椭圆历年高考题精选
- 格式:doc
- 大小:753.00 KB
- 文档页数:9
高考数学椭圆测试题及答案高考数学椭圆专项考试及答案一、选择题2.已知焦点在X轴上的椭圆的偏心率为,其长轴长度等于圆的半径c 3360 x2 y2-2x-15=0,那么椭圆的标准方程为()(甲)=1(乙)=1(C) y2=1 (D)=1第二,填空7.在平面直角坐标系xOy中,椭圆C的xx为原点,焦点F1、F2在X轴上,偏心率为。
穿过F1的直线L在A点和B点与C相交,ABF2的周长为16,那么C 的方程如下。
8.已知点P是椭圆16x2 25y2=400上的点,在X轴上方,F1和F2分别是椭圆的左右焦点,直线PF2的斜率为-4,那么F1,F2的面积为。
9.如果通过椭圆=1(a0)的左右焦点F1和F2的两条相互垂直的直线L1 l1、l2的交点在该椭圆内,则该椭圆的偏心率的取值范围为。
第三,回答问题10.(2013 Xi安模拟)在平面直角坐标系中,已知曲线C上任意点P到两个固定点F1(-,0)和F2(,0)的距离之和为4。
(1)求曲线c的方程.(2)让通过(0,-2)的直线L和曲线C在A点和B点相交,以线段AB为直径做一个圆。
:圆能通过坐标原点吗?如果是,请写出此时直线L的方程,证明你的结论;如果没有,请说明原因。
1.(2013渭南模拟)已知椭圆C:=1(a0)的右顶点A为抛物线y2=8x。
焦点、上顶点B和偏心率为。
(1)求椭圆c的方程.(2)通过点(0)的直线L,斜率为k,在点P和q与椭圆C相交,若直线PQ中点的横坐标为-,求解直线L的方程.12.(能力挑战)已知点P是圆F1:(x )2 y2=16上的任意一点,点F2和点F1关于原点对称。
线段PF2和PF1的中线相交于点m .(1)求m点的轨迹c的方程.(2)设轨迹C和X轴的左右交点分别为A和B,点K为轨迹C上不同于A和B的任意点,KHx轴和H为垂足,延伸HK到点Q使|HK|=|KQ|,连接AQ并延伸与B相交且垂直于X轴的直线L到点D,n为d B的中点。
椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 5.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为5. (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若122PF =+|,222PF =-|,求椭圆的标准方程; (Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>3F 是椭圆E 的右焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b ab+=>>,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.50.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 3, 过点F 且与x43(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。
2024全国高考真题数学汇编椭圆一、单选题1.(2024全国高考真题)已知曲线C :2216x y (0y ),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A .221164x y(0y )B .221168x y (0y )C .221164y x (0y )D .221168y x (0y )二、解答题2.(2024天津高考真题)已知椭圆22221(0)x y a b a b椭圆的离心率12e .左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △(1)求椭圆方程.(2)过点30,2的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.3.(2024北京高考真题)已知椭圆E : 222210x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点 0,t t 且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和 0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.4.(2024全国高考真题)已知(0,3)A 和33,2P 为椭圆2222:1(0)x yC a b a b上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.5.(2024全国高考真题)已知椭圆2222:1(0)x y C a b a b的右焦点为F ,点31,2M 在C 上,且MF x 轴.(1)求C 的方程;(2)过点 4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y 轴.参考答案1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ,因为M 为PP 的中点,所以02y y ,即(,2)P x y ,又P 在圆2216(0)x y y 上,所以22416(0)x y y ,即221(0)164x y y ,即点M 的轨迹方程为221(0)164x y y .故选:A2.(1)221129x y (2)存在 30,32T t t,使得0TP TQ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx, 1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ,再根据0TP TQ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e,故2a c,b ,其中c 为半焦距,所以2,0,0,,0,2A c B C,故122ABC S c △故ca ,3b ,故椭圆方程为:221129x y .(2)若过点30,2的动直线的斜率存在,则可设该直线方程为:32y kx ,设 1122,,,,0,P x y Q x y T t ,由22343632x y y kx可得223412270k x kx ,故 222Δ144108343245760k k k 且1212221227,,3434k x x x x k k而 1122,,,TP x y t TQ x y t,故121212123322TP TQ x x y t y t x x kx t kx t22121233122kx x k t x x t22222731231342342k k k t t kk2222222327271812332234k k k t t t k k22223321245327234t t k t k,因为0TP TQ 恒成立,故 223212450332702t t t,解得332t .若过点30,2的动直线的斜率不存在,则 0,3,0,3P Q 或 0,3,0,3P Q ,此时需33t ,两者结合可得332t.综上,存在 30,32T t t,使得0TP TQ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.3.(1)221,422x y e(2)2t 【分析】(1)由题意得b c a ,由此即可得解;(2)设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k ,而 121112:y y AD y x x y x x ,令0x ,即可得解.【详解】(1)由题意b c,从而2a ,所以椭圆方程为22142x y,离心率为e;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设 :,0,AB y kx t k t , 1122,,,A x y B x y ,联立22142x y y kx t,化简并整理得222124240k x ktx t ,由题意 222222Δ1682128420k t k t k t ,即,k t 应满足22420k t ,所以2121222424,1221kt t x x x x k k ,若直线BD 斜率为0,由椭圆的对称性可设 22,D x y ,所以 121112:y y AD y x x y x x,在直线AD 方程中令0x ,得 2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt ,所以2t ,此时k 应满足222424200k t k k,即k应满足2k或2k ,综上所述,2t满足题意,此时2k或2k .4.(1)12(2)直线l 的方程为3260x y 或20x y .【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设 00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx ,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得2239941b a b,解得22912b a ,所以12e .(2)法一:3312032APk,则直线AP 的方程为132y x ,即260x y ,AP 1)知22:1129x y C ,设点B 到直线AP 的距离为d,则d则将直线AP 沿着与AP 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ,6C 或18C ,当6C 时,联立221129260x y x y,解得03x y 或332x y ,即 0,3B 或33,2,当 0,3B 时,此时32l k,直线l 的方程为332y x ,即3260x y ,当33,2B时,此时12l k ,直线l 的方程为12y x ,即20x y ,当18C 时,联立2211292180x y x y得22271170y y ,227421172070 ,此时该直线与椭圆无交点.综上直线l 的方程为3260x y 或20x y .法二:同法一得到直线AP 的方程为260x y ,点B 到直线AP 的距离d设 00,B x y,则220012551129x y,解得00332x y 或0003x y ,即 0,3B 或33,2,以下同法一.法三:同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d设,3sin B ,其中 0,2联立22cos sin 1,解得cos 21sin 2或cos 0sin 1,即 0,3B 或33,2,以下同法一;法四:当直线AB 的斜率不存在时,此时 0,3B ,16392PAB S ,符合题意,此时32l k ,直线l 的方程为332y x ,即3260x y ,当线AB 的斜率存在时,设直线AB 的方程为3y kx ,联立椭圆方程有2231129y kx x y,则2243240k x kx ,其中AP k k ,即12k ,解得0x 或22443kx k,0k ,12k ,令22443k x k ,则2212943k y k ,则22224129,4343k k B k k同法一得到直线AP 的方程为260x y ,点B 到直线AP的距离d,解得32k =,此时33,2B,则得到此时12l k ,直线l 的方程为12y x ,即20x y ,综上直线l 的方程为3260x y 或20x y .法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x,令 1122,,,P x y B x y ,223(3)21129y k x x y,消y 可得 22224324123636270k x k k x k k ,2222Δ24124433636270k kk k k ,且AP k k ,即12k ,21222122241243,36362743k k x x k PB k k x x k,A 到直线PB距离192PAB d S,12k或32,均满足题意,1:2l y x 或332y x ,即3260x y 或20x y .法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A到PB 距离3d ,此时1933922ABP S 不满足条件.当直线l 斜率存在时,设3:(2l y k x,设l 与y 轴的交点为Q ,令0x ,则30,32Q k,联立223323436y kx k x y,则有2223348336362702k x k k x k k ,2223348336362702k xk k x k k,其中22223Δ8343436362702k k k k k,且12k ,则2222363627121293,3434B B k k k k x x k k,则211312183922234P B k S AQ x x k k,解的12k 或32k =,经代入判别式验证均满足题意.则直线l 为12y x或332y x ,即3260x y 或20x y .5.(1)22143x y (2)证明见解析【分析】(1)设 ,0F c ,根据M 的坐标及MF x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x , 11,A x y , 22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y ,结合韦达定理化简前者可得10Q y y ,故可证AQ y 轴.【详解】(1)设 ,0F c ,由题设有1c 且232b a ,故2132a a ,故2a,故b ,故椭圆方程为22143x y .(2)直线AB 的斜率必定存在,设:(4)AB y k x , 11,A x y , 22,B x y,由223412(4)x y y k x 可得 2222343264120k x k x k ,故 422Δ102443464120k k k ,故1122k ,又22121222326412,3434k k x x x x k k ,而5,02N,故直线225:522y BN y x x ,故22223325252Qy y y x x,所以 1222112225332525Q y x y y y y y x x12224253425k x x k x x222212122264123225825834342525k k x x x x k k k kx x2222212824160243234025k k k k k x ,故1Q y y ,即AQ y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为 1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x 、12x x (或12y y 、12y y )的形式;(5)代入韦达定理求解.。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
高考椭圆试题及答案一、选择题1. 已知椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a和b分别为椭圆的长半轴和短半轴,若椭圆的离心率为\(\frac{\sqrt{3}}{2}\),则下列说法正确的是()A. \(a > b\)B. \(a < b\)C. \(a = b\)D. \(a = 2b\)答案:A2. 椭圆\(\frac{x^2}{9} + \frac{y^2}{4} = 1\)的长轴长度为()A. 3B. 5C. 6D. 9答案:C二、填空题3. 若椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的焦点坐标为\((\sqrt{5}, 0)\)和\((-\sqrt{5}, 0)\),则a的值为()。
答案:34. 椭圆\(\frac{x^2}{16} + \frac{y^2}{9} = 1\)的短轴长度为()。
答案:6三、解答题5. 已知椭圆\(\frac{x^2}{4} + \frac{y^2}{3} = 1\),求椭圆上一点P(x, y)到焦点F(1, 0)的距离的最小值。
答案:最小值为\(\sqrt{3} - 1\)。
6. 椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的长轴和短轴分别为2a和2b,且a > b > 0,若椭圆上存在一点P(x, y),使得\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),且\(\frac{x^2}{a^2} = \frac{y^2}{b^2}\),求椭圆的离心率。
答案:离心率为\(\frac{1}{2}\)。
四、计算题7. 已知椭圆\(\frac{x^2}{25} + \frac{y^2}{16} = 1\),求椭圆的离心率和焦距。
答案:离心率\(e = \frac{3}{5}\),焦距\(2c = 6\)。
历年高考数学真题精选(按考点分类)专题36 椭圆(学生版)一.选择题(共12小题)1.(2019•北京)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =2.(2018•全国)已知椭圆22221x y a b +=过点3(4,)5-和4(3,)5-,则椭圆离心率(e = )A B C .15D .253.(2018•新课标Ⅰ)已知椭圆222:14x y C a +=的一个焦点为(2,0),则C 的离心率为( )A .13B .12C D 4.(2010•福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A .2B .3C .6D .85.(2013•大纲版)已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆于A 、B 两点,且||3AB =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=6.(2019•新课标Ⅰ)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过点2F 的直线与椭圆C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=7.(2018•新课标Ⅱ)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,△12PF F 为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .148.(2017•全国)椭圆C 的焦点为1(1,0)F -,2(1,0)F ,点P 在C 上,22F P =,1223F F P π∠=,则C 的长轴长为( )A .2B .C .2+D .2+9.(2017•新课标Ⅰ)设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( )A .(0,1][9,)+∞B .(0[9,)+∞C .(0,1][4,)+∞D .(0[4,)+∞10.(2017•新课标Ⅲ)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .1311.(2016•新课标Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13B .12C .23D .3412.(2016•新课标Ⅲ)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .34二.填空题(共7小题)13.(2015•新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点.且圆心在x 轴的正半轴上.则该圆标准方程为 .14.(2014•安徽)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A 、B 两点,若11||3||AF F B =,2AF x ⊥轴,则椭圆E 的方程为 .15.(2011•江西)若椭圆22221x y a b +=的焦点在x 轴上,过点1(1,)2做圆221x y +=的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是 .16.(2019•新课标Ⅲ)设1F ,2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限.若△12MF F 为等腰三角形,则M 的坐标为 .17.(2019•浙江)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .18.(2019•上海)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ,则1F P 与2F Q 的夹角范围为 .19.(2018•浙江)已知点(0,1)P ,椭圆22(1)4x y m m +=>上两点A ,B 满足2AP PB =,则当m = 时,点B 横坐标的绝对值最大. 三.解答题(共6小题)20.(2016•北京)已知椭圆2222:1x y C a b+=过点(2,0)A ,(0,1)B 两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.21.(2019•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.已|2||(OA OB O=为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线4x=上,且//OC AP.求椭圆的方程.22.(2019•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||(ON OF O=为原点),且OP MN⊥,求直线PB的斜率.历年高考数学真题精选(按考点分类)专题36 椭圆(教师版)一.选择题(共12小题)1.(2019•北京)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =【答案】B【解析】由题意,12c a =,得2214c a =,则22214a b a -=,22244a b a ∴-=,即2234a b =.2.(2018•全国)已知椭圆22221x y a b +=过点3(4,)5-和4(3,)5-,则椭圆离心率(e = )ABC .15D .25【答案】A【解析】椭圆22221x y a b +=过点3(4,)5-和4(3,)5-,则2222169125916125a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得5a =,1b =,22224c a b ∴=-=,c ∴=c e a ∴==3.(2018•新课标Ⅰ)已知椭圆222:14x y C a +=的一个焦点为(2,0),则C 的离心率为( )A .13B .12CD【答案】C【解析】椭圆222:14x y C a +=的一个焦点为(2,0),可得244a -=,解得a =2c =,c e a ∴===.故选C . 4.(2010•福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A .2 B .3 C .6 D .8【答案】C【解析】由题意,(1,0)F -,设点0(P x ,0)y ,则有2200143x y +=,解得22003(1)4x y =-,因为00(1,)FP x y =+,00(,)OP x y =,所以2200000(1)34x OP FP x x y x =++=++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -,所以当02x =时,OP FP 取得最大值222364++=,故选:C .5.(2013•大纲版)已知1(1,0)F -,2(1,0)F 是椭圆C 的两个焦点,过2F 且垂直于x 轴的直线交椭圆于A 、B 两点,且||3AB =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】C【解析】设椭圆的方程为22221(0)x y a b a b+=>>,可得1c ==,所以221a b -=⋯①AB 经过右焦点2F 且垂直于x 轴,且||3AB =∴可得3(1,)2A ,3(1,)2B -,代入椭圆方程得22223()121a b +=,⋯②联解①②,可得24a =,23b =∴椭圆C 的方程为22143x y +=6.(2019•新课标Ⅰ)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过点2F 的直线与椭圆C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( ) A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】22||2||AF BF =,2||3||AB BF ∴=,又1||||AB BF =,12||3||BF BF ∴=,又12||||2BF BF a +=,2||2aBF ∴=, 2||AF a ∴=,13||2BF a =,12||||2AF AF a +=,1||AF a ∴=,12||||AF AF ∴=,A ∴在y 轴上.在Rt △2AF O 中,21cos AF O a∠=, 在△12BF F 中,由余弦定理可得222134()()22cos 222a a BF F a +-∠=⨯⨯,根据221cos cos 0AF O BF F ∠+∠=,可得214202a a a -+=,解得23a =,a ∴222312b a c =-=-=.所以椭圆C 的方程为:22132x y +=.7.(2018•新课标Ⅱ)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△12PF F 为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D【解析】由题意可知:(,0)A a -,1(,0)F c -,2(,0)F c ,直线AP 的方程为:3()6y x a =+,由12120F F P ∠=︒,212||||2PF F F c ==,则(2,3)P c c , 代入直线3:3(2)6AP c c a =+,整理得:4a c =,∴题意的离心率14c e a ==.【答案】D【解析】椭圆C 的焦点为1(1,0)F -,2(1,0)F ,点P 在C 上,22F P =,1223F F P π∠=,则C 的长轴长为( )A .2B .C .2+D .2+【解答】解:椭圆C 的焦点为1(1,0)F -,2(1,0)F ,则1c =,2||2PF =,12||2||22PF a PF a ∴=-=-,由余弦定理可得22211221222||||||2||||cos3PF F F PF F F PF π=+-,即21(22)44222()2a -=+-⨯⨯⨯-,解得1a =,1a =(舍去),22a ∴=+D .9.(2017•新课标Ⅰ)设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( )A .(0,1][9,)+∞B .(0[9,)+∞C .(0,1][4,)+∞D .(0[4,)+∞【答案】A【解析】假设椭圆的焦点在x 轴上,则03m <<时,设椭圆的方程为:22221(0)x y a b a b +=>>,设(,0)A a -,(,0)B a ,(,)M x y ,0y >,则22222a y a x b-=,MAB α∠=,MBA β∠=,AMB γ∠=,tan y x a α=+,tan y a xβ=-,222222222222tan tan 2222tan tan[()]tan()1tan tan ()ay ay ab ab a y a x y y a b c yy bαβγπαβαβαβ+=-+=-+=-=-=-=-=------222tan ab c yγ∴=-,当y 最大时,即y b =时,AMB ∠取最大值,M ∴位于短轴的端点时,AMB ∠取最大值,要使椭圆C 上存在点M 满足120AMB ∠=︒,120AMB ∠︒,60AMO ∠︒,3tan tan 603AMO m∠=︒=,解得:01m <;当椭圆的焦点在y 轴上时,3m >,当M 位于短轴的端点时,AMB ∠取最大值,要使椭圆C 上存在点M 满足120AMB ∠=︒,120AMB ∠︒,60AMO ∠︒,tan tan 6033m AMO ∠︒=,解得:9m ,m ∴的取值范围是(0,1][9,)+∞10.(2017•新课标Ⅲ)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A 6B 3C 2D .13【答案】A【解析】以线段12A A 为直径的圆与直线20bx ay ab -+=相切,∴a =,化为:223ab =.∴椭圆C的离心率c e a ===.11.(2016•新课标Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13B .12C .23D .34【答案】B【解析】设椭圆的方程为:22221x y a b+=,直线l 经过椭圆的一个顶点和一个焦点,则直线方程为:1x y c b +=,椭圆中心到l 的距离为其短轴长的14,2b =,222114()b c b =+,∴223b c =,2223a c c -=,12c e a ∴==. 12.(2016•新课标Ⅲ)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .34【答案】A【解析】由题意可设(,0)F c -,(,0)A a -,(,0)B a ,设直线AE 的方程为()y k x a =+,令x c =-,可得(M c -,())k a c -,令0x =,可得(0,)E ka ,设OE 的中点为H ,可得(0,)2kaH ,由B ,H ,M 三点共线,可得BH BM k k =, 即为()2kak a c a c a -=---,化简可得12a c a c -=+,即为3a c =,可得13c e a ==.二.填空题(共7小题)13.(2015•新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点.且圆心在x 轴的正半轴上.则该圆标准方程为 . 【答案】22325()24x y -+=【解析】一个圆经过椭圆221164x y +=的三个顶点.且圆心在x 轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,2)±, 设圆的圆心(,0)a ,则22(0)(02)4a a -+-=-,解得32a =, 圆的半径为:52, 所求圆的方程为:22325()24x y -+=.14.(2014•安徽)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A 、B 两点,若11||3||AF F B =,2AF x ⊥轴,则椭圆E 的方程为 .【答案】22312x y += 【解析】由题意,1(,0)F c -,2(,0)F c ,2AF x ⊥轴,22||AF b ∴=,A ∴点坐标为2(,)c b ,设(,)B x y ,11||3||AF F B =,∴113AF F B =,(c c ∴--,2)3(b x c -=+,)y , 5(3B c ∴-,21)3b -,代入椭圆方程可得22221()53()13b c b--+=,221b c =+,223b ∴=,213c =,22312x y ∴+=. 故答案为:22312x y +=. 15.(2011•江西)若椭圆22221x y a b +=的焦点在x 轴上,过点1(1,)2做圆221x y +=的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是 .【答案】22154x y +=【解析】设切点坐标为(,)m n 则 1211n n m m -=--即22102m n n m +--= 221m n += 1102m n ∴+-=即AB 的直线方程为220x y +-=线AB 恰好经过椭圆的右焦点和上顶点 220c ∴-=;20b -=解得1c =,2b = 所以25a =故椭圆方程为22154x y +=16.(2019•新课标Ⅲ)设1F ,2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限.若△12MF F 为等腰三角形,则M 的坐标为 .【答案】【解析】设(,)M m n ,m ,0n >,椭圆22:13620x y C +=的6a =,b =,4c =,23c e a ==, 由于M 为C 上一点且在第一象限,可得12||||MF MF >,△12MF F 为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n =2683m -=,即30m =-<,舍去.可得M .故答案为:.17.(2019•浙江)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 .【解析】椭圆22195x y +=的3a =,b =2c =,23e =,设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆, 连接AO ,可得||2||4PF AO '==,设P 的坐标为(,)m n ,可得2343m -=,可得32m =-,n =,由(2,0)F -,可得直线PF 的斜率为2322=-+ 另解:由||2||4PF AO '==,||642PF =-=,||24FF c '==,可得416161cos 2244PFF +-'∠==⨯⨯,sin PFF '∠=, 可得直线PF的斜率为sin cos PFF PFF '∠'∠.18.(2019•上海)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ,则1F P 与2F Q 的夹角范围为 . 【答案】1[arccos 3π-,]π【解析】设(,)P x y ,则Q 点(,)x y -,椭圆22142x y +=的焦点坐标为(2-,0),(2,0),121F P F P ,2221x y ∴-+,结合22142x y +=可得:2[1y ∈,2]故1F P 与2F Q 的夹角θ满足:2221222222212238cos 3[122(2)8F P F Qy y y F P F Q x y x θ-====-+∈-++++-,1]3-故1[arccos 3θπ∈-,]π19.(2018•浙江)已知点(0,1)P ,椭圆22(1)4x y m m +=>上两点A ,B 满足2AP PB =,则当m = 时,点B 横坐标的绝对值最大. 【答案】5【解析】设1(A x ,1)y ,2(B x ,2)y ,由(0,1)P ,2AP PB =,可得122x x -=,1212(1)y y -=-,即有122x x =-,1223y y +=,又221144x y m +=,即为2221x y m +=,① 222244x y m +=,②①-②得1212(2)(2)3y y y y m -+=-,可得122y y m -=-,解得132m y -=,234my +=, 则2223()2m m x -=+, 即有222223109(5)16()244m m m m x m --+---+=-==, 即有5m =时,22x 有最大值4,即点B 横坐标的绝对值最大. 故答案为:5.三.解答题(共6小题)20.(2016•北京)已知椭圆2222:1x y C a b+=过点(2,0)A ,(0,1)B 两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(1)解:椭圆2222:1x y C a b+=过点(2,0)A ,(0,1)B 两点,2a ∴=,1b =,则c =,∴椭圆C 的方程为2214x y +=,离心率为e (2)证明:如图, 设0(P x ,0)y ,则002PA y k x =-,PA 所在直线方程为00(2)2y y x x =--, 取0x =,得0022M y y x =--; 001PB y k x -=,PB 所在直线方程为0011y y x x -=+, 取0y =,得01N x x y =-. 0000022||2211N x y x AN x y y --∴=-=-=--, 00000222||1122M y x y BM x x x +-=-=+=--. ∴000000222211||||2212ABNM y x x y S AN BM y x --+-==-- 22220000000000000000000000(22)(2)4(2)4444841112(1)(2)222222x y x y x y x x y y x y y x x y x y x y x y +-+-++++--+=-==--+--+--000000004(22)11422222x y x y x y x y +--==⨯=+--.∴四边形ABNM 的面积为定值2.21.(2019•天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已3|2||(OA OB O =为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP .求椭圆的方程.解:3|2||OA OB =32a b =,可得22311142c b e a a =-=-;(Ⅱ)3b =,12c a =, 即2a c =,3b c =,可得椭圆方程为2222143x y c c+=,设直线FP 的方程为3()4y x c =+,代入椭圆方程可得2276130x cx c +-=,解得x c=或137cx=-,代入直线PF方程可得32cy=或914cy=-(舍去),可得3 (,)2cP c,圆心C在直线4x=上,且//OC AP,可设(4,)C t,可得3242ctc c=+,解得2t=,即有(4,2)C,可得圆的半径为2,由直线FP和圆C相切的条件为d r=,2=,解得2c=,可得4a=,b=可得椭圆方程为2211612x y+=.22.(2019•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||(ON OF O=为原点),且OP MN⊥,求直线PB的斜率.解:(Ⅰ)由题意可得24b=,即2b=,cea==222a b c-=,解得a,1c=,可得椭圆方程为22154x y+=;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+, 代入椭圆方程224520x y +=, 可得22(45)200k x kx ++=, 解得22045k x k =-+或0x =, 即有220(45k P k -+,22810)45k k -+, 2y kx =+,令0y =,可得2(M k -,0), 又(0,1)N -,OP MN ⊥, 可得281011220k k k-=---,解得k = 可得PB 的斜率为。
历届高考数学中的“椭圆”单元测试题(供文科使用)-(2)work Information Technology Company.2020YEAR历届高考中的“椭圆”试题精选(自我测试)12345678题 号答 案1.(2007安徽文)椭圆1422=+y x 的离心率为( ) (A )23 (B )43 (C )22(D )322.(2008上海文)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .103.(2005广东)若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A .3 B .23 C .38 D .324.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )(A )2 3 (B )6 (C )4 3 (D )125.(2003北京文)如图,直线022:=+-y x l 过椭圆的左焦点 F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .5526.(2002春招北京文、理)已知椭圆的焦点是F 1、F 2、P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线7.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( ) (A )32 (B )33 (C )22(D )238.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )(A )23 (B )62 (C )72 (D )24二、填空题:9.(2008全国Ⅰ卷文)在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .10.(2006上海理)已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .11.(2007江苏)在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B+= .12.(2001春招北京、内蒙、安徽文、理)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.历届高考中的“双曲线”试题精选(自我测试)1.(2005全国卷Ⅱ文,2004春招北京文、理)双曲线149x y -=的渐近线方程是( )(A )23y x =± (B )49y x =± (C )32y x =± (D )94y x =±2.(2006全国Ⅰ卷文、理)双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .143.(2000春招北京、安徽文、理)双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .234.(2007全国Ⅰ文、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x5.(2008辽宁文) 已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1 B .2 C .3 D .46.(2005全国卷III 文、理)已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C .23D .37.(2008福建文、理)双曲线22221x y a b-=(a >0,b >0)的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞8.(2007安徽理)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( ) (A )3 (B )5 (C )25 (D )31+二、填空题:9.(2008安徽文)已知双曲线22112x y n n-=-的离心率是3。
椭圆高考题汇编1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )22.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P在过A 且斜率为6的直线上,12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为 A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .594.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是 A .25 B .246+ C .27+ D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o 30的等腰三角形,则E 的离心率为A 、21B 、32 C 、43 D 、54 二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c +与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 . 三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离心率为3,点A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,33(1,)2P =-,43(1,)2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l:1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y a ba b+=>>(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a b ab+=>>,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为10. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =(Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a ba b+=>>,直线y x=被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; (ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程; (Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.42.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与x 轴垂直的直(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D 两点. 若··8AC DB AD CB +=, 求k 的值.44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值. 45.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶第20题图点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率; (Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =椭圆C 上的点到(0,2)Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程; (Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由. 48.(2011陕西)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =. (Ⅰ)求椭圆C 的离心率;(Ⅱ)如果|AB |=154,求椭圆C 的方程.。
高考椭圆最常考的题型(140分推荐)一、单选题(本大题共8小题,共40.0分)1. 已知椭圆:x 24+y 2b2=1(0<b <2) ,左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A,B 两点,若|BF 2⃗⃗⃗⃗⃗⃗⃗ |+|AF 2⃗⃗⃗⃗⃗⃗⃗ |的最大值为5,则b 的值是( )A. 1B. √2C. 32D. √32. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√22,直线x =√2与椭圆C 交于A ,B 两点,O 为坐标原点,且OA ⊥OB ,则椭圆的方程为( )A.x 22+y 2=1B.x 24+y 22=1C.x 28+y 24=1D.x 26+y 23=13. 已知直线y =kx(k ≠0)与椭圆C :x 2a2+y 2=1(a >1)交于P ,Q 两点,点F ,A 分别是椭圆C 的右焦点和右顶点,若|FP|+|FQ|+|FA|=52a ,则a =( )A. 4B. 2C. 43D. 2√334. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB |=|AF 1|,则椭圆的方程为( )A. x 240+y 236=1B. x 220+y 216=1C. x 210+y 26=1D.x 25+y 2=15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. √32B. √22C. 12D. 136. 已知椭圆方程为x 2+ky 2=5的一个焦点是(0,2),那么k =( )A. 59B. 97C. 1D. 537. 已知焦点在x 轴上的椭圆C :x 2a 2+y 24=1的焦距为4,则C 的离心率( )A. 13B. 12C. √22D. 2√238. 已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为4√3,则椭圆C 的方程为( )A. x 23+y 2=1B. x 23+y 22=1 C. x 212+y28=1 D. x 212+y24=1二、单空题(本大题共2小题,共10.0分)9.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.10.椭圆E:x2a2+y23=1的右焦点为F2,直线y=x+m与椭圆E交于A,B两点.若△F2AB周长的最大值是8,则m的值等于________.三、解答题(本大题共20小题,共240.0分)11.设椭圆C∶x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的中点坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√33,短轴一个端点到右焦点的距离为√3.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆的左焦点且斜率为1的直线l交椭圆于A,B两点,求|AB|.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,√32)在椭圆C上,且△PF1F2的面积为32.(1)求椭圆C的标准方程;(2)若椭圆C上存在A,B两点关于直线x=my+1对称,求m的取值范围.14.已知点P(3,4)是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为2√3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,且线段AB的垂直平分线过定点(13,0),求k的取值范围.16.已知椭圆x2a2+y2b2=1(a>b>0)和直线l:xa−yb=1,椭圆的离心率e=√63,坐标原点到直线l的距离为√32.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.17.已知椭圆E:x2a2+y2b2=1(a>b>0)经过两点(0,1),(√3,12).(I)求椭圆E的方程;(II)若直线l:x−y−1=0交椭圆E于两个不同的点A,B,O是坐标原点,求△AOB 的面积S.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,M(√3,−12)是椭圆C上的一点.(1)求椭圆C的方程;(2)过点P(−4,0)作直线l与椭圆C交于不同两点A、B,A点关于x轴的对称点为D,问直线BD是否过定点?若是,求出该定点的坐标;若不是,请说明理由.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到右焦点的距离为3√2.(1)求椭圆的方程;(2)若直线y=x−1与椭圆相交于不同两点A、B,求|AB|.20.已知椭圆C1的方程为x24+y23=1,椭圆C2的短轴为C1的长轴且离心率为√32.(1)求椭圆C2的方程;(2)如上图,M,N分别为直线l与椭圆C1,C2的交点,P为椭圆C2与y轴的交点,△PON 的面积为△POM的面积的2倍,若直线l的方程为y=kx(k>0),求k的值.21.如图,在平面直角坐标系xOy中,已知A,B两点分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,且AB=√7,右准线l的方程为x=4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P,交l于点Q.若以PQ为直径的圆经过原点,求直线PQ的方程.22.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.23.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,长轴长为4,直线y=kx+2与椭圆C交于A,B两点且∠AOB为直角,O为坐标原点.(1)求椭圆C的方程;(2)求AB的长度.24.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.25.如图,在平面直角坐标系xOy中,已知圆C:(x−3)2+y2=1,椭圆E:x2a2+y2b2=1(a>b>0)的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当AN=127AM时,求直线l的方程.26.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.27.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆E上.(1)若F1F2=2√2,点P的坐标为(√3,√2),求椭圆E的方程;(2)若点P横坐标为a2,点M为PF1中点,且OP⊥F2M,求椭圆E的离心率.28.如图,在直角坐标系xOy中,设椭圆C:x2a2+y2b2=1 (a>b>0)的左右两个焦点分别为F1、F2过右焦点F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M( √2, 1 )(1)求椭圆C的方程;(2)设椭圆C的一个顶点为B( 0,−b ),直线BF2交椭圆C于另一点N,求△F1BN的面积29.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C 于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若ΔAEF与ΔBDF的面积比为1:7,求直线l的方程.30.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点坐标为F1(−√3,0),F2(√3,0),且椭圆E经过点P(−√3,12).(1)求椭圆E的标准方程;(2)设点M是椭圆E上位于第一象限内的动点,A,B分别为椭圆E的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求四边形ABCD的面积.答案和解析1.【答案】D【解析】【分析】本题主要考查椭圆的定义的应用,做题时要善于发现规律,进行转化,三角形AF2B为焦点三角形,周长等于两个长轴长,再根据椭圆方程,即可求出三角形AF2B的周长,欲使|BF2|+|AF2|的最大,只须|AB|最小,利用椭圆的性质即可得出答案.【解析】解:由椭圆的方程可知:长半轴长为a=2,由椭圆的定义可知:|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8−(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b2=3,即b=√3.故选D.2.【答案】D【解析】【分析】本题考查椭圆的方程和离心率,属于简单题.结合已知条件建立关系式求得a2=6,b2=3,即可得到椭圆方程.【解答】解:因为椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,所以ca =√22①又因为直线x=√2与椭圆C交于A,B两点,O为坐标原点,且OA⊥OB,所以A(√2,√2)代入x2a2+y2b2=1得2a2+2b2=1②又因为a2=b2+c2③联立①②③解得a2=6,b2=3,所以椭圆的方程为x26+y23=1.故选D.3.【答案】D【解析】【分析】本题主要考查了椭圆的概念与标准方程、椭圆的几何性质、直线与椭圆的位置关系,属于基础题.取椭圆的左焦点F′,由三角形全等知|PF|=|QF′|,由椭圆的概念及集合性质知|FP|+ |FQ|=|F′Q|+|FQ|=2a,|FA|=a−c,b=1,代入条件及利用a,b,c的关系式求得a.【解答】解:取椭圆的左焦点F′,因为直线过原点,∴|OP|=|OQ|,|OF|=|OF′|,由椭圆的对称性,∴|PF|=|QF′|,∴|FP|+|FQ|=|F′Q|+|FQ|=2a,∵|FP|+|FQ|+|FA|=52a,|FA|=a−c,所以2a+a−c=52a,即a=2c,∵a2=b2+c2=1+14a2,a=2√33.故选D.4.【答案】D【解析】【分析】本题考查椭圆的定义、标准方程以及简单的几何性质,属于基础题.由直线2x+y−4=0经过椭圆x2a2+y2b2=1(a>b>0)的右焦点F2,可求得c=2,由椭圆定义可求得即a=√5,故a2=5,b2=1,椭圆方程可解.【解答】解:直线2x +y −4=0与x 轴和y 轴的交点分别为F 2(2,0),B(0,4), 所以c =2,又2a =|AF 1|+|AF 2|=|AB|+|AF 2|=|BF 2|=2√5, 所以a =√5,从而b 2=5−4=1, 所以椭圆方程x 25+y 2=1.故选D .5.【答案】C【解析】 【分析】本题考查椭圆的几何性质,涉及向量的线性关系,属基础题.根据向量关系得出|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,根据平行线截线段成比例定理得出|AO||AF|的值,得到a ,c 的关系,求得离心率. 【解答】 解:如图所示:∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,∴|PA||AB|=23, 又∵PO//BF , ∴|AO||AF|=|PA||AB|=23, 即aa+c =23, ∴e =ca =12. 故选C .6.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4,∴k =59, 故选:A .7.【答案】C【解析】 【分析】本题主要考查椭圆的离心率,属于基础题.根据题意求出c =2,a =2√2,由e =ca 即可求出结果. 【解答】 解:∵椭圆C :x 2a 2+y 24=1的焦点在x 轴上,且焦距为4,∴a 2>4,c =2, ∴a 2−4=4, ∴a =2√2, ∴e =ca =2√2=√22. 故选C .8.【答案】B【解析】 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用△AF 1B 的周长为4√3,求出a =√3,根据离心率为√33,可得c =1,求出b ,即可得出椭圆的方程. 【解答】解:∵△AF 1B 的周长为4√3,∵△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , ∴4a =4√3, ∴a =√3, ∵离心率为√33,∴ca =√33,c =1,∴b =√a 2−c 2=√2, 即椭圆C 的方程为x 23+y 22=1.故选B .9.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解.【解答】解:设椭圆的标准方程为 x 2a2+y 2b 2=1(a >b >0),∵离心率为12, ∴e =ca =√a 2−b 2a=12, ∴b =√32a , 令a =2,则b =√3,∴椭圆的标准方程为x 24+y 23=1.故答案为x 24+y 23=1(答案不唯一).10.【答案】1【解析】 【分析】本题考查的知识要点:椭圆的定义和方程的应用,属于基础题型.首先利用椭圆的定义建立周长的等式,进一步利用三角形的边长关系建立等式,求出相应的值,最后求出结果. 【解答】 解:椭圆E :x 2a 2+y 23=1的右焦点为F 2,N 为左焦点,直线y =x +m 与椭圆E 交于A ,B 两点,则△F 2AB 周长l =AB +BF 2+AF 2=AB +2a −NB +2a −NA =4a +(AB −NA −NB), 由于NA +NB ≥AB ,所以当N 、A 、B 三点共线时,△F 2AB 的周长l =4a =8, 所以a =2, 所以椭圆的方程为x 24+y 23=1,直线y =x +m 经过左焦点,所以m =1. 故答案为1.11.【答案】解:(1)将(0,4)代入C 的方程得16b 2=1,则b =4,∵e =ca =35,∴a 2−b 2a 2=925,即1−16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线与C 的交点为A(x 1,y 1),B(x 2,y 2). 将直线方程y =45(x −3)代入C 的方程,得x 225+(x−3)225=1,即x 2−3x −8=0,故x 1+x 2=3.设线段AB 的中点坐标为(x′,y′),则x′=x 1+x 22=32,y′=y 1+y 22=25(x 1+x 2−6)=−65,即所求中点坐标为(32,−65).【解析】本题考查椭圆的标准方程及性质,以及直线与椭圆的综合应用,属于中档题目. (1)将(0,4)代入椭圆方程求出b ,再由椭圆的离心率求出a ,得到椭圆方程; (2)写出直线方程联立椭圆方程,利用中点坐标公式结合韦达定理得出.12.【答案】解:(Ⅰ)由题意:e =c a =√33,即a =√3c ,短轴一个端点到右焦点的距离为√3, 即b 2+c 2=(√3)2=3, 而a 2=b 2+c 2, 所以a 2=3,b 2=2, 所以椭圆的方程:x 23+y 22=1;(Ⅱ)由(Ⅰ),左焦点(−1,0),直线l 的方程:y =x +1, 设A(x,y),B(x′,y′),联立直线l 与椭圆的方程,消去y 整理得:5x 2+6x −3=0, 所以x +x′=−65,xx′=−35,∴|AB|=√1+k 2√(x +x′)2−4xx′ =√1+1×√(−65)2−4×(−35)=8√35.【解析】本题考查直线与椭圆的交点弦长,属于基础题.(Ⅰ)由题意得离心率及长半轴长及a ,b ,c 之间的关系,求出椭圆的方程;(Ⅱ)由题意写出直线l 的方程与椭圆联立写出两根之和及之积,再由弦长公式求出弦长.13.【答案】解:(1)由题意可得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2解得a =2,b =1,故椭圆C 的标准方程为x 24+y 2=1..(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0). 因为直线x =my +1过定点(1,0),所以(x 1−1)2+y 12=(x 2−1)2+y 22.因为A ,B 在椭圆上,所以x 124+y 12=1,x 224+y 22=1,所以(x 1−1)2+1−x 124=(x 2−1)2+1−x 224,整理得x 12−x 224=(x 1−x 2)(x 1+x 2−2),所以x 1+x 2=83,所以x 0=43.因为点M 在直线x =my +1上,所以x 0=my 0+1,则y 0=13m .由{x 24+y 2=1,x =43,得y =±√53, 则−√53<13m <0或0<13m <√53,解得m <−√55或m >√55.故m 的取值范围为(−∞,−√55)⋃(√55,+∞).【解析】本题考查椭圆的性质和标准方程,直线与椭圆的位置关系,属于中档题. (1)由题意得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2,解出a ,b ,进而求出答案.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0),由条件求出x 1+x 2=83,x 0=43,进而由条件求出y =±√53,进而求出答案.14.【答案】解:(1) 令F 1(−c,0),F 2(c,0),∵PF 1⊥PF 2,∴k PF 1·k PF 2=−1,即43+c ·43−c =−1,解得c =5,∴椭圆的方程为x 2a 2+y 2a 2−25=1.∵点P(3,4)在椭圆上,∴9a 2+16a 2−25=1,解得a 2=45,或a 2=5, 又a >c ,∴a 2=5舍去, 故所求椭圆方程为x 245+y 220=1.(2)P 点纵坐标的值即为F 1F 2边上的高,∴△PF1F2=12|F1F2|×4=12×10×4=20.【解析】本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.(1)设出焦点的坐标,利用垂直关系求出c值,椭圆的方程化为x2a2+y2a2−25=1,把点P的坐标代入,可解得a2的值,从而得到所求椭圆方程.(2)P点纵坐标的值即为F1F2边上的高,由S△PF1F2=12|F1F2|×4求得△PF1F2的面积.15.【答案】解:(Ⅰ)由题意可知:{2b=2√3ca=12a2=b2+c2,得{a=2b=√3c=1,故椭圆C的标准方程为x24+y23=1;(Ⅱ)设直线l:y=kx+m,A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程,消去y得(3+4k2)x2+8kmx+4m2−12=0,所以,即m2<4k2+3…………①由根与系数关系得x1+x2=−8km3+4k2,则y1+y2=k(x1+x2)+2m=6m3+4k2,所以线段AB的中点P的坐标为(−4km3+4k2,3m3+4k2).又线段AB的垂直平分线l′的方程为y=−1k (x−13),由点P在直线l′上,得3m3+4k2=−1k(−4km3+4k2−13),即4k2+3km+3=0,所以m=−13k(4k2+3)…………②由①②得(4k2+3)29k2<4k2+3,∵4k2+3>0,∴4k2+3<9k2所以k2>35,即k<−√155或k>√155,所以实数k的取值范围是.【解析】本题考查了椭圆方程的求法,考查了直线和圆锥曲线间的关系,考查了直线和圆锥曲线的关系问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,属于中档题.(Ⅰ)由离心率得到a ,c ,b 的关系,再代入椭圆的标准方程中即可求解.(Ⅱ)设出A ,B 的坐标,联立直线方程和椭圆方程,由判别式大于0得到m 2<4k 2+3,再结合根与系数关系得到AB 中点P 的坐标为(−4km3+4k 2,3m3+4k 2).求出AB 的垂直平分线l′方程,由P 在l′上,得到4k 2+3km +3=0.结合m 2<4k 2+3求得k 的取值范围.16.【答案】解:(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca=√63ab√a 2+b 2=√32,又a 2=b 2+c 2,解得:a 2=3,b =1, ∴椭圆的方程为x 23+y 2=1;(Ⅱ)假设存在这样的k ,使以CD 为直径的圆过定点E , 联立直线与椭圆方程得(1+3k 2)x 2+12kx +9=0, ∴△=(12k)2−36(1+3k 2)>0,∴k >1或设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=−12k1+3k 2x 1·x 2=91+3k2,② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4,EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,故EC ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0, 则y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0,③ 将②代入③整理得k =76>1, 经验证使得①成立,综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】本题考查椭圆的方程及直线与椭圆的位置关系,注意合理地进行等价转化,属于中档题.(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca =√63√a 2+b 2=√32,由此能求出椭圆的方程;(Ⅱ)假设存在这样的值,联立方程得(1+3k 2)x 2+12kx +9=0,再由根的判别式和根与系数的关系进行求解即可.17.【答案】解:(1)由题意得{b 2=13a2+14b2=1,解得{a =2b =1,所以椭圆E 的方程为x 24+y 2=1.(2)记A(x 1,y 1),B(x 2,y 2),由{x 24+y 2=1x =y +1, 消去x 得5y 2+2y −3=0. 所以y 1,2=−1或35,直线l 与x 轴的交点为(1,0),记为点P ,S =12|OP||y 1−y 2|=45.【解析】本题主要考查了椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系,三角形面积的应用,属于简单题.(1)根据已知及椭圆的概念及标准方程,椭圆的性质及几何意义的计算,求出椭圆E 的方程;(2)根据已知及直线与椭圆的位置关系,三角形面积的计算,求出△AOB 的面积S .18.【答案】解:(1)∵c a =√32,a 2=b 2+c 2,∴a 2=4b 2,∴x 24b 2+y 2b 2=1,将M (√3,−12)代入椭圆C ,∴b 2=1, ∴椭圆C 方程为:x 24+y 2=1.(2)显然AB 斜率存在,设AB 为:y =k(x +4),{x 24+y 2=1,y =k(x +4)⇒(1+4k 2)x 2+32k 2x +64k 2−4=0,Δ=16−192k 2>0,∴k 2<112. 设A(x 1,y 1),B(x 2,y 2),D(x 1,−y 1), ∴x 1+x 2=−32k 21+4k2,x 1x 2=64k 2−41+4k 2,∵BD :y +y 1=y 2+y1x 2−x 1(x −x 1),∴y =0时x =x 1+x 2y 1−x 1y 1y 1+y 2=2kx 1x 2+4k(x 1+x 2)k(x 1+x 2)+8k=2k(64k 2−41+4k 2)+4k(−32k 21+4k 2)k(−32k 21+4k 2)+8k =128k 3−8k−128k 3−32k 3+8k+32k 3=−1,∴直线BD 过定点(−1,0).【解析】本题考查椭圆方程的求法,直线与椭圆的位置关系,直线的斜率的应用,考查转化思想以及计算能力.(1)根据点在椭圆上得3a 2+14b 2=1,与离心率联立方程组解得a 2=2,b 2=1,即得太严方程;(2)设直线l 的方程为y =k(x +4),A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=−32k 21+4k 2,x 1x 2=64k 2−41+4k 2求出BD 的方程,令y =0,解得横坐标,结合韦达定理化简可得横坐标为定值,即可证明直线BD 过定点.19.【答案】解:(1)根据题意,椭圆C 的短轴一个端点到右焦点的距离为3√2,则有a =3√2, 又由椭圆C 的离心率为√22,则有e =ca =√22,则有c=3,则b2=a2−c2=18−9=9,则椭圆的标准方程为:x218+y29=1;(2)设A(x1,y1),B(x2,y2).由(1)可得:椭圆的标准方程为:x218+y29=1,直线l的方程为:y=x−1,联立{x218+y29=1y=x−1,消去y得3x2−4x−16=0,则有x1+x2=43,x1x2=−163,|AB|=√1+12√(x1+x2)2−4x1x2=√2√169+643=4√263.【解析】本题考查椭圆的几何性质,直线与椭圆的位置关系,椭圆的标准方程,属基础题.(1)根据题意,由椭圆的几何性质可得e=ca =√22且a=3√2,解可得c的值,进而计算可得b的值,将a、b的值代入椭圆的标准方程,即可得答案;(2)联立直线与椭圆的方程,可得方程3x2−4x−16=0,结合根与系数的关系由弦长公式计算可得答案.20.【答案】解:(1)椭圆C1的方程为x24+y23=1的长轴长为4,设椭圆C2的方程为y2a2+x2b2=1(a>b>0),由题意可得b=2,e=ca =√32,a2−c2=4,解得a=4,b=2,c=2√3,可得椭圆C2的方程为y216+x24=1;(2)设M(x1,y1),N(x2,y2),△PON面积为△POM面积的2倍,可得|ON|=2|OM|,即有|x2|=2|x1|,联立{y =kx 3x 2+4y 2=12,消去y 可得x =±√123+4k2,即|x 1|=√123+4k 2,同样求得|x 2|=√164+k 2, 由√164+k 2=2√123+4k 2,解得k =±3, 由k >0,得k =3.【解析】本题考查椭圆的方程和性质及直线与椭圆位置关系,考查联立方程求交点,考查化简整理的运算能力,属于中档题. (1)由题意设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),运用离心率公式和a ,b ,c 的关系,解方程即可得到所求方程;(2)设M(x 1,y 1),N(x 2,y 2),由题意可得|x 2|=2|x 1|,联立直线y =kx 和椭圆方程,求得交点的横坐标,解方程即可得到所求值.21.【答案】解:(1)设椭圆的焦距为2c(c >0).由题意得{a 2c=4,a 2=b 2+c 2,√a 2+b 2=√7,解得a 2=4,b 2=3. 所以椭圆的标准方程为:x 24+y 23=1.(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y 23=1,消y 得(4k 2+3)x 2−16k 2x +16k 2−12=0. 又直线PQ 过点A(2,0),则方程必有一根为2,则x P =8k 2−64k 2+3. 代入直线y =k(x −2),得点P (8k 2−64k 2+3,−12k4k 2+3).联立{y =k(x −2),x =4,所以Q(4,2k).又以PQ 为直径的圆过原点,所以OP ⊥OQ , 则OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k 4k 2+3=8k 2−244k 2+3=0,解得k 2=3,所以k =±√3.所以直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x0−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0, 所以4x 0+2y 02x0−2=0 ①,又x 024+y 023=1 ②,联立①②,解得x 0=65或x 0=2(舍),所以P (65,−4√35)或P (65,4√35). 所以直线PQ 的斜率为±√3,从而直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.【解析】本题考查椭圆的标准方程,椭圆的性质以及直线与椭圆的位置关系,属于难题. (1)由题意列出关于a ,b ,c 的方程组,求解即可;(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y23=1,求出P (8k 2−64k 2+3,−12k 4k 2+3),Q(4,2k).利用OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k4k 2+3=8k 2−244k 2+3=0,求出k 即可求解;方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0,求出x 0=65,得到P (65,−4√35)或P (65,4√35).所以直线PQ 的斜率为±√3,即可求解.22.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(1,32),(−1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.23.【答案】解:(1)由题意2a =4,∴a =2,∴ca =√32,∴c =√3,b 2=a 2−c 2=1,∴椭圆C 的方程为x 24+y 2=1;(2)设A(x 1,y 1),B(x 2,y 2), 把y =kx +2代入x 24+y 2=1,得(4k 2+1)x 2+16kx +12=0,Δ=(16k)2−4×12×(4k 2+1)=64(k 2−3)>0,即k 2>3, ∴x 1+x 2=−16k 1+4k 2,x 1x 2=121+4k 2,∵∠AOB 为直角,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(k 2+1)x 1x 2+2k(x 1+x 2)+4=0, ∴12(k 2+1)1+4k 2−32k 21+4k 2+4=0,∴−4k 2+16=0,∴k 2=4,∴x 1+x 2=−16k1+4k 2=±3217,x 1x 2=121+4k 2=1217,∴|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√5⋅√(3217)2−4817=4√6517, 故|AB|的长度4√6517.【解析】本题考查了椭圆方程与几何性质、直线与椭圆的位置关系等基础知识,属于中档题.(1)根据离心率和长轴长,可得a ,b ,然后即可写出椭圆方程;(2)联立直线与椭圆,利用韦达定理以及∠AOB =90°,求出k.再用弦长公式求出弦长|AB|.24.【答案】解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点到右准线的距离为3.得{e =c a =12,a 2c −c =3解得{a =2,c =1所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),因为OAQB 为平行四边形,所以OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ , 则Q(x 1+x 2,y 1+y 2),当直线l 的斜率不存在时,直线l 过原点O ,此时O 、A 、B 三点共线,不符合题意: 当直线l 的斜率存在时,设直线l 的方程为y =kx +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2,将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意, 所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系,属于较难题.(1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =kx +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.25.【答案】解:(1)记椭圆E 的焦距为2c(c >0).因为右顶点A (a , 0)在圆C 上,右准线x =a 2c与圆C :(x −3)2+y 2=1相切.所以{(a −3)2+02=1 , | a 2c−3 |=1 ,解得{a =4 ,c =8,(舍去) { a =2 ,c =1 .于是b 2=a 2−c 2=3,所以椭圆方程为:x 24+y 23=1.(2)法1:设N (x N , y N ) , M (x M , y M ),显然直线l 的斜率存在,设直线l 的方程为:y =k (x −2). 由方程组 {y =k (x −2) , x 24+y 23=1消去y 得,(4k 2+3)x 2−16k 2x +16k 2−12=0.所以x N ⋅2=16k 2−124k 2+3,解得x N =8k 2−64k 2+3. 由方程组{ y =k (x −2) ,(x −3)2+y 2=1 ,消去y 得(k 2+1)x 2−(4k 2+6)x +4k 2+8=0 , 所以x M ⋅2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.因为AN =127AM ,所以2−x N =127(x M −2).即124k 2+3=127⋅21+k 2,解得 k =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.法2:设N (x N , y N ) , M (x M , y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为:x =ty +2 (t ≠0).由方程组{x =ty +2 , x 24+y 23=1消去x 得,(3t 2+4)y 2+12ty =0,所以y N =−12t3t 2+4 , 由方程组 {x =ty +2 ,(x −3)2+y 2=1消去x 得(t 2+1)y 2−2ty =0, 所以y M =2tt 2+1, 因为AN =127AM ,所以y N =−127y M ,即−12t3t 2+4=−127⋅2t t 2+1,解得 t =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.【解析】本题主要考查了椭圆的概念及标准方程,直线与椭圆的位置关系,直线与圆的位置关系及判定,直线的一般式方程,考查学生的计算能力和推理能力,属于较难题. (1)记椭圆E 的焦距为2c ,根据题意可知{ (a −3)2+02=1 ,| a 2c −3 |=1 ,从而即可得a ,c 的值,进而求得椭圆E 的方程.(2)法1:设N (x N , y N ) , M (x M , y M )且直线l 的方程为:y =k (x −2),从而联立直线和椭圆方程消去y 后可得x N =8k 2−64k 2+3,同理联立直线和圆可得x M =2k 2+4k 2+1,再根据AN =127AM 即可求得k 的值,从而求得直线l 的方程.法2:设N (x N , y N ) , M (x M , y M )且设直线l 的方程为:x =ty +2 (t ≠0),联立直线和椭圆方程消去x 可得y N =−12t3t 2+4,再联立直线和圆可得y M =2tt 2+1,从而据AN =127AM 即可求得t 的值,从而求得直线l 的方程.26.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.27.【答案】解:(1)设椭圆E 焦距为2c ,则2c =|F 1F 2|=2√2,所以c 2=a 2−b 2=2, ① 又点(√3,√2)在椭圆E :x 2a 2+y 2b 2=1上,所以3a 2+2b 2=1,②联立①②解得{a 2=6b 2=4或{a 2=1b 2=−1(舍去),所以椭圆E 的方程为x 26+y 24=1;(2)设椭圆E 焦距为2c ,则F 1(−c,0),F 2(c,0),将x =a2代入x 2a 2+y 2b 2=1,得y 2=3b24,不妨设点P 在x 轴上方, 故点P 坐标为(a2,√3b2), 又点M 为PF 1中点,故点M 坐标为(a−2c 4,√3b4), 所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(a−6c 4,√3b 4),OP ⃗⃗⃗⃗⃗ =(a 2,√3b2),由,得OP ⃗⃗⃗⃗⃗ ⋅F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =0, 即a−6c 4⋅a2+√3b4⋅√3b 2=0,化简得a 2−6ac +3b 2=0,将b 2=a 2−c 2代入得3c 2+6ac −4a 2=0, 即3(ca )2+6⋅ca −4=0, 所以3e 2+6⋅e −4=0, 解得e =−1±√213,因为e ∈(0,1),所以椭圆E 的离心率为e =√213−1.【解析】本题考查向量的数量积、椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系,为基础题.(1)把点(√3,√2)代入椭圆方程,求出a ,b ,即可求出结果; (2)将x =a2代入x 2a2+y 2b 2=1,得出点P 坐标为(a 2,√3b2),得出点M 的坐标和相应向量的坐标,利用数量积,即可求出结果.28.【答案】解:(1)因为l ⊥x 轴,所以F 2(√2,0),由题意可得{2a 2+1b 2=1a 2−b 2=2,解得{a 2=4b 2=2,∴椭圆C 的方程为x 24+y 22=1.(2)直线BF 2的方程为y =x −√2. 由{y =x −√2x 24+y 22=1得点N 的纵坐标为√23.又| F 1F 2 |=2√2, ∴S △F 1BN =12×(√2+√23)×2√2=83.【解析】本题考查求椭圆的方程,三角形的面积,是直线与椭圆位置关系,属于基础题(1)由题意可得F 2(√2,0),进而得到{2a 2+1b 2=1a 2−b 2=2,求解即可得到椭圆C 的方程;(2)根据题意可得直线BF 2的方程为y =x −√2.联立直线方程和椭圆方程即可得到N 的纵坐标为√23.再根据| F 1F 2 |=2√2和三角形的面积公式即可得解.29.【答案】解:(1)设椭圆的半焦距长为c ,∴{ c a =121a 2+94b 2=1, 又∵a 2=b 2+c 2,∴{a =2b =√3,∴椭圆C 的方程为x 24+y 23=1;(2)设直线DE 的方程为x =ky −1,D(x 1,y 1),E(x 2,y 2),,联立{x =ky −13x 2+4y 2=12⇒3(ky −1)2+4y 2=12 ∴(3k 2+4)y 2−6ky −9=0 ∴{y 1+y 2=6k3k 2+4 ①y 1y 2=−93k 2+4 ②y 2=−37y 1 ③,由①③得{y 1=21k2(3k 2+4)y 2=−9k 2(3k 2+4)代入 ②21⋅9⋅k 24(3k 2+4)2=93k 2+4⇒k =±43综合图象知k =43∴l 的方程为3x −4y +3=0【解析】本题考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系和圆锥曲线中的面积问题,是中档题.(1)由离心率为12和(1,32)在椭圆上,再结合a 2=b 2+c 2,可得a 、b ,从而得出椭圆方程;(2)设直线DE 的方程为x =ky −1,由ΔAEF 与ΔBDF 的面积比为1:7,可得y 2y 1=−37,直线DE与椭圆联立,计算可得k的值,即可得出直线l的方程.30.【答案】解:(1)因为椭圆焦点坐标为F1(−√3,0),F2(√3,0),且过点P(−√3,12),所以2a=PF1+PF2=12+√494=4,所以a=2,从而b=√a2−c2=√4−3=1,故椭圆的方程为x24+y2=1;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),因为A(−2,0),且A,D,M三点共线,所以y0x0+2=n2,解得n=2y0x0+2,所以BD=1+2y0x0+2=x0+2y0+2x0+2,同理得AC=x0+2y0+2y0+1,因此,S ABCD=12AC⋅BD=12⋅x0+2y0+2x0+2⋅x0+2y0+2y0+1=(x0+2y0+2)2 2(x0+2)(y0+1)=x02+4y02+4x0y0+4x0+8y0+42(x0y0+x0+2y0+2),因为点M(x0,y0)在椭圆上,所以x024+y02=1,即x02+4y02=4,代入上式得:S ABCD=4x0y0+4x0+8y0+82(x0y0+x0+2y0+2)=2,∴四边形ABCD的面积为2.【解析】本题考查的是椭圆的标准方程和计划意义,直线与椭圆的位置关系,属于较难题.(1)由2a=PF1+PF2=12+√494=4得到a,再由焦点坐标可得到c,利用b=√a2−c2,即可得到b,从而得到椭圆E的标准方程;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),A,D,M三点共线,所以y0x0+2=n2,从而得到BD=1+2y0x0+2=x0+2y0+2x0+2,AC=x0+2y0+2y0+1,由S ABCD=12AC⋅BD,即可得到四边形ABCD的面积.。