泡沫铝生产工艺
- 格式:docx
- 大小:36.85 KB
- 文档页数:2
1.2.1浇注法(A)熔体发泡法这种方法的工艺过程是:向熔融的金属中加入增粘剂,使其粘度提高,然后加入发泡剂,发泡剂在高温下分解产生气体,通过气体的膨胀使金属发泡,然后使其冷却下来或者浇注可以得到泡沫金属。
常用的发泡剂为TIHZ、ZrH:等金属氢化物。
(B)颗粒浇注法这种方法通过把熔融金属浇注到充满散状颗粒的模中,而获得具有连通的蜂窝状结构或海绵状结构的泡沫金属。
这些颗粒可以是耐热和可溶的(如氯化钠)时,它们可以从铸件中被浸洗掉,形成具有连通孔隙的多孔金属;当使用松散的非可溶性填料(如多孔陶土球、泡沫玻璃、空心刚玉球、泡沫碳等无机填料)时,则可获得金属一颗粒复合体。
(C)球形颗粒加入法先将金属在塔竭中熔化,然后加入颗粒或中空球并同时进行搅拌,使这些颗粒均匀地分散到金属熔体中去,使金属的温度降低,当金属熔体的粘度足以使金属熔体不再发生偏析和分层时,即颗粒物质在金属熔体中被固定了,此时停止搅拌并让熔体凝固下来。
这种方法适用于制备高熔点的泡沫金属,如泡沫钨等。
(D)失蜡浇注法此法采用液态高熔点物质充填海绵状泡沫塑料的孔隙,使之硬化后,加热使塑料气化而获得海绵状孔隙的铸型。
将液态金属浇入此铸型,冷却凝固后除去高熔点物质后,便得到与原海绵状泡沫塑料模具有相同结构的泡沫金属。
1.2.2沉积法(A)电镀法该方法是将所需的金属镀到经过硬化和化学预镀的聚氨基甲酸乙脂表面上,并达到所需的厚度,再通过热分解法将聚氨基甲酸乙脂去掉,得到具有非常均匀孔隙分布及相当高孔隙率的泡沫金属。
(B)阴极溅镀沉积法通过在一定的惰性气体压力下对一基片进行溅射,从而得到被捕获惰性气体原子均匀分布的金属片,然后把它加热到高于其熔点的温度,并一直加热到足以加热使那些被捕获的气体膨胀,形成具有封闭孔的蜂窝状的泡沫金属。
(C)气相蒸发沉积法在较高的惰性气氛中缓慢蒸发金属材料,形成金属烟。
金属烟在自身重力和惰性气流携带下沉积,疏松地堆砌起来,形成亚微米尺度的多孔泡沫结构。
泡沫铝材料的制备与有限元模拟泡沫铝材料是一种轻质、高强、具有良好吸声和隔热性能的新型功能材料。
由于其独特的优点,泡沫铝材料在许多领域都具有广泛的应用前景,如汽车、航空航天、建筑和国防等。
因此,研究泡沫铝材料的制备技术与有限元模拟对其性能的影响具有重要意义。
泡沫铝材料的制备方法主要有物理发泡法、化学发泡法和机械搅拌法等。
其中,物理发泡法是最常用的方法,其工艺流程如下:将混合物放入模具中,置于一定温度和压力条件下;发泡剂分解产生气体,导致混合物膨胀,形成泡沫铝材料;通过观察泡沫铝材料的泡孔结构,发现泡孔大小、分布和密度等因素对其性能有较大影响。
同时,泡沫铝材料的力学性能也表现出明显的各向异性,其中沿垂直于泡孔方向的性能较好。
有限元模拟是一种常用的数值分析方法,可以用来预测泡沫铝材料的性能。
在有限元模拟过程中,需要选择合适的材料模型、边界条件和有限元软件。
其中,材料模型需要考虑泡沫铝材料的弹性模量、泊松比和密度等参数;边界条件需要考虑材料的受力情况;有限元软件可选择ANSYS、SolidWorks等。
通过有限元模拟,可以得出泡沫铝材料的应力、应变和疲劳寿命等性能指标。
在应力分析中,发泡剂的加入使得泡沫铝材料的应力水平显著降低;在应变分析中,泡沫铝材料的应变主要发生在泡孔内,并且沿泡孔方向的应变最大;在疲劳寿命分析中,泡沫铝材料的疲劳寿命随着泡孔密度的增加而降低。
通过对泡沫铝材料的制备与有限元模拟研究,发现制备过程中的发泡工艺对泡沫铝材料的性能具有重要影响。
同时,有限元模拟结果表明,泡沫铝材料的应力、应变和疲劳寿命等性能指标受到泡孔结构、密度等因素的影响。
然而,目前的研究还存在一些不足之处,如制备过程中工艺参数的控制、有限元模拟中材料模型的精度等问题需要进一步探讨。
为了更好地应用泡沫铝材料,未来的研究方向可以从以下几个方面展开:优化制备工艺:进一步研究发泡工艺中的关键参数,如发泡剂类型、温度和压力等对泡沫铝材料性能的影响,为实现制备过程的优化提供依据。
超全面泡沫铝制备工艺汇总泡沫铝是一种在金属铝基体中分布有无数气泡的多孔质材料。
其特殊的结构决定了它具有许多致密金属所没有的特殊性能,结构特点如:性能特点包括:泡沫铝性能的优劣主要取决于其孔隙率、孔径、通孔率、孔类型、比表面积等孔结构参数,而其孔结构参数主要取决于制备工艺。
因此泡沫铝的制备技术已成为新材料领域的研究热点。
下面就泡沫铝的制备工艺做详尽介绍:1、固态金属烧结法用这种方法生产的泡沫铝多数具有通孔结构,这是由于大部分固相法通过烧结使铝颗粒互相联结,铝始终保持在固态。
1.1、粉末冶金发泡法工艺原理是将混合铝粉与发泡剂粉,经压缩得到具有气密结构的预制体,加热预制体使发泡剂分解释放出气体,迫使预制体膨胀得到泡沫铝。
粉末冶金发泡法工艺流程:特点:一是与其他方法比较可用的合金成分更为广泛,有利于改善泡沫铝的力学性能;二是可以直接制造形状复杂的部件。
缺点是该方法工艺参数区间较窄,成本较高,制得的泡沫铝尺寸有限。
1.2、散粉烧结法此方法多用于制备泡沫铜。
由于铝粉表面具有的致密氧化膜将阻止颗粒烧结在一起,因此用散粉烧结法制备泡沫铝相对困难。
这时可以通过变形手段破坏氧化膜,使颗粒更易粘结在一起;或加入镁、铜等元素在595~625摄氏度烧结时形成低共熔合金。
这种生产方法包括三个过程:特点:优点是工艺简单、成本低,缺点是孔隙率不高、材料强度低。
如果用纤维代替粉末烧结同样可制得多孔材料。
1.3、粉浆成型法粉浆成型法是将金属铝粉、发泡剂(氢氟酸、氢氧化铝或正磷酸)、反应添加剂和有机载体组成悬浮液,将其搅拌成含有泡沫的状态,然后置入模具中加热焙烧,接着浆开始变粘,并随着产生的气体开始膨胀,最终得到一定强度的泡沫铝。
如果把粉浆直接灌入高分子泡沫中,通过升温把高分子材料热解,烧结后同样可制得开孔泡沫材料。
特点:所制得的泡沫铝强度不高并有裂纹。
1.4、烧结溶解法铝粉与盐粉均匀混合,压制成坯,在压制过程中盐粉基本保持原貌,铝粉发生塑性变形,填充盐粒之间的空隙形成连续的网状基体。
泡沫金属材料制备技术1.引言金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。
它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。
泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。
其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。
1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。
随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。
到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。
1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。
90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。
目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。
国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。
我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。
其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。
金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。
独创性说明本人郑重声明:所呈交的论文是我个人在导师指导下进行的研究工作及取得研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得内蒙古科技大学或其他教育机构的学位或证书所使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示了谢意。
签名:日期:关于学位论文使用授权的说明本人完全了解内蒙古科技大学有关保留、使用学位论文(纸质版和电子版)的规定,即:本人唯一指定研究生院有权保留送交学位论文在学校相关部门存档,允许论文在校内被查阅和借阅,可以采用影印、缩印或其他复制手段保存论文。
在论文作者同意的情况下,研究生院可以转授权第三方使用查阅该论文。
(保密的论文在解密后应遵循此规定)签名:导师签名:日期:摘要泡沫铝合金是一种新型功能材料,其内部结构中含有大量的孔隙。
它有着独特的结构和优异的物理性能、机械性能、声学性能、热性能以及可回收利用性等,因此,成为一种具有很大开发潜力的工程材料。
制备泡沫金属的方法众多,相比较而言,吹气发泡法因为设备简单、成本低、可以连续生产等特点,更适用于规模化生产。
在生产过程中,如何控制气泡的尺寸大小及与分布、以及其拓扑结构是该项工艺的核心问题。
本文以相关实验研究为依据,采用数值模拟方法对金属泡沫的气泡演化过程进行分析,揭示液态金属演化过程的动力学机制,为吹气法制备泡沫金属提供准确而可靠的科学依据和理论预测模型。
主要研究内容和成果包括以下几个方面:本文采用相场法对金属气泡组织的演化进行二维模拟研究。
相场法是建立在金兹堡-朗道理论之上的一种基于经典热力学和动力学理论的模拟方法,引入了相场变量,考虑有序化势与热力学驱动力的综合作用来建立相场方程,其解可以描述固液界面的形态和界面的移动。
采用matlab编写程序,建立了一套完整的模拟思路,通过与实际生产过程中的气泡进行对比后发现,模拟结果与实验结果吻合性良好,因此验证了相场法的可行性。
泡沫铝生产工艺
泡沫铝是一种轻质、高强度、热绝缘的新型材料,广泛应用于建筑、交通工具、电子产品等领域。
以下是泡沫铝的生产工艺的简要介绍:
1. 原料准备:泡沫铝的主要原料是铝粉和发泡剂。
铝粉要求纯度高,颗粒均匀。
发泡剂通常采用细小颗粒的无机盐。
2. 预处理:铝粉经过筛网控制颗粒大小,并进行预处理。
预处理主要包括除湿、烘干和筛分等步骤,以保证原料的质量。
3. 混合:将预处理后的铝粉和发泡剂按一定比例混合。
混合时要保证均匀,以确保后续的发泡过程能够顺利进行。
4. 压制:将混合好的原料放入特殊的模具中,进行压制。
压制过程中需要控制压力和温度,以确保压制出的泡沫铝具有一定的孔隙结构和力学性能。
5. 硬化:压制后的泡沫铝放置在恒温恒湿的环境中进行硬化。
硬化时间一般为几小时到几天,依据具体的工艺和要求进行调整。
6. 烧结:硬化后的泡沫铝需要进行烧结处理,以提高其强度和稳定性。
烧结温度和时间必须严格控制,以防止泡沫铝的过度烧结和变形。
7. 表面处理:根据应用需要,泡沫铝可以进行表面处理,如涂
层、阳极氧化等,以提高其防腐蚀性和装饰性。
8. 检测和包装:生产过程中需要对泡沫铝进行质量检测,包括外观质量、物理性能等。
合格的产品经过检测后进行包装,以保证产品的完整性和安全性。
以上是泡沫铝的生产工艺的简要介绍。
随着技术的进步和需求的不断增加,泡沫铝的生产工艺也在不断改进和完善,以满足市场的需求。
我们相信,随着工艺的不断改进,泡沫铝在未来将有更加广阔的应用前景。