鸡兔同笼问题的十种解答方法
- 格式:docx
- 大小:10.27 KB
- 文档页数:3
鸡兔同笼的十种解法公式鸡兔同笼问题是一个经典的数学问题,它是指在一个笼子里,鸡和兔子的个数加起来是一定的,并且只知道它们的数量总和,而不知道具体的鸡和兔子的个数。
这个问题看似简单,却蕴含了一定的数学技巧和思维能力,在解题过程中需要灵活运用数学公式和逻辑推理,下面将介绍这个问题的十种解法公式。
解法一:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+4y=总脚数。
通过解这个方程组可以得到鸡和兔子的具体数量。
解法二:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+2y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法三:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法四:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,2x+2.5y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法五:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+4y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法六:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法七:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,3x+2y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法八:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,4x+3y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法九:设鸡的数量为x,兔子的数量为y。
根据题意可以得到以下方程组:x+y=总数量,4x+4y=总脚数。
解这个方程组可以得到鸡和兔子的具体数量。
解法十:设鸡的数量为x,兔子的数量为y。
一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x 只,那么兔就有8-x 只,就有方程:2x+4(8-x)=26;解出x 是鸡的只数,再求兔的只数。
鸡8 7 6 5 4 3 2 1 0兔 0 1 2 3 4 5 6 7 8 脚 16 1820 22 24 26 28 30 32鸡兔同笼问题“鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?”这就是著名的“鸡兔同笼问题”。
鸡免同笼问题的特点是:题目中有两个或两个以上未知数,求出各未知数的单量。
解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数转换成一个未知数,从而解出答案。
例题与方法例1.鸡兔同笼,共有45个头,146只脚,笼中鸡兔各有多少只?例2.一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。
这个集邮爱好者买这两种邮票各多少张?例3.学校买来3个排球和2个足球,共花去111元。
每个足球比每个排球贵3元。
每个排球的每个足球各多少元?例4.买2支钢笔的价钱等于买8支圆珠笔的价钱。
如果买3支钢笔的5支圆珠笔共花了17元,问两种笑每支各多少元?练习与思考1.一个饲养组养鸡、兔共80只,共有脚220只。
那么,饲养组养鸡和兔各多少只?2.鸡兔共100只,鸡的脚比兔的脚一共少70只。
鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。
鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。
鸡兔同笼基础题目及其解法鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的题型。
它不仅能锻炼我们的逻辑思维能力,还能帮助我们掌握一些基本的数学方法。
接下来,让我们一起来看看鸡兔同笼的基础题目以及相应的解法。
一、鸡兔同笼问题的常见表述鸡兔同笼,通常会给出笼子里鸡和兔的总数,以及它们脚的总数,然后要求我们求出鸡和兔分别有多少只。
例如:一个笼子里有若干只鸡和兔,从上面数,有 8 个头;从下面数,有 26 只脚。
问鸡和兔各有几只?二、解法一:假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们先假设笼子里全部都是鸡。
因为每只鸡有 2 只脚,那么 8 只鸡就应该有 8×2 = 16 只脚。
但题目中说总共有 26 只脚,这比我们假设的 16 只脚多了 26 16 = 10 只脚。
这是因为我们把兔也当成鸡来算了,每只兔有 4 只脚,当成鸡就少算了 4 2 = 2 只脚。
所以多出来的 10 只脚就是因为把兔当成鸡少算的,那么兔的数量就是 10÷2 = 5 只。
鸡的数量就是总数量减去兔的数量,即 8 5 = 3 只。
我们再假设笼子里全部都是兔。
那么 8 只兔就应该有 8×4 = 32 只脚,这比题目中的 26 只脚多了 32 26 = 6 只脚。
因为每把一只鸡当成兔就多算了 2 只脚,所以多出来的 6 只脚就是因为把鸡当成兔多算的,那么鸡的数量就是 6÷2 = 3 只。
兔的数量就是 8 3 = 5 只。
三、解法二:方程法方程法是解决数学问题的一种通用方法,对于鸡兔同笼问题也同样适用。
设鸡的数量为 x 只,因为鸡和兔一共有 8 只,所以兔的数量就是 8 x 只。
每只鸡有 2 只脚,每只兔有 4 只脚,根据脚的总数可以列出方程:2x + 4×(8 x) = 26解这个方程:2x + 32 4x = 2632 2x = 262x = 32 262x = 6x = 3所以鸡有 3 只,兔有 8 3 = 5 只。
鸡兔同笼解法一:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数;解法二:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数;解法三:总脚数÷2—总头数=兔的只数,总只数—兔的只数=鸡的只数。
例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有多少只鸡和兔?(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
一、折叠假设法:假设全是鸡:2 ×35 = 70 (条),鸡脚比总脚数少:94 - 70 = 24 (只)兔子比鸡多的脚数:4 - 2 = 2(只)兔子的只数:24 ÷2 = 12 (只)鸡的只数:35 - 12 = 23(只)假设全是兔子:4 ×35 = 140(只)兔子脚比总数多:140 - 94 = 46(只) 兔子比鸡多的脚数:4 - 2 = 2(只)鸡的只数:46 ÷2 = 23(只)兔子的只数:35 - 23 = 12(只)方程法:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。
列方程:4X+2(35-x)=94解方程:4X+2×35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35 - 12 = 23 只(二)解:设鸡有x只,则兔有(35-x)只。
列方程:2X+4(35-x)=94解方程:2X+4×35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35 - 23 = 12(只)答:兔子有12只,鸡有23只。
鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。
这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。
在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。
一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。
1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。
2. 假设有x只鸡,则有13-x只兔子。
3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。
4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。
二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。
1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。
三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。
1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。
2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。
3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。
四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。
1. 从1到12枚举鸡的数量x。
2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。
3. 如果x+y=13,则找到符合条件的答案。
五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。
1. 假设笼子里有x只鸡,则有13-x只兔子。
2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。
鸡兔同笼的十种解法公式
"鸡兔同笼"是一种经典的数学问题,通过给定的笼中动物(鸡和兔子)的总数量和腿的总数量,来求解鸡和兔子各有多少只。
这个问题可以通过不同的数学方法解决。
以下是十种常见的解法:
1、代数法:
设鸡的数量为
x+y=动物总数
2x+4y=腿的总数
2、减法法:
全部当作兔子算,然后减去多出来的腿数除以2(因为兔子比鸡多两条腿)得到鸡的数量。
3、矩阵法:
使用矩阵解线性方程组。
4、迭代法:
假设所有动物都是兔子,然后逐一将兔子换成鸡,直到腿的总数符合条件。
5、图形法:
画图表示动物和腿的数量关系,通过图形的方式求解。
6、函数法:
将动物数量和腿数关系转换为函数,求解函数的值。
7、比例法:
根据鸡和兔子腿数的比例关系来解决问题。
8、试错法:
逐个尝试不同的组合,直到找到满足条件的答案。
9、排列组合法:
将问题转化为组合数学问题求解。
10、编程法:
使用计算机编程遍历所有可能的组合来找到正确答案。
鸡兔同笼问题十种解答原题:今有鸡兔同笼上有三十五头下有九十四足问鸡兔各几何译为:今有鸡兔同在一笼,上有35个头,下有94只脚,问鸡兔各有几只?1、首先可以引用古代孙子的解法进行思考: 孙子提出了大胆的设想。
他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。
这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。
由此可知,多有一只“双脚兔”,脚的数量就会比头的数量多1。
所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。
2、其次,列方程来解答:解:设鸡有x只,则兔有(35-x)只,根据题意得:2x+4(35-x)=94x=2335-x=12即鸡有23只,兔有12只.解法3:假如此时有人大喊口令:“兔子立正”此时兔子们则把两只前脚抬起,两只后脚着地,呈立正姿态,此时鸡兔都是两只脚着地。
在地上脚的总数为35×2=70只(只),而原来共有94只脚,少了94-70=24(只),为什么会少呢?因为兔子们没把它们的2只前脚着地,所以兔子的只数是24÷2=12(只),则鸡是35-12=23(只)。
解法4:假设35只全部为鸡,则有35×2=70(只)脚,这就比实际少94-70=24(只)脚,为什么呢?因为我们把兔当作鸡来算,每只少算了2只脚,所以兔子是24÷2=12(只),则鸡是35-12=23(只)。
解法5:鸡有2只脚,而兔却有4只脚,这不公平,但是鸡有2只翅膀,兔子却一只也没有,假如鸡的两只翅膀变成了脚,此时脚的总数应该是35×4=140(只),但实际上只有94只,为什么呢?因为我们把鸡的翅膀当作脚来计算,所以鸡的翅膀有140-94=46只,鸡有46÷2=23(只),则兔有35-23=12(只).解法6:我们还以推算出一个专门解答“鸡兔同笼”问题的公式:(兔脚数×总头数—实有脚数)÷(兔脚数—鸡脚数)=鸡的只数或:(实有脚数—鸡脚数×总头数)÷(兔脚数—鸡脚数)=兔的只数解法6:用估算的方法来解答:94÷2=47(只),让鸡兔的脚各减一半,使鸡剩下一只脚,兔子剩下2只脚,47-35=12只(兔)。
鸡兔同笼9种解题方法鸡兔同笼问题是我国古代著名趣题之一,同时也是是小学阶段一个重要的奥数问题。
让我们看看这道大约在1500年前就存在的有趣的问题都有哪些方法可以解决吧!题目:现有一笼子,里面有鸡和兔子若干,数一数,共有头14个,腿38条,求鸡和兔子各有多少只?[方法一:列表法]列表法直观、易理解、不易出错,一起来看一下①鸡有2只脚,比兔子少2只脚。
但是鸡有2只翅膀,兔子没有。
假设鸡有特异功能,把2只翅膀变成2条腿,那么鸡也有4只脚。
此时脚的总数是14×4=56只,但实际上只有38只,为什么呢?因为我们把鸡的翅膀当做脚来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔子就是14-9=5只。
②假设每只鸡都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔子的,它的脚数就是38-14×2=10只,因此兔的只数有10÷2=5只,鸡有14-5=9只。
③假如每只兔子又长出一个头来,然后魔术师说“劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目。
鸡就有14-5=9只。
[方法七:砍足法]假如把每只鸡砍掉一只脚,每只兔子砍掉一只脚,则每只鸡就变成了“独脚鸡”,每只兔子就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由38变成了19;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。
所以,鸡的只数就是14-5=9(只)了。
[方法八:耍兔法]假如训兔师喊口令:“兔子,站起来!”此时兔子们都把两只前脚高高抬起来,两只后脚着地。
此时鸡兔都是两只脚着地的。
在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只脚。
为什么会多出来呢?因为兔子们把他们的2只前脚抬了起来,所以兔的只数是10÷2=5只,则鸡是14-5=9只。
鸡兔同笼问题解题方法
鸡兔同笼问题解法如下:
方法一、假设法
在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。
常用的假设有:假设笼子里都是兔或者都是鸡,比如:笼子里有30只头,68只脚,兔多少?鸡多少?
解题方法是假设笼子里都是兔子,这样就可以得到鸡的只数(4×30-68)÷(4-2)=26(只),那么兔子就是30-26=4(只)
方法二、砍腿法
顾名思义,砍腿法就是把多余的腿给去掉,即把兔子的腿变为两条,那么笼子里还剩下的腿的数量应该是:30×2=60,而原来应该是有68只脚,那么这里应该减少了68-60=8(只)脚,当兔子去掉了2条腿,笼子里腿的数量就会减2,那么就是有8÷2=4(只)兔子,得出兔子的只数,鸡的数量也就可以得到了。
方法三、抬腿法
与砍腿法一样,抬腿法的方法也是与名字一样。
这个方法的步骤是让鸡抬起一只腿,兔子抬起两只腿,这样的话,笼子里腿的数量就会变成原来数量的一半,即68÷2=34。
然后让鸡和兔子抬起的腿落地,这样兔子的脚就会比兔子的数多1,而鸡的脚就是鸡的只数。
因此就可以推出,兔子的只数就是腿的数减去头的数,即34-30=4(只),而鸡的数量也就是30-4=26只。
一谜语:
头戴大红帽,身披五彩衣,好像小闹钟,清早催人起。
(打一动物)
耳朵长,尾巴短,只吃菜,不吃饭。
(打一动物)
绕口令:(计时)
一只公鸡两条腿,两只公鸡四条腿,三只公鸡六条腿。
至十
一只兔子四条腿,两只兔子八条腿,三只兔子十二条腿。
至十
历史故事:
大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道数学趣题,这就是著名的“鸡兔同笼” ________ 问题。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思就是:
笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?(雉[zh 1 ]: 野鸡)鸡和兔的隐含关系是什么?35个头就是鸡和兔总只数是35只。
简化题目:10个头,32只脚,问鸡和兔各有多少只?
1、枚举法:鸡0只,鸡1只,鸡2只。
每个尝试。
(因为只数是整数,所以可以用枚举法)
2、画图法:画10个头,不管鸡还是兔,至少都有2只脚,再画12只脚(只能给兔)
3、砍腿大法一:先砍一半,32十2=16只脚,再各砍1腿,看到了什么?16-10=6只(来自每兔1腿)
总结:兔=脚十2—头
4、砍腿大法二:先各砍2腿,看到了什么?32- 10X 2=12腿(来自每兔2腿)
总结:兔=(脚一头X 2 )+2
5、砍腿大法三:先砍兔2腿,看到了什么?剩下腿10X2只,砍去了32- 10X 2=12腿(来自每兔2腿)
总结:脚一兔X 2 =头X 2 化简得:兔=(脚一头X 2) + 2
6、安装假肢大法:先给鸡2腿,看到了什么?共有腿10X 4只,装上了10X 4-32=8腿(来自每鸡2 腿)
总结:脚 +鸡X 2 =头X 4 化简得:鸡=(头X 4—脚)十2
7、假设大法一:假设全鸡,少了32-10X 2=12腿(少自每兔2腿)同5
& 假设大法二:假设全兔,多了10X 4-32=8腿(多自每鸡2腿)同6
9、分组大法:1鸡与1兔为1组,2头6腿,按头算,则5组X 6腿=30腿,少2腿,让1鸡变兔
2 鸡与1兔为1组,3头8腿,按腿算,则4组X 8腿=32腿,多2头,让4鸡变2兔
10、设元大法:a+ b= 10
2a + 4b= 32
课后思考: 老师口袋里有面值5元和20元的两种纸币,一共8张,计85元
你还能想到什么?课后自己编一道题,下次课带来分享。
1、学生总结:什么样的问题算的上是鸡兔同笼问题?
鸡兔同笼问题一般是已知两个总量(如鸡头和兔头共35个,数鸡脚和兔脚共94只),求出两个部分量各是多少(如要求鸡和兔各有多少只)。
2、让学生自己总结你在编题的过程中遇到哪些问题?
比如脚数应该在全是鸡或者兔的范围内。
3、抽签让同学上来用四种方法讲鸡兔同笼问题。
笼子里有若干只鸡和兔,从上面数,有10个头,从下面数,有26只脚,问鸡和兔各有多少只?
枚举法枚举法被称为万能法。
是怎么枚举的?从两边往中间,或者中间开始,或者估算开始
画图法怎么画的,一开始是画几条腿?
砍腿法到底是怎么砍的?这个过程能否理解?
假肢法到底给谁装假肢,装几条?
假设法假设都是鸡为什么一开始计算出的是兔?
假设全是兔为什么一开始计算出的是鸡?
分组法怎么分组?
设元法精髓在哪?
4、比较:
★ 100个和尚吃100个馒头。
大和尚一人吃3个,小和尚3人吃一个。
求大、小和尚各多少人? 枚举法:
分组法:
因为平均1个和尚吃1个馒头,这里大和尚1人吃3个,小和尚3人吃1个,是4人吃4个,平均是1人吃1个。
所以把3个小和尚和1个大和尚一组。
(小和尚、小和尚、小和尚、大和尚)这样100十4=25组。
所以有25个大和尚,25 X 3=75个小和尚。
题目改一下:如果是100个和尚吃100个馒头。
大和尚一人吃2个,小和尚3人吃一个,求大、小和尚各
多少人?
解答:因为平均1个和尚吃1个馒头,2个大和尚吃4个,3个小和尚吃1个,是5人吃5个,平均是1人吃1个。
所以把3个小和尚和2个大和尚分成一组(小和尚、小和尚、小和尚、大和尚、大和尚)这样100十5=20 组。
所以有20 X 2=40个大和尚,20 X 3=60个小和尚。
题目再改一下:如果是100个和尚吃100个馒头。
大和尚一人吃3个,小和尚2人吃一个,求大、小和尚各多少
人?
瓶后,工人共得4400元,则损坏了多少个青瓷花瓶?
竞赛班分组法:
1、笼子里有若干只鸡和兔,它们的只数是一样的,脚一共有60只,求鸡有多少只?
分组:(鸡、兔)•……6 只脚
2、笼子里有若干只鸡和兔,鸡是兔子的3倍,脚一共有60只,求鸡有多少只?
分组:(鸡,鸡,鸡,兔)•……10 只
3、鸡兔共100只,鸡脚比兔脚多20只,问:鸡兔各多少只?
分组:鸡多20只脚,去掉10只鸡,鸡兔只剩90只。
鸡脚和兔脚相同什么时候鸡和兔的脚数量相同呢,鸡的数量是兔的2倍。
(鸡,鸡,兔)。