2017届高考极值点偏移问题
- 格式:doc
- 大小:703.50 KB
- 文档页数:2
极值点偏移的问题(含答案)21212()ln ,(1()1121()()3(),,f x x ax a f x x x a a f m f mf x x x x x e =-==⋅1.已知为常数)()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小;()有两个零点证明:>21212()ln (),,.f x x ax f x x x x x e =-⋅变式:已知函数,a 为常数。
(1)讨论的单调性;(2)若有两个零点,试证明:>2012120()+sin,(0,1);2()()()()(),2.xf x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记取得极小值为若求证>()2121212121()ln -,()2(1=()()()(1)()1,,0,2f x x ax x a R f f xg x f x ax g x a x x f x f x x x x x =+∈-++=+≥3.已知(1)若)0,求函数的最大值;(2)令=-,求函数的单调区间;(3)若=-2,正实数满足()证明:212122(1)1(1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立;(2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x1212312()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈<⋅<5.已知常数。
()求的单调区间;()有两个零点,且;(i)指出的取值范围,并说明理由;(ii)求证:6.设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且12x x <.(1)求a 的取值范围;(2)证明:0f '<(()f x '为函数()f x 的导函数);。
专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。
极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。
1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。
变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。
1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。
2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。
1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。
3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。
1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。
4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。
1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。
极值点偏移问题与拐点偏移问题【考点预测】1.极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数f (x )在x =x 0处取得极值,且函数y =f (x )与直线y =b 交于A (x 1,b ),B (x 2,b )两点,则AB 的中点为M x 1+x 22,b ,而往往x 0≠x 1+x 22。
如下图所示。
图1 极值点不偏移图2 极值点偏移极值点偏移的定义:对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )的解分别为x 1、x 2,且a <x 1<x 2<b ,(1)若x 1+x 22≠x 0,则称函数y =f (x )在区间(x 1,x 2)上极值点x 0偏移;(2)若x 1+x 22>x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0左偏,简称极值点x 0左偏;(3)若x 1+x 22<x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0右偏,简称极值点x 0右偏。
【方法技巧与总结】1.对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f 2x 0x.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.【注意】若要证明f x 1+x 22 的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2.应用对数平均不等式x1x2<x1-x2ln x1-ln x2<x1+x22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x1-x2ln x1-ln x2;③利用对数平均不等式来证明相应的问题.3.比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【题型归纳目录】题型一:极值点偏移:加法型题型二:极值点偏移:减法型题型三:极值点偏移:乘积型题型四:极值点偏移:商型题型五:极值点偏移:平方型题型六:拐点偏移问题【典例例题】题型一:极值点偏移:加法型例1.(2022•浙江期中)已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)证明:x1+x2>a+1.例2.(2022•汕头一模)已知函数f(x)=x-ln x-a有两个相异零点x1,x2(x1<x2).(1)求a的取值范围;(2)求证:x1+x2<4a+23.例3.(海淀区校级月考)已知函数f(x)=(x-2)e x+a(x-1)2,a∈R.(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;(Ⅱ)若a≥0,求f(x)的零点个数;(Ⅲ)若f(x)有两个零点x1,x2,证明:x1+x2<2.例4.(2022•江门一模)已知函数f(x)=ln|x-1|-ax,a∈R是常数.(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程,并证明对任意a∈R,切线经过定点;(Ⅱ)证明:a<0时,设x1、x2是f(x)的两个零点,且x1+x2>2.题型二:极值点偏移:减法型例5.(2022•七星区校级月考)已知函数f(x)=x ln x-a2x2+1.(1)若f(x)在(0,+∞)上单调递减,求a的取值范围;(2)若f(x)在x=1处的切线斜率是12,证明f(x)有两个极值点x1x2,且3ln2<|ln x2-ln x1|<3.例6.(2022•常熟市月考)设函数f(x)=ln x,g(x)=a(x-1),其中a∈R.(1)若a=1,证明:当x>1时,f(x)<g(x);(2)设F(x)=f(x)-g(x)e x,且0<a<1e,其中e是自然对数的底数.①证明F(x)恰有两个零点;②设x0如为F(x)的极值点,x1为F(x)的零点,且x1>x0,证明:3x0-x1>2.例7.(2022•黄州区校级模拟)已知函数f(x)=ax ln x-(a+1)ln x,f(x)的导数为f (x).(1)当a>-1时,讨论f (x)的单调性;(2)设a>0,方程f(x)=3e-x有两个不同的零点x1,x2(x1<x2),求证:x1+e>x2+1e.例8.(2022•道里区校级二模)已知函数f(x)=mx ln x-(m+1)ln x,f (x)为函数f(x)的导数.(1)讨论函数f (x)的单调性;(2)若当m>0时,函数f(x)与g(x)=3e-x的图象有两个交点A(x1,y1),B(x2,y2)(x1<x2),求证:x2+1e<x1+e.题型三:极值点偏移:乘积型例9.(2021春•汕头校级月考)已知,函数f(x)=ln x-ax,其中a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个零点,(i)求a的取值范围;(ii)设f(x)的两个零点分别为x1,x2,证明:x1x2>e2.例10.(2022•攀枝花模拟)已知函数f(x)=ln x+bx-a(a∈R,b∈R)有最小值M,且M≥0.(Ⅰ)求e a-1-b+1的最大值;(Ⅱ)当e a-1-b+1取得最大值时,设F(b)=a-1b-m(m∈R),F(x)有两个零点为x1,x2(x1<x2),证明:x1⋅x22>e3.例11.(2022•张家口二模)已知函数f(x)=e x-a ln xx-a(e是自然对数的底数)有两个零点.(1)求实数a的取值范围;(2)若f(x)的两个零点分别为x1,x2,证明:x1x2>e2e x1+x2.例12.(2022•武进区校级月考)已知函数f (x )=ln x +12x 2-ax .(1)若函数f (x )在x =1处的切线与x 轴平行,求a 的值;(2)若存在t ∈[-1,1],使不等式f (x )≤tx -(a -1)ln x 对于x ∈[1,e ]恒成立,求a 的取值范围;(3)若方程f (x )=12x 2有两个不等的实数根x 1、x 2,试证明x 1x 2>e 2.题型四:极值点偏移:商型例13.已知函数f (x )=x -e x a (a >0)有两个相异零点x 1、x 2,且x 1<x 2,求证:x 1x 2<e a.例14.(2022•新疆模拟)已知函数f(x)=ln x-ax+12x2.(1)当a=52时,求f(x)的单调区间;(2)已知a≥433,x1,x2(x1>x2)为函数f(x)的两个极值点,求y=2(x1-x2)x1+x2-lnx1x2的最大值.例15..(2021春•湖北期末)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤(2e+1)⋅ln2e2e-1,求x2x1的最大值.例16.(2022•宁德三模)已知函数f(x)=ae-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性:(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.题型五:极值点偏移:平方型例17.(2022•广州一模)已知函数f(x)=x ln x-ax2+x(a∈R).(1)证明:曲线y=f(x)在点(1,f(1))处的切线l恒过定点;(2)若f(x)有两个零点x1,x2,且x2>2x1,证明:x21+x22>4e.例18.(2022•浙江开学)已知a∈R,f(x)=x⋅e-ax(其中e为自然对数的底数).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.例19.(2021秋•泉州月考)已知函数f(x)=ln x+1 ax.(1)讨论f(x)的单调性;(2)若(ex1)x2=(ex2)x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.例20.(2022•开封三模)已知函数f(x)=ln x mx2.(1)讨论f(x)的单调性;(2)若m=2,对于任意x1>x2>0,证明:(x21⋅f(x1)-x22⋅f(x2))⋅(x21+x22)>x1x2-x22.题型六:拐点偏移问题例21.已知函数f(x)=2ln x+x2+x.(1)求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若正实数x1,x2满足f(x1)+f(x2)=4,求证:x1+x2≥2.例22.已知函数f(x)=12a x2-1+1a2x+1a Inx(a∈R).(1)当a>0时,讨论函数f(x)的单调性;(2)当a=12时,设g(x)=f(x)+6x,若正实数x1,x2,满足g(x1)+g(x2)=4,求证:x1+x2≥2.例23.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【过关测试】1.(2022·天津河东·二模)已知函数f x =x2a-2ln x(a∈R且a≠0).(1)a=2,求函数f x 在2,f2处的切线方程.(2)讨论函数f x 的单调性;(3)若函数f x 有两个零点x1、x2x1<x2,且a=e2,证明:x1+x2>2e.2.(2022·河北·沧县中学高二阶段练习)已知函数f x =x+3x+2ln x-a a∈R有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)求证:x1x2>1.3.(2022·江苏泰州·模拟预测)已知函数f x =e x-ax2+bx-1,其中a,b为常数,e为自然对数底数,e =2.71828⋅⋅⋅.(1)当a=0时,若函数f x ≥0,求实数b的取值范围;(2)当b=2a时,若函数f x 有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a x1+x2>3x1x2;③x1-1+x2-1>2;请从①②③中任选一个进行证明.(注:如果选择多个条件分别解答,按第一个解答计分)4.(2022·湖北武汉·模拟预测)已知函数f x =x-ln x(1)求证:当x>1时,ln x>2x-1x+1;(2)当方程f x =m有两个不等实数根x1,x2时,求证:x1+x2>m+15.(2022·浙江绍兴·模拟预测)已知函数f x =e x-2x-a+1(其中ex-a+2,g x =x2+a-1≈2.71828是自然对数的底数)(1)试讨论函数f x 的零点个数;(2)当a>1时,设函数h x =f x -g x 的两个极值点为x1、x2且x1<x2,求证:e x2-e x1<4a+2.e x-k(x-1),x>-1,k∈R.6.(2022·安徽淮南·二模(理))已知函数f(x)=1-2x+1(1)若k=0,证明:x∈(-1,0)时,f(x)<-1;(2)若函数f(x)恰有三个零点x1,x2,x3,证明:x1+x2+x3>1.7.(2022·湖南·岳阳一中一模)已知函数f x =a ln x+2-x a∈R.(1)讨论f(x)的单调性和最值;(2)若关于x的方程e x=2m-1m ln mx+2(m>0)有两个不等的实数根x1,x2,求证:e x1+e x2>2 m.8.(2022·山东·青岛二中高三期末)已知函数f x =x1-a ln x,a∈R.(1)讨论f(x)的单调性;(2)若x∈0,12时,都有f x <1,求实数a的取值范围;(3)若有不相等的两个正实数x1,x2满足1+ln x21+ln x1=x2x1,证明:x1+x2<ex1x2.9.(2021·广东·新会陈经纶中学高三阶段练习)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a+1b.10.(2022·全国·高三专题练习)已知函数f x =-e x-ax2a∈R.(1)当a=0时,求曲线y=f x 在点1,f1处的切线方程;(2)当a>0时,若函数g x =xe x+f x ,求g x 的单调区间;(3)当a>0时,若函数h x =f x +2e x-ax恰有两个不同的极值点x1、x2,且x1<x2,求证:x1+x22<ln2a.11.(2022·全国·高三专题练习)已知函数f(x)=a-1-xe x(x>0)(e为自然对数的底数,a∈R).(1)求f(x)的单调区间和极值;(2)若存在x1≠x2,满足f x1=f x2,求证:x1+x2>4aa+2.12.(2022·全国·高三专题练习)已知函数f(x)=x-a-1x+a,a∈R.(1)若f(1)=2,求a的值;(2)若存在两个不相等的正实数x1,x2,满足f(x1)=f(x2),证明:①2<x1+x2<2a;②x2x1<a2+1.13.(2022·四川省泸县第二中学模拟预测(文))已知函数f(x)=x-x.e x(1)求f(x)的单调区间;(2)已知a,b∈R,且a≠b,若ae a+b+be a=ae b+be a+b,求证:a+b>0.。
2017届高三第一轮复习专题训练之极值点偏移问题什么是极值点偏移 我们知道二次函数f(x)的顶点就是极值点0x ,若f(x)=c 的两根的中点为221x x +,则刚好有221x x +=0x ,即极值点在两根的正中间,也就是极值点没有偏移;而函数x e x x g =)(的极值点0x =1刚好在两根的中点221xx +的左边,我们称之为极值点左偏.例1. 已知函数()x f x e x =-,其中 2.71828e =为自然对数的底数.证明:当12x x ≠,且12()()f x f x =时,120x x +<.解:()x f x e x =-的定义域为(,)-∞+∞,'()1x f x e =-,由'()10x f x e =-=,解得0x =.当x 变化时,',变化情况如下表:∵12x x ≠,且12()()f x f x =,则120x x <<(不妨设12x x <).设函数1()()()()2,0x x x x F x f x f x e x e x e x x e -=--=--+=--<.∴'1()2xxF x e e=+-.∵当0x <时,01x e <<,∴12x x e e+>.∴当0x <时,'()0F x >.∴函数()F x 在(,0)-∞上单调递增.∴()(0)0F x F <=,即当0x <时,()()f x f x <-.∵10x <,∴11()()f x f x <-.又12()()f x f x =,∴21()()f x f x <-.∵()f x 在(0,)+∞上单调递增,20x <,且10x <-,又21()()f x f x <-, ∴21x x <-.∴120x x +<反思:本题中极值点0a =,120x x +<即122.x x a +<有如下判断极值点偏移的定理:例2.解:运用判定定理判定极值点偏移的方法为:口诀为:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。
极值点偏移问题的两种常见解法之比较浅谈部分导数压轴题的解法在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔<;若函数()f x 在区间(,)a b 内单调递减,则对区间(,)a b 内的任意两个变量12x x 、,1212()()f x f x x x <⇔>. 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”?两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均数与算术平均数、(,)2a bL a b +≤≤,(此式记为对数平均不等式)下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ①ln ln a b a b -<-,ln ln a ba b--,只须证:ln a b <,1x =>,只须证:12ln ,1x x x x≤-> 设1()2ln ,1f x x x x x=-+>,则22221(1)()10x f x x x x -'=--=-<,所以()f x在(1,)+∞内单调递减,所以()(1)0f x f <=,即12ln x x x<-,ln ln a ba b --①再证:ln ln 2a b a ba b -+<- 要证:ln ln 2a b a ba b -+<-,只须证:1ln21a ab b a b-<+令1a x b =>,则只须证:1ln 12x x x -<+,只须证2ln 1112x x x -<>+,设2ln ()112xg x x =--+,1x >,则22221(1)()0(1)22(1)x g x x x x x --'=-=<++ 所以()g x 在区间(1,)+∞内单调递减,所以()g(1)0g x <=,即2ln 112xx -<+, 故ln ln 2a b a ba b -+<- 综上述,当0,0a b >>(,)2a bL a b +≤≤例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点.(Ⅰ)求a 的取值范围;(Ⅰ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(Ⅰ)函数()f x 的定义域为R ,当0a =时,()(2)0xf x x e =-=,得2x =,只有一个零点,不合题意; 当0a ≠时,()(1)[2]x f x x e a '=-+当0a >时,由()0f x '=得,1x =,由()0f x '>得,1x >,由()0f x '<得,1x <, 故,1x =是()f x 的极小值点,也是()f x 的最小值点,所以min ()(1)0f x f e ==-< 又(2)0f a =>,故在区间(1,2)内存在一个零点2x ,即212x << 由21lim (2)limlim 0,xx x x x x x x e e e--→-∞→-∞→-∞--===-又2(1)0a x ->,所以,()f x 在区间 (,1)-∞存在唯一零点1x ,即11x <, 故0a >时,()f x 存在两个零点;当0a <时,由()0f x '=得,1ln(2)x x a ==-或, 若ln(2)1a -=,即2ea =-时,()0f x '≥,故()f x 在R 上单调递增,与题意不符 若ln(2)1a ->,即02ea -<<时,易证()=(1)0f x f e =-<极大值故()f x 在R 上只有一 个零点,若ln(2)1a -<,即2ea <-时,易证()=(ln(2)f x f a -极大值2(ln (2)4ln(2)5)0a a a =---+<,故()f x 在R 上只有一个零点综上述,0a >(Ⅰ)解法一、根据函数的单调性证明 由(Ⅰ)知,0a >且1212x x <<<令2()()(2)(2),1xxh x f x f x x e xe x -=--=-+>,则2(1)2(1)(e 1)()x x x h x e ----'= 因为1x >,所以2(1)10,10x x e-->->,所以()0h x '>,所以()h x 在(1,)+∞内单调递增所以()(1)0h x h >=,即()(2)f x f x >-,所以22()(2)f x f x >-,所以12()(2)f x f x >-, 因为121,21x x <-<,()f x 在区间(,1)-∞内单调递减,所以122x x <-,即122x x +< 解法二、利用对数平均不等式证明由(Ⅰ)知,0a >,又(0)2f a =- 所以, 当02a <≤时,10x ≤且212x <<,故122x x +<当2a >时,12012x x <<<<,又因为12122212(2)(2)(1)(1)x x x e x e a x x --=-=--- 即12122212(2)(2)(1)(1)x x x e x e x x --=--所以111222ln(2)2ln(1)ln(2)2ln(1)x x x x x x -+--=-+--所以12122112ln(2)ln(2)2(ln(1)ln(1))(2)(2)x x x x x x x x -------=-=---所以1212121212ln(1)ln(1)(2)(2)412ln(2)ln(2)ln(2)ln(2)2x x x x x x x x x x ---------=<------所以1212122ln(1)ln(1)22ln(2)ln(2)x x x x x x +----<--- ①下面用反证法证明不等式①成立因为12012x x <<<<,所以12220x x ->->,所以12ln(2)ln(2)0x x ---> 假设122x x +≥,当122x x +=,1212122ln(1)ln(1)02=02ln(2)ln(2)x x x x x x +----=---且,与①矛盾; 当122x x +>时1212122ln(1)ln(1)02<02ln(2)ln(2)x x x x x x +---->---且,与①矛盾,故假设不成立 所以122x x +<例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+-(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0f x '<解:(Ⅰ)函数()f x 的定义域是(0,)+∞1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增 当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a, 由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性求解设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<< 由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增所以1()()0h x h a <=,即2()()f x f x a <- 因为1210x x a <<<,所以112()()f x f x a <-,所以212()()f x f x a <-又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数平均不等式求解设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x += 由(Ⅰ)知,当0a >时,max111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()022x x x x ax xf x f x x +++-+''==<+.例3 (2014年高考数学湖南卷文科第21题)已知函数21()1xx f x e x -=+(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1212()(),f x f x x x =≠时,求证:120x x +< 解:(Ⅰ)函数()f x 的定义域为R()f x '=2222222(1)2(1)1[(1)2](1)1(1)x x xx x x x x x e e e x x x -+-----++=+++ 由()0f x '=,得0x =,由()0f x '>,得函数的递增区间(,0)-∞,由()0f x '<,得函数的递减区间(0,)+∞,所以max ()(0)1f x f == (Ⅱ)解法一、利用函数的单调性求解令2211()()()11x xx x h x f x f x e e x x --+=--=-++ ,0x > 则22222(23)(23)()(1)x xx x e x x h x xx e -+-++'=-+令222()(23)(2+3),0xH x x x ex x x =-+-+>则22()2[(2)(1)],0xH x x x ex x '=-+-+>,则22()2[(23)1],0x H x x e x ''=+->由0x >得,()2(31)40H x ''>-=>,故()H x '在(0,)+∞内单调递增 故()(0)20H x H ''>=>,故()H x 在(0,)+∞内单调递增 故()(0)0H x H >=,故()0h x '<,故()h x 在(0,)+∞上单调递减 所以,()(0)0h x h <=由(1)及1212()(),f x f x x x =≠知,1201x x <<<,故222()()()0h x f x f x =--< 所以22()()f x f x <-,所以12()()f x f x <-,又()f x 在(,0)-∞上单调递增 所以,12x x <-,即120x x +< 解法二、利用对数平均不等式求解因为1x <时,()0f x >,1x >时,()0f x <,1212()(),f x f x x x =≠ 所以,1201x x <<<,121222121111x x x x e e x x --=++,所以,21111222121111x x x x e e x x ----=++ 所以,22121212ln(1)(1)ln(1)ln(1)(1)ln(1)x x x x x x -+--+=-+--+ 所以,22212112(1)(1)ln(1)ln(1)ln(1)ln(1)x x x x x x ---=---++-+所以,222112212121(1)(1)ln(1)ln(1)111ln(1)ln(1)ln(1)ln(1)2x x x x x x x x x x ---+-+-+-=+<------ 所以,22121212ln(1)ln(1)2ln(1)ln(1)x x x x x x ++-+<---① 因为1201x x <<<,所以12ln(1)ln(1)0x x ---> 下面用反证法证明120x x +<,假设120x x +≥当120x x +=时,22121212ln(1)ln(1)0,=02ln(1)ln(1)x x x x x x ++-+=---且,与不等式①矛盾当120x x +>时,210x x >->,所以120,2x x +>且221212ln(1)ln(1)0ln(1)ln(1)x x x x +-+<---,与不等式①矛盾.所以假设不成立,所以120x x +<例4 (2014年江苏省南通市二模第20题)设函数()(),xf x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)证明:0(()f f x ''<为函数()f x 的导函数); (Ⅲ)略.解:(Ⅰ)()xf x e a '=-,x R ∈,当0a ≤时,()0f x '>在R 上恒成立,不合题意 当0a >时,易知,ln x a =为函数()f x 的极值点,且是唯一极值点, 故,min ()(ln )(2ln )f x f a a a ==-当min ()0f x ≥,即20a e <≤时,()f x 至多有一个零点,不合题意,故舍去;当min ()0f x <,即2a e >时,由(1)0f e =>,且()f x 在(,ln )a -∞内单调递减,故()f x 在(1,ln )a 有且只有一个零点;由22(ln )2ln (12ln ),f a a a a a a a a =-+=+- 令212ln ,y a a a e =+->,则210y a'=->,故2212ln 1430a a e e +->+-=-> 所以2(ln )0f a >,即在(ln ,2ln )a a 有且只有一个零点. (Ⅱ)解法一、根据函数的单调性求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e => 所以121ln 2ln x a x a <<<<,要证0f '<,只须证a <ln a <122x x +<,故只须证122ln x x a +< 令2ln ()()(2ln )(2ln ),xa xh x f x f a x e ax a e a a x a -=--=-+-+--222ln xxe a eax a a -=--+,1ln x a <<则2()220x x h x e a e a a -'=+-≥=,所以()h x 在区间(1,ln )a 内递增 所以ln 2ln ()2ln 2ln 0aa h x ea e a a a a -<--+=,即()(2ln )f x f a x <-所以11()(2ln )f x f a x <-,所以21()(2ln )f x f a x <-因为21ln ,2ln ln x a a x a >->,且()f x 在区间(ln ,)a +∞内递增 所以212ln x a x <-,即122ln x x a +<,故0f '< 解法二、利用对数平均不等式求解由(Ⅰ)知,()f x 在(,ln )a -∞内递减,在(ln ,)a +∞内递增,且(1)0f e =>所以121ln 2ln x a x a <<<<,因为111()0xf x e ax a =-+=,222()0xf x e ax a =-+=121211x x e e a x x ==--,即12111211x x e e x x --=--,所以1212(1)(1)1ln(1)ln(1)x x x x ---=>---所以1212()0x x x x -+<,要证:0f '<,只须证a <ln a<11ln(1)x x <--22ln(1)x x <--所以1212ln(1)(1)x x x x <+---,所以121212ln(()1)x x x x x x -++<+-因为1212()0x x x x -+<,所以1212ln(()1)ln10x x x x -++<=,而120x x +->所以121212ln(()1)x x x x x x -++<+-f '<从以上四个例题可以看出,两种方法解决的问题相同,即若12,x x 是函数()f x 的两个零点,而0x x =是函数()f x 的极值点,证明1202x x x +<(或1202x x x +>),根据函数单调性求解的步骤是:一、构建函数0()()(2)h x f x f x x =--,二、判断函数()h x 的单调性,三、证明()0h x >(或()0h x <)即0()(2)f x f x x >-(或0()(2)f x f x x <-),四、故函数()f x 的单调性证1202x x x +<(或1202x x x +>).根据对数平均不等式求解的步骤是:一、通过等式两边同取自然对数或相减等配凑出1212ln ln x x x x --及,二、通过等式两边同除以12ln ln x x -构建对数平均数1212ln ln x x x x --,三、利用对数平均不等式将1212ln ln x x x x --转化为122x x +后再证明1202x x x +<(或1202x x x +>). 两种方法各有优劣,适用的题型也略有差异,考生若能灵活驾驭这两种方法,便能在考场上发挥自如,取得理想的成绩.。
高考数学玩转压轴题专题12极值点偏移问题利器极值点偏移判定定理极值点偏移问题利器——极值点偏移判定定理一、极值点偏移的判定定理对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,方程 $f(x)=0$ 的解分别为 $x_1$、$x_2$,且 $a<x_1<x_2<b$,则:1)若 $f(x_1)<f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏;2)若 $f(x_1)>f(2x-x_2)$,则极(小)大值点 $x$ 右(左)偏。
证明:1)因为对于可导函数 $y=f(x)$,在区间 $(a,b)$ 上只有一个极大(小)值点 $x$,则函数 $f(x)$ 的单调递增(减)区间为 $(a,x)$,单调递减(增)区间为 $(x,b)$。
由于 $x_1)2x-x_2$,$a)2x$,即函数 $y=f(x)$ 在区间 $(x_1,x_2)$ 上$2x_1+x_2)x$,即函数 $y=f(x)$ 的极(小)大值点 $x$ 右(左)偏。
2)证明略。
二、运用判定定理判定极值点偏移的方法1、方法概述:1)求出函数 $f(x)$ 的极值点 $x$;2)构造一元差函数 $F(x)=f(x+x)-f(x-x)$;3)确定函数 $F(x)$ 的单调性;4)结合 $F(x)=0$,判断 $F(x)$ 的符号,从而确定$f(x+x)$、$f(x-x)$ 的大小关系。
口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。
2、抽象模型答题模板:若已知函数 $f(x)$ 满足 $f(x_1)=f(x_2)$,$x$ 为函数 $f(x)$ 的极值点,求证:$x_1+x_2<2x$。
1)讨论函数$f(x)$ 的单调性并求出$f(x)$ 的极值点$x$;假设此处 $f(x)$ 在 $(-\infty,x)$ 上单调递减,在$(x,+\infty)$ 上单调递增。
极值点偏移问题的三种解法在高考和模考中,极值点偏移问题都是一个热点问题.这类试题设问新颖多变,难度较大,综合性强,能较好考查学生的逻辑推理能力、数据处理能力、转化与化归思想、函数与方程思想等,往往作为压轴题出现.对于这类问题,学生通常会望而却步,甚至不敢解、不想解.笔者通过对极值点偏移问题的探究,总结出解决这类问题三种方法,希望可以帮助学生克服畏难心理,迎难而上.下面通过典型试题介绍这类问题的三种求解策略.一、构造法构造法是解决极值点偏移问题最基本的方法.对函数y=f(x),要考虑它在极值点x附近偏移问题,可以通过构造并判断函数F(x)=f(x0+x)-f(x-x)在x>0时的符号,确定x>0时f(x0+x)与f(x-x)的大小关系;再将x=x0-x1>0代入上式,结合f(x1)=f(x2),得到f(2x-x1)与f(x2)的大小关系;最后结合函数f(x)的单调性解决问题.例1设函数f(x)=e x-ax+a(a∈R),其图象与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f'(x1x槡2)<0.分析对问题(2),要证f'(x1x槡2)<0,只要证e x1x槡2<a,因为x1x槡2<x1+x22,所以只要证e x1+x22<a.解(1)a>e2(过程略).(2)令f'(x)=e x-a=0,可得极值点x0 =ln a,且f(x)在(-ɕ,ln a)单调减,在(ln a,+ɕ)单调增,从而x1<ln a<x2.构造F(x)=f(ln a+x)-f(ln a-x),x >0,则F'(x)=a e x+1e()x-2a≥0,F(x)在(0,+ɕ)单调增,所以F(x)>F(0)=0,即f(ln a+x)>f(ln a-x)(x>0).令x=ln a-x1>0,则f(2ln a-x1)>f(x1);又f(x1)=f(x2),所以f(2ln a-x1)>f(x2).而x2、2ln a-x1都位于x=ln a的右侧,且f(x)在(ln a,+ɕ)单调增,故x2<2ln a-x1,即ex1+x22<a,因此e x1x槡2<a,即f'(x1x槡2)<0.得证.二、利用对称性例2(2010年天津高考题)已知函数f(x)=x e-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知y=g(x)的图象与y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解(1)f(x)在(-ɕ,1)内单调增,在=e t2t-e t2+e-t()2e t-1,其中e t-1>0,e t2>0.令h(t)=t-e t2+e-t2,则h'(t)=1-12e t2+e-t()2≤0,h(t)在(0,+ɕ)单调减,且h(0)=0,所以h(t)<0在(0,+ɕ)内恒成立,得f'x1+x2()2<0.得证.解决极值点偏移的方法有很多,以上三种方法各有优劣,不同题目使用三种方法的繁简程度不一样,我们应该根据题目的实际情况,择优选择.(1,+ɕ)内单调减;极大值f(1)=1e(过程略).(2)略.(3)由(1)可知,f(x)在(-ɕ,1)单调增,在(1,+ɕ)单调减,极值点为x=1,极大值f(1)=1e.不妨设0<x1<1<x2.记图1中虚线部分的解析式为g(x)=f(2-x),由(2)可知在(1,+ɕ)内f(x)>g(x)恒成立,故f(x2)>g(x2).又f(x1)=f(x2),则f(x1)>g(x2)=f(2-x2),此时x1和2-x2都在x=1的左侧,结合f(x)在(-ɕ,1)单调增,得2-x2<x1,即x 1+x2>2,即证.评注作单极值点函数位于极值点左边(或右边)的图象关于极值点所在直线x=x的对称图形,利用所得对称图形(如图1中虚线部分)完全在原图象同侧的下方(或上方).由此可以直观地发现原图象在x左右两侧的增减速度不同,这正是函数极值点发生偏移的原因.因此,对本题第(3)问,通过构作对称图形,利用第(2)问的结论,并结合f(x1)=f(x2)得到了f(x1)与f(2-x2)的大小关系,最后由单调性解决问题.三、增量法增量法是根据题设中f(x1)=f(x2)的条件列出两个方程,然后从这两个方程出发消去参数,同时将所证不等式转化为只含有x1、x 2的不等式,再通过令x2x1=t(比值增量法)或x 2-x1=t(差值增量法)的代换方法,将含二元变量x1、x2的不等式问题转化为一元变量t的不等式问题,最后构造关于t的函数,以导数为工具证明.1.构造比值增量函数例3(2011年辽宁高考题)已知函数f(x)=ln x-ax2+(2-a)x.设y=f(x)的图象与x轴交于A、B两点,线段AB的中点横坐标为x0,证明f'(x)<0.证明设A(x1,0)、B(x2,0),不妨设0<x1<x2,则x=x1+x22.由f'(x)=1x-2ax+2-a,得f'(x)=f'x1+x2()2=2x1+x2-a(x1+x2)+2-a.由点A、B在函数y=f(x)的图象上,所以ln x1-ax21+(2-a)x1=0,ln x2-ax22+(2-a)x2=0,两式相减,得ln x2-ln x1x2-x1-a(x2+x1)+(2-a)=0.将结果代入f'(x)表达式,得f'(x)=2x1+x2-ln x2-ln x1x2-x1.令x2x1=t(t>1),则f'(x)=2x1+tx1-ln ttx1-x1=1x1(t-1)2(t-1)t+1-ln[]t,其中1x1(t-1)>0.令h(t)=2(t-1)t+1-ln t(t>1),则h'(t)=-(t-1)2t(t+1)2<0,h(x)在(1,+ɕ)单调减,故h(t)<h(1)=0,即h(t)<0在(1,+ɕ)内恒成立,所以f'(x)<0.得证.2.构造差值增量函数例4已知函数f(x)=a e x(-x+b a、b∈R)有两个不同的零点x1、x2,对任意a∈(0,+ɕ),b∈R,证明:f'x1+x2()2<0.证明不妨设x1<x2.因为x1、x2是f(x)的两个不同的零点,所以a e x1-x1+b=0,a e x2-x2+b=0,两式相减,得a=x2-x1e x2-e x1.因为f'(x)=a e x-1,所以f'x1+x2()2=x2-x1e x2-e x1ex2+x12-1.令x2-x1=t>0,则f'x1+x2()2=te x1+t-e x1e2x1+t2-1。
㊀㊀解题技巧与方法㊀㊀116㊀一道极值点偏移问题的六种证法及背景分析一道极值点偏移问题的六种证法及背景分析Һ李海兰㊀(重庆市潼南中学校,重庆㊀402660)㊀㊀ʌ摘要ɔ文章对一道极值点偏移问题从构造对称差函数㊁比值代换㊁对称化构造函数㊁切线放缩㊁同构放缩等视角给出该题的六种证明,并分析了试题背景,且对试题背景作了高中生容易理解的㊁通俗的解释,以期为一线教师提供分析㊁理解㊁解决极值点偏移问题的思路与方法.ʌ关键词ɔ高考题;导数;极值点偏移;不等式证明;背景分析对经典问题进行多解探究㊁深度研究和背景分析,是一线教师应该做的工作.极值点偏移问题是最近几年高考和模拟考试中经常出现的题型,一线教师应该熟悉极值点偏移问题的处理方法与解题策略.一㊁极值点偏移问题例㊀已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1a+1b<e.二㊁六种证法(1)问,f(x)的单调增区间为(0,1),单调减区间为(1,+ɕ).过程略.(2)问,由(1)知f(x)在(0,1]上单调递增且limxң0f(x)=0,在(1,+ɕ)上单调递减且f(e)=0,f(x)ɤf(1)=1.图1证法1㊀构造对称差函数由blna-alnb=a-b,得1alna-1blnb=1b-1a,即1a1-ln1aæèçöø÷=1b(1-ln1b).即f1aæèçöø÷=f1bæèçöø÷,函数f(x)的图像如图1所示.令1a=x1,1b=x2,不妨设x2>x1,则有f(x1)=f(x2),且0<x1<1<x2<e.先证2<x1+x2,即证2-x1<x2.因为2-x1>1,x2>1,而f(x)在(1,+ɕ)上单调递减,故有2-x1<x2⇔f(2-x1)>f(x2)=f(x1).令g(x)=f(2-x)-f(x)(0<x<1),则gᶄ(x)=ln(2-x)x<ln1=0,所以g(x)在(0,1)上单调递减,得g(x)>g(1)=0,即f(2-x1)>f(x1)=f(x2).所以2<x1+x2.再证x1+x2<e.若x2ɤe-1,由0<x1<1,显然有x1+x2<1+x2ɤe.设x2>e-1,则e-1<x2<e.要证x1+x2<e,即证e-x2>x1.因为0<e-x2<e-(e-1)=1,0<x1<1,由f(x)在(0,1)上单调递增,因此e-x2>x1⇔f(e-x2)>f(x1)=f(x2).令h(x)=f(e-x)-f(x)(e-1<x<e),则hᶄ(x)=ln(e-x)x.因为e-1>e2>1,所以y=(e-x)x在(e-1,e)上单调递减,故hᶄ(x)=ln(e-x)x在(e-1,e)上单调递减.令hᶄ(x0)=0,即x20-ex0+1=0,解得x0=e+e2-42,因此h(x)在(e-1,x0)上单调递增,在(x0,e)上单调递减.又因为h(e-1)=f(1)-f(e-1)>0,limxңeh(e)=limxңef(0)-limxңef(e)=0-0=0,所以当xɪ(e-1,e)时,h(x)>0,即f(e-x2)>f(x2)=f(x1).所以x1+x2<e.点评㊀等价转化是处理导数问题的常见方法,其㊀㊀㊀解题技巧与方法117㊀㊀中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.这也是破解极值点偏移问题的通法,根据f(x)在(1,+ɕ)上单调递减且f(x1)=f(x2),知x1+x2>2⇔2-x1<x2⇔f(2-x1)>f(x2)=f(x1).再据此构造对称差函数g(x)=f(2-x)-f(x)(0<x<1),只需证明g(x)在(0,1)上单调递减即可.对于x1+x2<e,类似地,需要构造函数h(x)=f(e-x)-f(x)(e-1<x<e).证法2㊀等价转化是常见的数学思想,构造对称差函数是处理极值点偏移问题的基本方法.证明2<x1+x2同证法1.下面证明x1+x2<e.因为x1ɪ(0,1),x2ɪ(1,e),所以x1(1-lnx1)=x2(1-lnx2)>x1,故要证x1+x2<e,知需证x2(1-lnx2)+x2<e.令h(x)=x(1-lnx)+x,xɪ(1,e),则hᶄ(x)=1-lnx>0,故h(x)在(1,e)单调递增,所以h(x)<h(e)=e.故h(x2)<e,所以x1+x2<e.综上,2<1a+1b<e.点评㊀直接构造对称差函数证明x1+x2<e,是容易想到的,但证明过程有一定的难度.证法2巧妙利用x2(1-lnx2)>x1进行放缩,故只需x2(1-lnx2)<e,从而可通过构造函数h(x)=x(1-lnx)+x,xɪ(1,e)来实现.证法3㊀比值代换证明㊀2<x1+x2同方法1,下面证明x1+x2<e.不妨设x2=tx1,则t=x2x1>1,由x1(1-lnx1)=x2(1-lnx2),得x1(1-lnx1)=tx1[1-ln(tx1)],即lnx1=1-tlntt-1.要证x1+x2<e,只需证(1+t)x1<e,两边取对数得ln(1+t)+lnx1<1,即ln(1+t)+1-tlntt-1<1,即证ln(1+t)t<lntt-1.记g(s)=ln(1+s)s,sɪ(0,+ɕ),则gᶄ(s)=s1+s-ln(1+s)s2.记h(s)=s1+s-ln(1+s),则hᶄ(s)=1(1+s)2-11+s<0,所以h(s)在(0,+ɕ)单调递减.h(s)<h(0)=0,则gᶄ(s)<0,所以g(s)在(0,+ɕ)单调递减.由tɪ(1,+ɕ),得t-1ɪ(0,+ɕ),所以g(t)<g(t-1),即ln(1+t)t<lntt-1.点评㊀比值代换是一种将双变量问题化为单变量问题的有效途径.比值代换后,再构造函数,利用函数的单调性证明.证法4㊀对称化构造函数由blna-alnb=a-b,得1alna-1blnb=1b-1a,即1a1-ln1aæèçöø÷=1b1-ln1bæèçöø÷.令1a=x1,1b=x2,不妨设x2>x1,则有f(x1)=f(x2),且0<x1<1<x2<e.因此x1+x2>2⇔(x1+x2)(x2-x1)>2(x2-x1)⇔x22-x21>2x2-2x1⇔x22-2x2>x21-2x1⇔x2(1-lnx2)+12(x22-2x2)>x1(1-lnx1)+12(x21-2x1).令g(x)=x(1-lnx)+12x2-2x(),xɪ(0,e),则gᶄ(x)=x-1-lnxȡ0,当且仅当x=1时取等号.所以g(x)在(0,e)上单调递增,所以g(x2)>g(x1),故x1+x2>2.x1+x2<e⇔(x1+x2)(x2-x1)<e(x2-x1)⇔x22-ex2<x21-ex1⇔x2x1>x1-ex2-e⇔1-lnx11-lnx2>x1-ex2-e⇔1-lnx1x1-e<1-lnx2x2-e.令m(x)=1-lnxx-e,xɪ(0,e),则mᶄ(x)=-2+ex+lnx(x-e)2,令μ(x)=-2+ex+lnx,则μᶄ(x)=1x-ex2=x-ex2<0,所以μ(x)在(0,e)上单调递减,得μ(x)>μ(e)=0,所以mᶄ(x)>0,即m(x)在(0,e)上单调递增,因此1-1x1x1-e<1-lnx2x2-e,即x1+x2<e.点评㊀根据f(x1)=f(x2),可构造函数g(x)=x(1-lnx)+m(x2-2x)(m>0),需满足g(x)在(0,e)上单调递增,即gᶄ(x)=2m(x-1)-lnx>0,由x-1>lnx知㊀㊀解题技巧与方法㊀㊀118㊀m=12,故g(x)=x(1-lnx)+12(x2-2x).证法5㊀切线放缩1a+1b>2的证明同方法1.下面证明1a+1b<e.由blna-alnb=a-b,得1alna-1blnb=1b-1a,即1a1-ln1aæèçöø÷=1b1-ln1bæèçöø÷.令1a=x1,1b=x2,不妨设x2>x1,则有f(x1)=f(x2),且0<x1<1<x2<e.因f(x)在(e,0)处的切线方程为φ(x)=e-x,令G(x)=f(x)-φ(x)=2x-xlnx-e,xɪ(0,e).则Gᶄ(x)=1-lnx>0,所以G(x)在(0,e)上单调递增,故G(x)<G(e)=0,即f(x)<φ(x).令k=f(x1)=f(x2),则k=f(x2)<φ(x2)=e-x2,即k+x2<e.又k=f(x1)=x1(1-lnx1)>x1,所以x1+x2<k+x2<e.点评㊀通过构造函数,利用切线放缩,很巧妙地化简了运算.证法6㊀ 同构 放缩1a+1b>2的证明同方法1.下面证明1a+1b<e.由blna-alnb=a-b,得1alna-1blnb=1b-1a.即1a1-ln1aæèçöø÷=1b1-ln1bæèçöø÷,从而f1aæèçöø÷=f1bæèçöø÷,不妨设0<1a<1<1b<e.注意到,对∀x>0,都有lnxɤx-1,当且仅当x=1时等号成立,由于eb>1,所以1a+lnaa=1+lnaa=1+lnbb=ln(eb)b<eb-1b=e-1b,故1a+1b+lnaa<e.又lnaa>0,所以1a+1b<e.点评该方法渗透了 同构思想 ,技巧性较强.三㊁背景分析第(2)问是经典的极值点偏移问题.解题的关键是通过等价转化,得到f1aæèçöø÷=f1bæèçöø÷,然后做出f(x)的图像.当xң+ɕ时,f(x)ң-ɕ;当xң0+时,f(x)有没有极限值呢?这是决定函数f(x)图像在x=0邻域内情况的关键.当xң0+时,1-lnxң+ɕ,x(1-lnx)ң?有的老师用limxң0x(1-lnx)=limxң01-lnx1x=limxң0(1-lnx)ᶄ1xæèçöø÷ᶄ=limxң0-1x-1x2=limxң0x=0,给学生解释,这是中学教材不讲的洛必达法则,用于求00 或 ɕɕ型极限的.结论limxң0x(1-lnx)=0虽然正确,但是不适于中学生接受.可以这样解释:如图2为曲线y=lnx的图像,直线y=k(x-1)(k>1)是曲线y=lnx的割线,设直线与曲线的另一个交点的横坐标为x0,由图2可知,当x0<x<1时,有lnx>k(x-1)(k>1),所以xlnx>kx(x-1),因此0>xlnx>kx(x-1).取k足够大,则x0ң0,所以当xңx0时,有kx(x-1)ң0,所以xlnxң0,故x(1-lnx)=x-xlnxң0.图2结㊀语极值点偏移问题是高考的一个难点,而且在最近五年的高考试题中经常出现,一线教师理应引起重视,并深入探究极值点偏移问题.一线教师要在不断的探索与研究中提升专业能力,这样才能适应新高考带来的变革与挑战,才能更好地做好教学工作.ʌ参考文献ɔ[1]胡贵平.2021年全国新高考Ⅰ卷导数题的几种解法[J].理科考试研究,2021,28(19):2-4.[2]李鸿昌.一道新高考导数压轴题的解法探究[J].高中数学教与学,2021(15):22-23.[3]李鸿昌,徐章韬.关于对数平均的一个不等式的推广[J].数学通报,2023,62(08):50-52.。