任意角的三角函数
- 格式:docx
- 大小:10.92 KB
- 文档页数:4
任意角的三角函数(内部使用)姓名: 日期:一、任意角的三角函数1、三角函数:任意角的三角函数的定义:角α是一个终边上任取点(,)P x y ,设(0)OP r r =≠则sin α= ;cos α= ;tan α= 。
2、三角函数值的符号:(1)记忆口诀:sin α上正下负横轴零,cos α左负右正纵轴零,tan α交叉正负横轴零。
(2)解释: 。
(3二、公式一(1)()sin +2k απ= ; (2)()cos +2k απ= ; (3)()tan +2k απ= 。
说明角的终边绕原点每转动一周,函数值会重复出现。
三、单位圆中的三角函数线(1)单位圆: ; (2)有向线段: ;四、三角函数的定义域和值域一、几个常见结论:1、同一个角α的正弦、余弦大小比较:(1)当α= 时,sin cos αα=; (2)当α∈ 时,sin cos αα>; (3)当α∈ 时,sin cos αα<。
2、确定sin cos αα+的符号:(1)当α∈ 时,sin cos 1αα+>; (2)当α∈ 时,sin cos 1αα+<-; (3)当α∈ 时,sin cos 0αα+=; (4)当α∈ 时,sin cos 0αα+>; (5)当α∈ 时,sin cos 0αα+<。
二、利用单位圆比较大小:当0,2πα⎛⎫∈⎪⎝⎭,比较tan ,sin ,ααα三者大小:> > 。
【例1】下列命题:①终边相同的角的同名三角函数值相等;②终边不同的角的同名函数值不等; ③若sin 0α>,则α是第一、第二象限的角;④若α是第二象限角,且(),P x y是其终边上一点,则cos α=其中正确的命题个数为 ( ) .A 1 .B 2 C.3 D.4【例2】设︒<<︒18090α,角α的终边上一点为)22,(x P ,且x 63cos =α.求:sin α,αtan 的值。
任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。
任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。
1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。
正弦函数将给定角度的正弦值映射到数轴上。
其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。
2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。
其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。
3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。
其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。
4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。
其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。
5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。
其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。
6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。
其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。
这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。
同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22yx r +=,正弦:r y =αsin 余弦:rx =αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec余割:yr =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
任意角的三角函数
三角函数是数学中一个非常重要的概念,它是用于描述三角形中角和边之间的关系的一种函数。
在传统的三角函数中,我们只考虑角的大小在0度到90度之间的情况,这被称为锐角三角函数。
但是,在现代数学中,我们也可以考虑角的大小在90度以上的情况,这就是任意角三角函数。
任意角三角函数是三角函数的推广,它可以应用于任意角度的三角形中,并且具有广泛的应用。
任意角三角函数通常使用弧度制来度量角度。
下面我们将介绍任意角三角函数中最常用的几种函数。
1. 正弦函数
正弦函数是任意角三角函数中最简单和最基本的函数之一。
正弦函数的定义如下:
sinθ = y/r
其中,θ是角度,y是三角形中一个锐角顶点的垂直边长,r是这个锐角顶点到三角形外接圆心的距离。
正弦函数的值从-1到1,它刻画了一个角的正弦值与其对应的三角形中某一边长的比例关系。
如果一个角的正弦值为1,则这个角是90度;如果正弦值为0,则这个角是0度或180度。
2. 余弦函数
余弦函数是另一个重要的任意角三角函数。
它的定义如下:
cosθ = x/r
其中,θ是角度,x是三角形中一个锐角顶点的水平边长,r是这个锐角顶点到三角形外接圆心的距离。
余弦函数的值也在-1到1之间。
它刻画了一个角的余弦值与其对应的三角形中某一边长的比例关系。
如果一个角的余弦值为1,则这个角是0度;如果余弦值为0,则这个角是90度或270度。
3. 正切函数
正切函数是另一个常见的任意角三角函数。
它的定义如下:
tanθ = y/x
其中,θ是角度,y是三角形中一个锐角顶点的垂直边长,x是这个锐角顶点的水平边长。
正切函数的值可以是任意实数。
它刻画了一个角的正切值与其对应的三角形中垂直边长和水平边长的比例关系。
如果一个角的正切值为正无穷,则这个角是90度;如果正切值为负无穷,则这个角是270度。
4. 正割函数
正割函数是余弦函数的倒数。
它的定义如下:
secθ = 1/cosθ
正割函数的值也可以是任意实数。
它刻画了一个角的正割值与其对应的三角形中水平边长与半径的比例关系。
5. 余割函数
余割函数是正弦函数的倒数。
它的定义如下:
cscθ = 1/sinθ
余割函数的值也可以是任意实数。
它刻画了一个角的余割值与其对应的三角形中垂直边长与半径的比例关系。
以上就是任意角三角函数中最为基本和重要的五种函数。
这些函数可以用于描述和计算任意角度的三角形中的角和边的关系。
它们是数学中非常重要和通用的函数,对于很多领域的应用都有重要的作用。