。
因此,纳米材料可以更多地与其他材料进行相互作用,从而显著提高材料的强度和硬度。
例如,纳米颗粒可以被添加到钢材中,形成纳米复合材料,使钢材具有更高的抗拉强度和硬度。
其次,纳米科技可以改善材料的导电和导热性能。
纳米颗粒可以在材料中形成连续的导电或导热网络,从而改善材料的导电和导热性能。
例如,将纳米银颗粒添加到塑料中,可以形成导电塑料,用于制作电子产品的导电部件。
此外,纳米草酸盐材料也被广泛应用于热导材料领域,可以用于电子设备的散热。
另外,纳米科技可以改善材料的光学性能。
纳米颗粒的大小和形状可以调控吸收和散射光的方式,从而控制材料的光学性能。
例如,将纳米颗粒添加到透明材料中,可以制备出具有特殊光学功能的材料,如自动调节光学器件和光学传感器。
此外,纳米颗粒还可以用于改善太阳能电池的吸收光谱范围和光电转换效率,从而提高太阳能电池的性能。
此外,纳米科技还可以改善材料的化学稳定性和抗腐蚀性能。
纳米材料可以形成覆盖材料表面的保护层,隔绝材料与环境的接触,从而减少材料的氧化和腐蚀。
例如,把纳米氧化铝颗粒添加到涂层材料中,可以显著提高涂层的化学稳定性和抗腐蚀性能。
此外,通过使用纳米催化剂可以加速化学反应的进行,提高材料的催化活性。
最后,纳米科技还可以改善材料的生物相容性和药物释放性能。
纳米材料具有较大的比表面积和更好的生物相容性,可以被用于制备具有控制释放功能的药物载体。
例如,将药物包裹在纳米颗粒中,可以实现精确的药物释放和靶向输送,提高药物的疗效并减少副作用。
镁合金材料的创新技术轻量化和高性能的突破探索近年来,随着全球对环境保护和能源危机的日益关注,轻量化和高性能材料在各个领域中扮演着愈发重要的角色。
镁合金作为一种优秀的轻质结构材料,因其优异的物理性能和广泛的应用领域备受瞩目。
然而,其在实际应用中仍面临着一些挑战。
为了克服这些挑战并推动镁合金的发展,科学家们不断探索创新技术,致力于实现轻量化和高性能的突破。
一、合金强化技术的应用合金强化技术是提高材料强度和硬度的关键方法之一。
在镁合金的应用中,合金强化技术可以有效改善其低强度和差韧性的缺点。
常见的合金强化技术包括固溶强化、析出强化和织构强化等。
固溶强化是通过合金化元素的溶解提高了镁合金的强度。
例如,铝、锌、锶等元素可与镁形成固溶体,增强了镁合金的机械性能。
在发展镁合金材料时,科学家们通过合理控制合金化元素的含量和合金化工艺,达到了显著提高材料强度和韧性的效果。
析出强化是利用细小的析出相均匀地分布在基体中,阻碍位错的滑动和移动,从而提高材料的强度。
常见的析出相包括硬质的Mg17Al12相和Mg2Si相等。
通过合理的热处理和时效处理,镁合金中形成的析出相能有效提高材料的硬度和强度。
织构强化是通过控制材料的晶粒取向和组织结构来提高材料的力学性能。
通过热轧、挤压等变形加工工艺,可以使镁合金的晶粒获得优化的取向,从而提高其强度和塑性。
此外,通过合适的热处理,还能生成织构结构,进一步提高材料的高温强度和韧性。
二、表面处理技术的创新镁合金的应用范围广泛,需要具备良好的耐腐蚀性和表面功能化。
然而,镁合金本身易受腐蚀,尤其在湿热环境下更为明显。
为了解决这一问题,科学家们提出了多种表面处理技术,如阳极氧化、电化学沉积、激光表面处理等。
阳极氧化是一种常用的表面处理方法,通过在镁合金表面形成致密的氧化层,提高材料的耐腐蚀性和表面硬度。
电化学沉积是将金属或合金沉积在镁合金表面,形成一层保护层,提高镁合金的耐腐蚀性和摩擦性能。
激光表面处理是利用激光在材料表面进行局部熔化和再凝固,形成微细晶粒和弥散相,从而提高镁合金的表面硬度和耐磨性。
纳米技术对镁碳耐火材料的改进研究杨中伦【摘要】传统镁碳材料中含碳量较高,不利于洁净钢精炼技术及节能减排技术的发展.采用纳米技术可有效降低镁碳耐火材料的碳含量,更重要的是,纳米碳还能改善材料结构,使其致密化、微细化,提高强度和耐蚀性的同时还可提高镁碳材料的韧性、抗氧化性等物理性能.解决好纳米碳技术在镁碳耐火材料中的分散性及降低其生产成本将是今后世界范围内研究新型镁碳耐火材料的重点.【期刊名称】《佛山陶瓷》【年(卷),期】2017(027)005【总页数】4页(P1-4)【关键词】耐火材料;镁碳材料;含碳量;纳米技术;分散性【作者】杨中伦【作者单位】武汉市公安局洪山区公安分局消防大队,武汉430070【正文语种】中文耐火材料具有一定的高温力学性能、良好的体积稳定性以及热稳定性,是各种高温设备必需的材料,其耐火温度一般在1580℃以上,包含天然矿石及各种人工制品。
耐火材料按其化学成分可分为酸性、碱性和中性;按耐火度可分为普通耐火材料(1580~1770℃)、高级耐火材料(1770~2000℃)、特级耐火材料(2000℃以上)和超级耐火材料(大于3000℃)四大类;按矿物组成可分为硅酸铝质(粘土砖、高铝砖、半硅砖)、硅质(硅砖、熔融石英烧制品)、镁质(镁砖、镁铝砖、镁铬砖)、碳质(碳砖、石墨砖)、白云石质、锆英石质等。
随着当今高温工业的飞速进步,耐火材料正日益成为其不可或缺的支撑材料,并广泛应用于建材、电力、水泥、钢铁及军工等国民经济的各个领域。
上世纪70年代初,随着钢铁铸造技术的发展,传统氧化物基耐火材料逐步显示出其落后性,研究者们开始尝试将石墨引入到传统氧化物基耐火材料中,形成了氧化物-碳复合耐火材料,镁碳耐火材料即是其中的一种,它曾经在钢铁铸造工业的发展中作出了重要贡献[1-3]。
镁碳耐火材料在我国也经历了四十多年的研究和发展,并取得了显著的成绩。
但随着目前洁净钢技术、炉外精炼技术、钢铁工业节能减排技术及资源循环利用等技术的不断发展,传统的镁碳耐火材料由于较高的石墨含量(12~20wt%),也逐步开始无法满足生产要求。
主要原因包括:(1)碳的导热系数高,造成含碳耐火材料热损耗大,从而使炼钢能耗增加;(2)高碳含量引发的钢水增碳效应降低了钢材的理化性能;(3)石墨氧化导致材料结构疏松,其高温强度、抗侵蚀性等快速衰减,降低了耐火材料的使用寿命。
这些问题急需进一步优化其工艺,尤其是降低其含碳量来加以解决。
在这种技术背景下,国内外大量学者都开展了低含碳量、高性能的镁碳耐火材料的研究,这主要包括:(1)将碳源从微米尺度向纳米尺度发展,优化基质结构;(2)改善结合剂的碳结构,提高其抗氧化性进而提高材料的强度和韧性;(3)抗氧化剂的复合使用及对碳素原料进行保护处理,提高碳的抗氧化性。
这些研究都力求使镁碳耐火材料中的碳含量低于8 wt%,有的甚至低于3 wt%,从而最大限度降低对钢水的增碳,同时,还能改善炼钢能耗,提升耐火材料的使用寿命[4,5]。
随着镁碳耐火材料的低碳化(碳含量低于8wt%)的研究,人们发现,镁碳耐火材料降碳后,其抗热震性和抗侵蚀性也都大幅下降,这很难满足实用要求。
因此,高性能低碳镁碳耐火材料的研究格外引人注目。
近期,研究者们发现在镁碳耐火材料中引入纳米技术来降低碳含量是制备高性能、低碳化耐火材料的一种重要方法。
Tamura等2003年首次开展了将纳米炭黑引入到镁碳耐火材料中的研究[6]。
随后九州耐火材料公司采用该技术开发了低碳镁碳耐火材料,在碳含量仅为1~3 wt%的情况下,镁碳耐火材料的抗热震性、抗侵蚀性和抗氧化性都得到提高,而且其隔热性能也有所改善[7]。
同时,他们还研究了含2 wt%的单球形炭黑的镁碳耐火材料,发现其具有高的耐压强度及优良的抗热震性。
两年后,他们的研究又揭示了低碳镁碳材料的抗热震性和抗侵蚀性提高的微观原因[8-9]。
含纳米炭黑和杂化树脂的低碳镁碳材料经高温热处理后,内部会生成大量的柱状、纤维状或晶须状的碳化物,它们形成的相互交错的网络结构提高了低碳镁碳耐火材料的抗热震性和抗侵蚀性。
Yasumitsu等人[10]也利用单球形炭黑,开发了低碳镁碳材料(碳含量为4 wt%),与传统镁碳材料相比,它具有相同的抗热震性和更优异的抗侵蚀性。
黑崎公司与新日铁公司[11]也利用纳米技术制备了低碳镁碳材料(碳含量为 10 wt%或8 wt%),结果表明:与传统镁碳材料相比,它的保温性能和高温服役寿命更好。
针对纳米炭黑在镁碳材料中表现出诱人的性能,Tamura等人[12]进一步深入研究了纳米技术在耐火材料中的应用技术理念,并指出未来纳米技术的重点在于提升纳米颗粒在耐火材料中的分散性和形貌可控性。
印度人Bag等[13-14]也制备得到了纳米石墨和炭黑为复合炭源的低碳镁碳材料,其纳米石墨和炭黑的含量分别为3 wt%和0.9 wt%,发现其性能优于石墨含量为10 wt%的传统镁碳材料。
此外,还有国外研究者[15-16]将SiC、TiC等复合的纳米炭黑以及碳纳米纤维等引入镁碳耐火材料中,成功将其碳含量降至3wt%左右,且材料的抗热震性和抗侵蚀性优良,抗氧化性明显改善。
这是由于在镁碳材料中添加的复合结合剂在高温还原条件下热处理后可原位生成碳纳米纤维,它们在空间相互交织成三维网络,使得低碳镁碳材料不但具有优良的热震稳定性和抗侵蚀性,还具有较高的高温强度及较低的热导率,可明显降低炉衬的热损失,提高其服役寿命。
国内诸多学者也开展了含纳米碳的低碳镁碳耐火材料的研究。
朱伯铨等[17]采用纳米炭黑制备了碳含量小于6 wt%的低碳镁碳材料,发现其高温服役寿命与国外进口镁钙材料相当。
李林等[18]将纳米炭黑-酚醛树脂引入镁碳砖中,发现其气孔尺寸减小,高温性能提高。
孙加林等[19]研究了3 wt%低碳镁碳材料的性能,发现其力学性能、抗氧化性和抗热震性随炭黑颗粒尺寸的减小而提高,当炭黑达到纳米量级时,试样的抗热震性能比传统16 wt%高碳镁碳材料更为优异。
颜正国等[20]以硼酸和炭黑为原料,采用碳热还原法合成部分石墨化B4C-C复合纳米粉体,并利用其对镁碳砖进行了低碳化改性。
发现它作为碳源和抗氧化剂用于低碳镁碳砖时,不仅可以使其常规物理性能满足实际工程的需求,而且还能让耐火材料具有良好的抗氧化性及热震稳定性。
华旭军等[21]以金属钛、氧化钛及炭黑为原料在真空感应炉内合成了炭黑和TiC复合纳米粉体,开发出碳含量为4~6wt%的低碳镁碳砖。
谢朝晖等[22]将二茂铁引入到低碳镁碳砖中提高了材料的抗侵蚀性和抗热震性,这源于二茂铁热解产生的纳米 Fe粒子催化基质原位反应生成大量的尖晶石晶须。
在低碳耐火材料中引入纳米物相可提高其高温强度、抗热震性和抗侵蚀性。
这是因为纳米物相可改善镁碳材料的显微结构,使材料结构致密化、微细化,起到提高物理强度的作用。
同时,纳米相弥散在材料中有助于缓解热应力,使裂纹偏转或裂纹被钉扎,从而耗散大量的能量,充分提高材料的韧性。
纳米粒子包裹石墨可提高含碳材料的抗氧化性,以及防止钢渣的侵蚀和渗透等[23]。
总之,将纳米技术应用到镁碳耐火材料中,可为开发高性能、低碳化镁碳耐火材料提供新方法。
但纳米技术在镁碳耐火材料中的应用研究尚处起步阶段,仍有很多工程问题需要解决,其中最显著的就是纳米材料的团聚问题。
纳米材料,包括纳米颗粒、纳米纤维及纳米管等,由于其巨大的比表面积和表面能的存在,以及由于其纳米颗粒间的范德华力大于其自身重量的原因,导致其在实际工程中往往存在团聚现象。
团聚后的颗粒尺寸将不再在纳米范围内,从而失去纳米材料的小尺寸效应带来的活性。
此外,团聚现象使纳米材料在镁碳材料中分布均匀变得十分困难,极易由于团聚而在材料局部富集,这不仅不能改善镁碳材料的耐火性能,反而还会降低其理化性能。
因此,发展纳米材料在镁碳耐火材料中的均匀分散技术至关重要。
这可采用超声分散、纳米表面化学修饰等方法。
例如,我们可以采用超声分散来改善纳米炭黑在镁碳材料中分布的均匀性。
在超声波的剧烈震荡下,处在液态环境下的纳米碳会有微泡形成和破裂的交互过程,伴随着这一交互过程,耐火材料中将激起由于能量瞬间释放而产生的高强振动波。
这些短暂的高能微环境,将在材料中产生局部高温、高压或强冲击波和微射流等效应,能很好地地弱化纳米粒子间的范德华力,从而有效地制止纳米粒子间的团聚现象[24-25]。
但这些分散技术目前还停留在实验室阶段,将它们应用在工业化大规模生产中还需要解决好设备及工艺参数等诸多实际问题,包括对超声功率和超声时间等重要工艺参数的反复摸索。
因为纳米相在耐火材料中的超声分散时间并非越长越好,而是存在一个最佳的值。
当超声时间超过某一临界值时,超声激励时产生的局部高温增加,使体系温度升高,热能和机械能都不断增加,反而会使得纳米颗粒碰撞的几率增加,导致其进一步团聚。
此外,纳米技术在实际工程应用中另一关键问题是工艺成本较高。
众所周知,由于纳米纤维等纳米材料制备工艺复杂,设备要求高,导致其价格昂贵。
这就使得采用纳米技术来改善镁碳材料性能时,性能改善与成本降低间存在一定的矛盾。
例如,将纳米粉引入到氧化物制品中以降低其烧结温度,但降低烧结温度所节省的成本往往还不能抵消由于引入纳米材料后原料成本的上升。
那么,最终使用纳米相复合后的耐火材料由于其经济效益的降低往往会阻碍它们在实际工程领域中的应用。
这就需要我们深入探讨在耐火材料中引入纳米材料和微米材料的性价比问题。
如果引入纳米尺度的原料与微米尺度的原料对耐火材料性能改善的差异性较小,而且,引入微米尺度的原料同样能达到耐火工程的要求,则引入纳米技术并不具有实用的性价比。
因此,在纳米原材料的选用上,除了要考虑其对耐火材料性能和显微结构的提升,对其工程性价比也要进行优化。
实际使用中,后者往往还是决定耐火材料是否能在工程应用中推广的关键因素。
目前,在纳米技术领域中,将纳米原材料以溶胶、凝胶的形式引入比直接引入其相应的固态纳米颗粒往往更利于其在耐火材料中的分散,并且溶胶、凝胶的价格相对低廉,对于提高耐火材料的理化性能及其服役寿命具有更现实的意义。
此外,采用纳米前驱体技术,并使其在加热过程中产生原位分解形成纳米结构,也能在耐火材料中产生极佳的分散效果。
而且,这种原位分解产生的纳米结构可与耐火材料基体进一步化学反应形成新的纳米物相,从而还能进一步优化材料的显微结构和理化性能。
这种纳米前驱体技术不仅价格低廉,关键是它能使纳米原料分散性得到极大改善,充分发挥纳米材料的小尺寸效应和化学活性。
因此可以预计,在未来的耐火材料工业中采用化学凝胶或纳米前驱体技术将展现出美好前景。
低碳镁碳耐火材料在洁净钢生产和炼钢节能减排技术中具有广泛的应用前景。
研究表明,采用纳米技术可获得与传统高碳镁碳耐火材料性能相当的低碳镁碳材料,是制备优质高性能镁碳耐火材料的新途径,极具工程实用化前景。