2014高等数学(二)A卷
- 格式:pdf
- 大小:198.43 KB
- 文档页数:3
……………………………… 密 ……………………………… 封 ………………………………… 线 ………………………………安 徽 工 业 大 学 工 商 学 院 试 题 纸(一)2007 ~ 2008学年第二学期期末考试《 高等数学A2》试卷(A 卷)一、选择题(共4分×6)(将结果填入下表中: ) 1、函数),(y x f z =在),(y x 点有偏导数是它在该点连续的( ).(A)充分而非必要条件; (B )必要而非充分条件;(C)充分必要条件; (D )既非充分又非必要条件.2、设),2ln(),(xy x y x f += 则=)0,1(y f ( ).(A) 21-; (B)21; (C) 0; (D) 1.3、函数3121x cx y -=(c 为任意常数)是微分方程222x dxy d -=的( ).(A)解,但既非通解又非特解; (B)通解;(C)特解; (D)不是解.4、函数y x xy y x z 84222-+++-=的驻点是( ). (A )(-1,3); (B )(3,-1); (C )(3, 1); (D )(-1,-3).5、二阶线性非齐次方程xe x y y y )1(2-=+'-''的特解形式是( ).(A)x e b ax )(+; (B )xe bx ax )(2+; (C)xe bx ax )(23+; (D )xe bx ax )(3+.6、设级数∑∞=1)1(!3n nn nn 与级数∑∞=1)2(!2n nnnn , 则成立( ).(A)级数(1)、(2)均收敛; (B)级数(1)、(2)均发散.; (C)级数(1)收敛, 级数(2)发散; (D)级数(1)发散, 级数(2)收敛二、填空题(共4分×6)1、设),(v u f 有连续偏导数,且),(yxe ef z =, 则=dz __________________.2、级数∑∞=+1623n nnn 的和是__________.3、)(x f 在某区域内有连续导数, 若积分⎰+Ly dy x f xdx e ])([2与路径无关, 则.____________________)(=x f4、设一个二阶常系数线性齐次微分方程的特征方程有两个特征根,为-2和3,则此微分方程是________________________, 其通解为___________________________.5、设Ω是由光滑闭曲面∑围成的空间区域,其体积是V , 则沿∑内侧的曲面积分⎰⎰∑=-+-+-.______________)2()3()(dxdy y z dzdx x y dydz z x6、设平面上力j xy i y F 32+-=, 在力F 的作用下, 质点沿曲线L 运动, 则力F 所做的功用曲线积分表示为__________________________.三、解答题(共47分) 1、[5分]求曲面1232=+z xy 在点(1,-2,2)处的切平面与法线方程.2、[5分]计算积分: ⎰⎰ππydx xx dy sin 0.3、[5分]求微分方程满足初始条件的特解: ⎪⎩⎪⎨⎧==+1)0(y ey dx dy x .高数试卷A2(A 卷)(第1页)……………………………… 密……………………………… 封 ………………………………… 线 ………………………………安 徽 工 业 大 学 工 商 学 院 试 题 纸(二)4、[5分]用重积分算出半球体0,2222≥≤++z a z y x 的体积V .(用其它方法不给分)5、[5分]),(v u f 可微, 且32),(x x x f =, 422),(x x x x f u -=,求 ),(2x x f v .6、 [5分]设L 是圆周x y x 222=+的正向曲线,计算第二类曲线积分dy y xydx y x x I L⎰-+-=)()(3223. (注:163cossin204204πππ⎰⎰==xdx xdx )7、[6分]求幂级数∑∞=-1)3(n nnx 的收敛域(含端点讨论).8、[6分]求幂级数∑∞=-11n n nx 在(-1,1)上的和函数.9、[5分]设222),,(z y x z y x f ++= ,求函数在点M (1,1,0)沿方向)1,2,1(=l的方向导数lf ∂∂.四、[5分]计算二重积分:,)1ln(2dxdy y y x I D⎰⎰++=其中D 由x y 3-=,24x y -=,x = 1 所围成的闭区域.五、附加题 [6分]设微分分方程0)4(32='++''y ey y(1)若把x 看成未知函数,y 看成自变量,则方程化成什么形式; (2)求此方程的通解.高数试卷A2(A 卷)(第2页)。
高等数学A(下册)期末考试试题大题 一 二 三 四 五 六 七 小题1 234 5得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r .2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.四、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.五、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.六、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]t F t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 3()lim t F t t +→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
⾼等数学A(⼆)期末复习题⾼等数学A (⼆)期末复习题⼀、填空题1、设(1,2,1),(2,3,1)a b =-=r r ,则a br r .2、过点()3,4,1-且与直线5123--==-z y x 平⾏的直线⽅程为。
3、⽅程b az y x =+-2224,当0=a ,2=b ;4-=a ,2-=b ;0=a ,0=b 时依次表⽰的曲⾯是,,。
4、曲线222212z x y z x y ì?=+?í?=--??在xoy ⾯内的投影曲线的⽅程是。
5、设22y xy x u +-=,()1,10P ,()=0P u grad , du = 。
6、设,3ln sin 2=-z y y x 则=??xz ,=??y z 。
7、交换积分次序 ()1,dxf x y dy -=蝌。
8、=--??≤+dxdy y x y x 122221 。
9、设D 是xoy 平⾯内的⼀块密度为()y x ,µ的薄板,质量M = 。
10、()=++?ydy e dx my y ex L其中L 为沿上半圆周()0222>=+a ax y x 从点()0,2a A 到点()0,0O 的⼀段弧。
⼆、选择题1、直线37423zy x =-+=-+与平⾯3224=--z y x 的关系是()(A )平⾏,但直线不在平⾯上(B )直线在平⾯上(C )垂直相交(D )相交但不垂直 2、下列曲⾯中是旋转抛物⾯的是()(A )0422=-+z y x(B )04222=-+z y x (C )042222=-+z y x(D )04222=-+z y x3、()xyz f u =,f 可微,则=??xu ()(A )dx df (B )()xyz f ' (C )()xyz f yz ' (D )dxdf yz 4、设22z xy u -=,u 在点()1,1,2-处的⽅向导数的最⼤值为()(A )62 (B )4 (C )()1,1,2-u grad (D )6 5、设4:22≤+y x D ,f 在D 上连续,则()=+??dxdy y x f D22()(A )()ρρρπ?d f 22 (B )()ρρρπ?ρρπd f 2022 (D )()ρρρπ?d f 146、⽤格林公式计算()dy xy dx y x c22+-?,其中:c 沿圆222R y x =+逆时针⽅向绕⼀周,则得()(A )24203R d d R π-=ρρθ-π(B )??=D dxdy 00 (C )2)(422R dxdy y x D π=+?? (D )3232R d d D π=θρρ??7、若级数()nn n x a 20-∑∞=在2-=x 处收敛,则此级数在5=x 处()(A )必发散(B )必条件收敛(C )必绝对收敛(D )敛散性不能确定第⼋章:向量代数与空间解析⼏何1、求过点A (0,1,2)且与直线L :21111zy x =--=-垂直相交的直线⽅程。
《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
2013—2014学年第一学期《高等数学I 、II 》考试试卷(A 卷)一、填空题(每小题3分,共48分)1. 2()ln(1)f x x =-, 已知 000()(2)3lim2h f x f x h h →--=, =0x 13- .2. 2sin 10()0ax x e x f x x a x ⎧+-≠⎪=⎨⎪=⎩在0x =处连续,则a = 1- . 3. 函数32()391f x x x x =--+的既递减又上凸的区间是 (1,1)- .4. 21tx t y e ⎧=+⎨=⎩,则22d d y x 4t t. 5. 设)(x f 在0=x 点处连续,且0()lim12x f x x→=,那么(0)f '= 2 6. 222||2x x dx x -++⎰ ln3 .7.x y dye dx+=的通解为 y x e e c --=+ 8. 设3(1)f x x +=,则(1)f x '-= 23(2)x - .9. 方程2610y e xy x ++-=确定隐函数()y y x =,则(0)y '= 0 。
10. 若函数)(x f 具有二阶连续导数,,0)()(21='='x f x f ),(0)( 21x f x f ''<<''则12(),().f x f x 的大小关系为 ).()(21x f x f >11. 变上限函数⎰21sin x tdt 的导数等于 2sin 2x x12. 设x ,x e ,x e -是二阶非齐次线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,则该方程的通解为x x e C x e C y x x +-+-=-)()(21。
得 分13. 广义积分21(ln )edx x x +∞⎰= 1 。
14. 微分方程052=+'-''y y y 的通解为12(cos 2sin 2)x y e c x c x =+ 15. ⎰⎰'+=dx x f x c x dx x f )( ,sin )(2 2sin 2sin x x x C -+ .16. 函数x e x f -=)(的四阶麦克劳林公式是)(!!!443243211x o xx x x ++-+-二、计算题(满分24分,每小题6分)17.求020()lim (0,0)ln(1)xt t xx a b dt a b t dt→->>+⎰⎰)(b a ≠原式=-+→limln()x x x a b x 0212 3分=-+→lim ln ln x x x a a b b x 0412=14lna b 3分18、求曲线xex y 12-+=)(的渐近线。
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
机 密★启用前大连理工大学网络教育学院2014年8月份《高等数学》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。
学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、设⎩⎨⎧>≤-=1,1,2)(2x a x x x f 在1=x 处连续,则=a ( )A 、-2B 、-1C 、1D 、22、设1)1)(2()(-++=x x x x f ,则)(x f 的间断点x 为( )A 、1B 、0C 、-1D 、-23、=→2lim x x e( )A 、0B 、1C 、eD 、2e4、当0→x 时,下列( )为无穷小量。
A 、xe B 、x sin C 、x xsin D 、x1sin5、下列函数在指定区间上满足罗尔定理条件的是( )A 、]0,2[,1)(-∈=x xx f B 、]4,2[,)4()(2-∈-=x x x f C 、]2,23[,sin )(ππ-∈=x x x fD 、]1,1[|,|)(-∈=x x x f6、函数x x y 33-=的单调递减区间为( ) A 、]1,(--∞B 、]1,1[-C 、),1[+∞D 、),(+∞-∞7、设)(x f 在点0x 处取得极值,则( ) A 、)(x f '不存在或0)(0='x f B 、)(x f '必定不存在C 、)(x f '必定存在且0)(0='x fD 、)(x f '必定存在,不一定为零8、设函数y x z 2=,则=∂∂∂yx z2( )A 、y x +B 、xC 、yD 、x 29、二次积分⎰⎰-xdy y x f dx 1010),(等于( )A 、⎰⎰-ydx y x f dy1010),(B 、⎰⎰-xdx y x f dy 101),(C 、⎰⎰-110),(dx y x f dy xD 、⎰⎰11),(dx y x f dy10、行列式=-110301021( )A 、0B 、-1C 、1D 、5二、填空题(本大题共10小题,每小题3分,共30分)1、设2sin lim0=→kxxx ,则=k 。
高数ⅱa卷答案 Prepared on 22 November 2020广东海洋大学2014—2015学年第二学期《高等数学Ⅱ》课程试题参考答案(A 卷)一、填空题(每空3分,共21分)1.若)()(x g x f 是的一个原函数,则⎰=dx x g )(C x f +)( . 2.=⎰x x dt t dx d sin 22cos 42cos 2)cos(sin cos x x x x -⋅ . 3.已知⎰+=C x F dx x f )()(,则=--⎰dx e f e x x )(C e F x +--)( 4.设x x f sin )(=时,则='⎰dx x x f )ln (C x +)sin(ln 5.设是连续的奇函数,)(x f 则=⎰-dx x f l l )( 0 6.改变二次积分的积分次序,⎰⎰=100),(y dx y x f dy ⎰⎰101),(x dy y x f dx 7. 方程032=-'-''y y y 的通解是x x e c e c y -+=231二、计算下列积分(每小题6分,共36分)1. 解:C x x x d xdx x x +==⎰⎰ln ln )(ln ln 1ln 1 …………(6分) 2. 解:C x x x x x x dx +-+-=--+-=-+⎰⎰)21(ln 31)211131)2)(1(( (或 C x x ++-=)12(ln 31) …………(6分) 3. 解: dx x e e x e d x xdx e x x x x ⎰⎰⎰----+-=-=cos sin )(sin sin …(3分)= )(cos sin x x e d x e x --⎰-- ………(4分)=xdx e e x x x x x sin cos sin ⎰------e ………(5分)所以,C x x e xdx e x x ++-=--⎰)cos (sin 21sin ………(6分) 4. 解: dt t dx t x t x 2333,22=-==+,则令 ……(1分)C x x x C t t t dt t t t dt t x dx +++++-+=+++-=++-=+=++⎰⎰⎰3332222321ln 323)1(231ln 332311131321)(……(6分)5. 解:2sin sin cos cos cos 2220200=-=-=⎰⎰⎰πππππππx x xdx dx x dx x (6分)6. 解:1sin 2sin 2cos 20)cos sin (1010112==+=+⎰⎰-x dx x dx x x x …(6分) 三、计算下列各题(每小题5分,共15分).1.xy e z xy sin +=,求yz x z ∂∂∂∂,. 解:xy y ye xz xy cos +=∂∂ …………(3分) cos xy z xe x xy y∂=+∂ …………(5分) 2.)2ln(y x z +=,求 22xz ∂∂和y x z ∂∂∂2. 解:2221y x y y z y x x z +=∂∂+=∂∂, …………(2分)2222222(2(1),)y x y y x z y x x z +-=∂∂∂+-=∂∂ …………(5分) 3. )643ln(z y x u -+=,求du . 解:dz z y x dy z y x dx z y x du 643664346433-+-+-++-+=…(5分)四、计算重积分(每小题5分,共10分).1. ⎰⎰-+Ddxdy x y x )(22,其中D 是由直线2=x 、x y =及x y 2=所围成的区域.解:原式=⎰⎰-+x x dy x y x dx 22220)( ………(3分) =dx x x )310(2320-⎰ ………(4分) =332 ………(5分) 2. dxdy y x D⎰⎰+22sin ,其中}4),({2222ππ≤+≤=y x y x D .解:原式 =220sin d r r dr πππθ⎰⎰ ………(3分)= -26π ………(5分)五、求解微分方程(8分). 解:3)1()(12)(+=+-=x x q x x p , ………(2分) 利用公式法,得所求微分方程的通解为:])1([12312C dx e x e y dx x dx x +⎰+⎰=+-+⎰ ………(6分))21()1(22C x x x +++= ………(8分) 六、三个正数之和为21,问三个数为何值时才使三者之积最大(10分)解:设三个正数分别为z y x ,,,依题意得:xyz u =,满足21=++z y x设)21(),,(-+++=z y x xyz z y x L λ ………(4分)因为⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=02100L 0z y x L xy L xz yz L z y x λλλλ 得7===z y x ………(9分)由于只有一个驻点,所以当7===z y x 时,三者之积u 最大。
阜阳师范学院
2013
——
2014 学年度第二学期考试卷(A 卷)
物理与电子
科学
学院物电2013级各专业专业高等数学(二) 课程,共 3 页, 第1页,共印刷380份,2014年6月27日8:00—9:40 考试,任课教师 张开银等拟题 理论物理教研室
题 号 一 二 三 四 五 六 七 八 九 十 十一 十二 总 分 备 注 学号
得 分 阅卷教师签名
班 姓名
级
学院
…………….……………..装……………………订………………..线…………….……………..
一、填空题(每空2分,共20分)
1. 向量j ,j ,若b ,则 λ+(),f x y 在点(),x y 00可微分是(=2b i a λ=a i =−2//,= ×a b 。
2.与直线x y
z +1==2−23
(,,10−1垂直且通过点)的平面方程为 。
3. 函数y ,则在点z =x (),12处的全微分 z =d 。
4. 一滑翔机随气流沿着位移向量t j k 的路径螺旋式盘旋上升,则在时刻的速度大小()co t t ()()s sin t 2=23+23+r i t =1=υ ,加速度
=a 。
5. 椭球面在点x y z 2+422+2=7()=n ,,111处的法向量为 ,过该点
的切平面方程为 。
6. ,在点(),f x y x 2
=+y 2(),P 011处的梯度 (),f ∇11=,沿方向j 的方向导数
l =+e i ()
,f
l
11∂=∂ 。
二、选择题(每题3分,共15分)
1.对于任意向量、,下列等式恒成立的是( )。
a b ⋅=⋅a b ×=×a b b ()22=2+3(A) (B) (C) a (D) 以上都不对 a b b a ⋅=−⋅b a 2.关于曲面方程y 2的类型,下列判断正确的是( )。
z x (A) 椭圆抛物面 (B) 椭圆锥面 (C) 双曲抛物面 (D) 以上都不对
3.),f x y lim n n u →∞
=0n n u
∞
=1∑()在该点连续的( )。
(A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 以上都不对 4.是级数收敛的( )。
(A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 以上都不对
5.对于积分区域{},D x y x y a 22=+=02≤上的积分,下列正确的是( )。
(A)
D
x y ∫∫d d (B) D
x x y =0∫∫d d D
x x y 2
=0∫∫d d ()( (C) (D) 以上都不对
三、计算题(每题5分,共40分)
1. ,,lim
x y →00
物理与电子科学 学院 物电2013级各专业专业高等数学(二) 课程 共 3 页,第 2 页,共印刷
380份,2014年6月27日 8:00 — 9:40 考试,任课教师 张开银等
…………….……………..装……………………订………………..线…………….……………..
2. y
3,求x z x y 2−(e 2+=+,z z x y
∂∂∂∂υ−=−x y 2=.
3.,y ,,求cos u z e =u x υ,z z x y
∂∂∂∂a 2L
.
4.圆柱体的表面积为,用拉格朗日乘数法求其最大体积。
5. 计算yx x 2∫d L y 22=,其中是抛物线x 上从点),00(,−22()xz y z z z x y Σ
2
2+−到)的一段弧。
6.利用高斯公式计算曲面积分∫∫d d 3d d w ,其中Σ为曲面
2及平面z =2所围成的空间闭区域Ω的整个边界曲面的外侧。
7. 计算二重积分()()z x y 22=4+ x x
x x y y 1
0+∫∫
d d ,并改换二次积分的次序。
物理与电子科学 学院 物电2013级各专业专业高等数学(二) 课程 共 3 页,第 3 页,共印刷380份,2014年6月27日 8:00 — 9:40 考试,任课教师 张开银等
…………….……………..装……………………订………………..线…………….……………..
8. 将函数x
x 4+x 展开为的幂级数,并求收敛半径。
四、综合题(1题15分,2题10分,共25分)
1. 在平面内,有曲线xOy y x 2
=1−(1) 绘图,并写出该曲线的参数方程;。
(2) 若该曲线密度分布均匀,计算该曲线的质心位置;。
(3) 若在极坐标系中,曲线线密度>0(),,k k λρθθ=m (,计算该曲线的总质量。
2. 曲线积分)()sin x
L
e y x y x +2−3+−4+5y ∫d d v ,其中为三定点分布为(L ),00、
)、)的三角形的正向边界。
(,02(,10(4) 绘图,描出积分路线;
(5) 利用格林公式,计算该曲线积分。