SG-XNY06纯电动汽车锂电池组实验台(电池管理系统)
- 格式:docx
- 大小:72.57 KB
- 文档页数:9
简述纯电动汽车电池管理系统的功能【简述纯电动汽车电池管理系统的功能】纯电动汽车(Electric Vehicle,简称EV)的电池管理系统(Battery Management System,简称BMS),是电动车核心部件之一,它的主要职责是对车载动力电池进行实时监控、智能管理和有效保护,确保电池组在高效、安全的状态下运行,延长电池使用寿命,并提升整个电动汽车的动力性能和续航能力。
以下是纯电动汽车电池管理系统的主要功能,将逐步展开详细解读。
1. 电池状态监测:电池管理系统的核心功能是对电池包内的每一块电池单元进行实时状态监测,包括电压、电流、温度等关键参数的采集与分析。
通过对单体电池的电压均衡性检测,可以及时发现并预警电池单元间的不一致性问题,防止因个别电池过充或过放导致的整体性能下降。
2. 荷电状态(SOC)估算:SOC是指电池剩余电量占其总容量的比例,精确估算SOC是电池管理系统的关键任务之一。
通过复杂的算法模型,结合电池实际工作情况(如充放电电流、电压变化等),BMS能准确预测电池的剩余能量,为驾驶员提供直观的续航里程信息,同时避免电池过度充电或深度放电造成损坏。
3. 健康状态(SOH)评估:电池管理系统还会对电池的健康状态(State of Health)进行动态评估,即衡量电池当前的实际容量与其初始设计容量之间的比率。
这有助于预测电池寿命,及时提醒用户进行维护保养或更换,保证车辆的正常行驶。
4. 热管理:电池在充放电过程中会产生大量热量,过高或过低的温度都会影响电池性能和寿命。
电池管理系统会根据各电池单元的温度数据,调控冷却或加热系统,使电池组保持在一个最佳的工作温度区间内,以提高电池性能和安全性。
5. 故障诊断与保护:当电池出现异常状况时,如短路、过温、过充、过放等情况,电池管理系统会立即启动保护机制,切断充放电回路或降低充放电电流,避免电池受到损害,同时向车辆控制系统发送警告信号,以便采取进一步的应对措施。
电动车电池管理系统优化实验报告一、引言随着环保意识的增强和能源结构的调整,电动车在交通运输领域的地位日益凸显。
而电动车的核心部件之一——电池,其性能和寿命直接影响着车辆的整体表现和用户体验。
为了提高电动车电池的使用效率、延长电池寿命并确保行车安全,优化电池管理系统(Battery Management System,简称 BMS)至关重要。
二、实验目的本次实验旨在对现有的电动车电池管理系统进行优化,以提高电池的性能和安全性,并降低电池的衰减速度。
具体目标包括:1、提高电池的充电效率,缩短充电时间。
2、增强电池的放电性能,提升车辆的续航里程。
3、精确监测电池的状态,及时发现潜在的故障和安全隐患。
4、优化电池的均衡管理,减少电池单体之间的差异。
三、实验设备与材料1、电动车电池组:选用一组容量为_____Ah、电压为_____V 的锂离子电池组。
2、电池管理系统:包括电池监测模块、控制单元、均衡电路等。
3、充电设备:一台输出功率为_____kW 的智能充电器。
4、放电负载:模拟车辆行驶时的负载装置,可调节负载大小。
5、数据采集设备:用于采集电池的电压、电流、温度等参数。
6、计算机及相关软件:用于数据分析和处理。
四、实验方法1、充电实验将电池组连接至充电器,设置不同的充电模式(恒流充电、恒压充电、脉冲充电等),记录充电时间、充电量以及电池的温度变化。
对比不同充电模式下的充电效率和对电池寿命的影响。
2、放电实验将电池组连接至放电负载,设置不同的放电电流和放电深度,记录放电时间、放电量以及电池的电压变化。
分析不同放电条件下电池的性能表现和能量输出效率。
3、均衡实验在电池组充电和放电过程中,开启均衡电路,监测电池单体之间的电压差异,并记录均衡效果。
研究均衡电路的工作原理和参数对电池均衡的影响。
4、状态监测实验通过电池管理系统实时监测电池的电压、电流、温度、内阻等参数,利用数据分析软件判断电池的健康状态和剩余容量。
摘要随着工业发展和社会需求的增加,汽车在社会进步和经济发展中扮演着重要的角色。
汽车工业的迅速发展,推动了机械、能源、橡胶、钢铁等重要产业的发展,但同时也日益面临着环境污染、能源短缺的严重问题。
纯电动汽车以其零排放,噪声低等优点越来越受到世界各国的重视,被称作绿色环保车。
作为发展电动车的关键技术之一的电池管理系统(BMS),是纯电动车产业化的关键。
车载网络数据采集系统就是这样一个电池管理系统,可以直接检测及管理电动汽车的储能电池运行的全过程,实现对车载多级串联锂电池、电池温度、车速等数据的监测、采集和分析。
本论文是基于CAN总线的车载网络数据采集系统选用STM32F103VB作为系统的核心芯片,通过芯片自带的12位ADC对端口电压分别进行采集和监测,并通过CAN网络将采集到的数据发送到汽车仪表盘,为车辆状态量实时监测提供数据来源。
关键词:纯电动车,电池管理系统,电池状态,STM32F103VBAbstractWith industrial development and social demand, vehicle of social progress and economic development play important roles. Although the rapid development of automobile industry promote the machinery, energy, rubber, steel and other important industries, it is increasingly faced with environmental pollution, energy shortages and other serious problems.With the merit of zero-emission, and low noise, the pure electric vehicles which is called green cars has got more and more attention around the world. As one of the key technologies for the development of electric vehicles ,battery management system (BMS) is the point of the pure electric vehicle industry. Vehicle network data acquisition system is a battery management system that can directly detect and manage the storage battery electric vehicles to run the whole process, to achieve the data monitoring, collection and analysis of the on-board multi-level series of lithium battery, battery temperature, speed, and otherThe thesis is based on the vehicle CAN bus data acquisition system to chose STM32F103VB network as the core of the system ADC which comes from the chip collect and monitor the port voltages and sent the collected data to the car dashboard through the CAN network , which offer real-time monitoring of vehicle status amount of data sources.Key words:Pure electric cars, Battery Management Systems, The battery state, STM32F103VB摘要 (1)Abstract (2)第一章前言 (5)本课题研究的目的和意义 (5)车载网络数据采集系统的国内外研究现状 (6)本论文研究的主要工作 (7)第二章车载网络数据采集系统设计的原理 (9)车载网络数据采集系统的功能概述 (9)车载网络数据采集系统的结构 (10)基于STM32的车在网络数据采集系统设计控制框图 (10)信号的采集与处理 (11)车载系统的网络通讯 (12)CAN网络的基本概念 (12)CAN网络在车载数据采集系统中的应用 (13)系统主要性能指标 (14)系统预期误差的评估 (15)第三章基于STM32F103VB数据采集系统的硬件设计 (16)STM32F103VB简介 (16)STM32F103VB电源模块的设计 (18)电源电路的设计 (18)STM32启动模式电路选择设计 (18)STM32F103VB外围接口电路的设计 (19)模数转换器的电路设计 (19)测温电路设计 (20)复位电路的电路设计 (21)STM32F103B通讯电路的设计 (21)CAN通讯接口电路设计 (21)JTAG程序调试接口电路设计 (22)RS485通讯电路设计 (23)第四章基于STM32数据采集系统的软件设计 (25)Keil uVision3平台简介 (25)基于STM32的车在网络数据采集系统的程序设计 (25)数据采集模块程序设计 (26)LCD显示模块程序设计 (27)数据存储模块程序设计 (27)CAN数据通讯模块程序设计 (28)RS485通讯模块程序设计 (28)第五章误差分析与处理 (29)误差概述 (29)误差的主要来源 (29)误差的处理 (29)误差分析 (30)测控系统的非线性 (30)系统工作环境的噪声 (31)系统的稳定性 (31)误差处理 (32)实测电压数据分析 (32)整机PCB板设计 (33)第六章总结与展望 (35)总结 (35)展望 (35)参考文献 (36)致谢 (36)第一章前言本课题研究的目的和意义随着世界工业经济的不断发展和人类需求的不断增长,对全球气候造成严重的影响,二氧化碳排放量增大,臭氧层遭受到破坏等。
SG-XNY25汽车新能源系统检测实训台一、产品概述装备以汽车新能源实物器件为基础,能让学员较快地掌握汽车新能源的充电系统、传动系统、制动系统、转向系统、悬架系统的构造与控制原理,加快学员对汽车新能源系统的综合认识。
以电池作动力可低速在路上行驶,正常转向和制动。
该设备采用比亚迪新能源汽车的太阳能电池板,安装在车顶,将光能转化为电能,为动力电池充电。
二、产品特点1、采用开放式设计:1)电源管理系统、2)传动系统、3)转向系统、4)悬架系统、5)、制动系统等器件均基本按原车位置排布,充分体现汽车新能源主要系统部件的结构和关联。
能够按照原车操作方式,正常演示电源系统、充电系统、行驶系统、制动系统、转向系统各种工作状况。
可在台架上进行:电源系统、充电系统、悬挂系统、转向系统、传动系统、制动系统等系统的线路连接、拆卸、安装、调试、排故、维修、验证等实验。
2、装备整体采用立式机构设计,外框统一采用35*35mm,国际标准铝合金结构架,台架底部均配有40*80*2240mm的两条高硬度铝合金方块;装备结构稳定、样式新颖、美观大方、安全系数高。
根据原车固定方式,采用先进的设计理念,让实验台更加美观、实用。
三、技术性能驱动方式:前驱重量:200±10kg工作温度:-40~50℃外形尺寸:(长*宽*高):2500*1500*1400(mm)四、实训项目1.汽车新能源系统结构全面认识2、汽车充电系统的结构原理3.汽车新能源传动系统的实训考核4.制动系统实训考核5.转向系统的拆装实训考核6.悬挂系统的拆装实训考核7.底盘系统综合诊断8.各系统动态演示。
9.可直接在地面上低速行驶五、无线射频遥控故障设置与考核功能:a.发射器:采用COMS工艺制造的低功耗通用编码芯片PT2262,工作频率为315M,无线射频遥控具有自动对码、无方向性等特点,技术成熟稳定而且抗干扰能力强,遥控距离:隔墙至少可达30米、开阔地发射距离可达2000米。
SG-XNY34动力电池组管理系统试验台一、基本功能动力电池试验台(电子负载)可实现对成组动力电池系统通过设定工况进行充放电试验,完成成组电池的容量、效率、荷电状态、热性能等综合性能评价,验证电池管理系统的电池检测精度和能量状态估计的准确性,为电池组装车后有效管理提供试验依据。
二、主要包括如下功能模块:1.1动力电池组充电试验通过电子负载对成组电池系统可实现多种充电模式,如恒流充、恒压充、脉冲充等。
并可与电池管理系统通过CAN J1939 进行通讯,实现交互控制。
1.2电池组的充放电效率试验在进行电池充放电效率测试时,对电池在不同放电程度下进行不同放电率的脉冲激励,脉冲时间一般为10s~18s,记录电池对脉冲激励产生的响应,放电效率为响应的平均电压与该放电深度下开路电压比。
1.3电池组的循环工况试验循环工况是指按照一定工况,从充满电后放电到规定的截止电压时所能放出电量或能量,试验过程包括充电和放电两部分,并且放电和充电的电流也各不相同。
1.4电池组模型参数定型试验模型性能参数辨识实验用于获取电池性能模型参数,由于各类电池性能模型原理上存在差异,其辨识方法也步进相同。
模型性能评价实验用于评价模型仿真结果的准确性。
电动车辆整车仿真输入的工况都是汽车行驶典型工况,工况实验既是变电流实验,也是变功率实验。
1.5能量回馈功能电子负载系统可以将电池组放电能量或电机系统发电能量按照特定方式如正弦波的形式直接回馈到交流输入动力母线,遵循循环经济的设计理念。
2、测试标准该系统能够实现对动力电池组按照下表所列各种标准进行性能测试。
并且其数据采集系统采集能够实现采集各个电池模块/单体的电压和温度,以及总电流、总电压,并且能够把数据存放于数据库中,可以分析出报表。
3、系统的一般要求3.1能保证3000小时的连续无故障运行时间3.2具有电池组放电能量回馈动力母线功能3.3满足EMC的相关国际标准,具有抗电磁干扰能力4、动力电池试验台(电子负载)技术参数设备交流输入:380V ±10% 频率50HZ±3主通道数量:1硬件技术:大功率IGBT开关电源技术系统输出运行范围:通道电压输出范围:15~750V;通道电流输出范围:-350A~+350A;通道最大直流输出持续功率:160KW,无时间限制;CAN通讯接口:CAN2.0A CAN2.0B SAEJ1939保护功能:输入保护:欠压、过压、过流、缺相、过载、过温停机保护报警。
动力电池组及管理系统试验方案一、引言动力电池组是电动车辆的重要部件,其性能直接影响车辆的续航里程、动力输出以及安全性等关键指标。
为了确保电动车辆的性能和安全性,需要进行动力电池组及管理系统的试验。
本试验方案旨在对动力电池组及管理系统进行全面的性能评估和安全性验证。
二、试验目标1.评估动力电池组的能量密度、功率密度、循环寿命等性能指标。
2.验证动力电池组在正常工作条件下的安全性能。
3.测试动力电池组在极端条件下的安全性能,如高温、低温、高湿度等。
三、试验内容1.动力电池组性能评估试验a)测试电池组的容量,评估能量密度和功率密度指标。
b)进行充放电循环试验,评估循环寿命。
c)进行快速充电和快速放电试验,评估电池组的快充性能和快放性能。
d)进行电池组平台测试,验证电池组在车辆动力需求下的性能。
2.安全性能验证试验a)进行单体电池短路试验,评估电池的安全性。
b)进行电池组短路试验,评估电池组的安全性。
c)进行过充试验和过放试验,评估电池组的安全性。
d)进行高温试验和高湿度试验,评估电池组在极端条件下的安全性。
四、试验设备和工具1.电池测试台:用于测试电池组的容量、循环寿命和快充快放性能等。
2.温湿度测试箱:用于进行高温试验和高湿度试验。
3.短路测试设备:用于进行单体电池和电池组的短路试验。
4.充电设备和放电设备:用于进行过充试验和过放试验。
五、试验步骤1.安全性能验证试验a)首先进行单体电池短路试验,记录试验过程中的参数和现象,并评估电池的安全性。
b)进行电池组短路试验,记录试验过程中的参数和现象,并评估电池组的安全性。
c)进行过充试验和过放试验,记录试验过程中的参数和现象,并评估电池组的安全性。
d)进行高温试验和高湿度试验,记录试验过程中的参数和现象,并评估电池组的安全性。
2.动力电池组性能评估试验a)测试电池组的容量,记录测试结果,并评估能量密度和功率密度指标。
b)进行充放电循环试验,记录测试结果,并评估循环寿命。
KH-XNY37纯电动汽车电池组实验台(BMS)一、产品简介选用主流新能源磷酸铁锂动力电池包,单体电池3.2V20AH,铝壳方形,共24串,总容量73.6V50AH,带CAN总线的一体机BMS电池管理系统,有被动均衡功能;真实地呈现了磷酸铁锂动力电池包核心零部件之间的连接控制关系、安装位置和运行参数,以及高压系统安全注意事项,并培养学员对磷酸铁锂动力电池包(BMS)故障分析和处理能力。
二、功能特点1.真实可运行的新能源动力电池充放电总成,充分展示各主要零部件组成结构和逻辑控制关系。
2.各主要部件安装在实训台上,电气连接方式与实车相同,可以方便拆卸,让学员在拆装连线过程掌握高压系统零部件拆装要点和安全保护;提供课件,讲述各主要零部件功能和引脚定义。
3.BMS电池管理系统带被动均衡功能,带开关控制保护(单体断线、短路、过压、欠压、过流、过温),与充电机CAN通讯,通过BMS控制车载充电机工作,估算SOC(荷电状态)等。
4.动力电池包显示器(7寸)安装在面板上,可以观察充放电过程各项参数,掌握动力电池包充放电过程控制逻辑和主要部件参数变化规律。
5.实训台配放电模块,模仿车辆能量消耗过程,放电电流大小可以选择(配套可运行操作的上位机软件)。
动力电池包设置有机械维修开关,拔出机械维修开关后,可以打开上盖观察;高压电器连接器均采用国标产品,性能可靠。
6.动力电池包半透明设计,内置LED排灯照明,便于学员观察电池内部结构。
实训台配备12V电源接地机械开关,可随时断开12V接地,切断整个系统电源。
7.动力电池包输出线路另配机械断开式紧急开关,适用于紧急情况下很轻松断开主电源回路。
8. UV平板喷绘彩色面板完整显示动力电池包,充电,放电工作原理图,并安装用检测端子,借助万用表和示波仪,实时检测各种状态下参数变化。
9.实训台由移动实训台(带原理面板)组成,实训台水平放置,安装主要零部件;实训台底部安装4个脚轮,移动灵活,同时脚轮带自锁装置,可以固定位置。
新能源汽车实训室功能说明:1、掌握新能源汽车整车拆装、调整和维护的技能;2、掌握新能源汽车常见故障的检测、诊断、排除技能。
3、掌握新能源汽车装配与调试技能。
4、满足新能源汽车运用与维修技能大赛规定。
序号设备名称规格、重要参数或重要规定图样1 油气双燃料汽车动力系统实训台(汽油版)型号:捷达王,翻新品牌:MYXNQ-01一、设备简介该设备采用双燃气混合动力汽油发动机为基础,可运营发动机,进行起动、加速、减速等工况的实践操作,真实展示双燃气混合动力汽油发动机的组成结构和工作过程。
合用于中高等职业技术院校、普通教育类学院和培训机构对汽车双燃气混合动力发动机和维修实训的教学需要。
二、功能特点1.真实可运营的双燃气混合动力汽油发动机,充足展示双燃气混合动力汽油发动机的组成结构和工作过14 继电器含:起动继电器等各类运营继电器套 115 保险丝盒茂育配套个 116 电源总开关50A 个 117 故障模拟系统茂育配套套 118 移动台架(带自锁脚轮装置)1500×1000×1700mm(长×宽×高)台 119 教师手册茂育配套套 120 合格证与保修卡茂育配套套 12 油气混合汽车动力系统实训台(柴油版)型号:4JB1翻新品牌:MYXNQ-02一、设备简介该设备采用双燃气混合动力柴油发动机为基础,可运营发动机,进行起动、加速、减速等工况的实践操作,真实展示双燃气混合动力柴油发动机的组成结构和工作过程。
合用于中高等职业技术院校、普通教育类学院和培训机构对汽车发动机和维修实训的教学需要。
二、功能特点1.真实可运营的双燃气混合动力柴油发动机,充足展示双燃气混合动力柴油发动机的组成结构和工作过程。
2.实训台面板采用4mm厚耐腐蚀、耐创击、耐污染、防火、防潮的高级铝塑板,表面经特殊工艺喷涂底漆解决;面板打印有永不褪色的彩色电路图(涉及发动机电气电路与燃料控制ECU系统);学员可直观对照电路图和燃气混合动力柴油发动机实物,结识和分析控制系统的工作原理。
新能源汽车电池管理系统优化实验报告一、引言随着环保意识的增强和对可持续能源的需求,新能源汽车在全球范围内得到了迅速发展。
而电池作为新能源汽车的核心部件之一,其性能和寿命直接影响着车辆的整体表现和用户体验。
电池管理系统(Battery Management System,简称 BMS)则是确保电池安全、高效运行的关键。
为了进一步提高新能源汽车电池的性能和可靠性,我们进行了一系列的优化实验。
二、实验目的本次实验的主要目的是优化新能源汽车电池管理系统,提高电池的能量利用率、延长电池寿命,并增强系统的安全性和稳定性。
三、实验设备与材料1、新能源汽车电池组:选用了市场上主流的锂离子电池组,具有一定的代表性。
2、电池管理系统:包括传感器、控制器、通信模块等。
3、测试设备:高精度电池测试仪、数据采集系统、示波器等。
4、计算机及相关软件:用于数据分析和处理。
四、实验原理电池管理系统的主要功能包括电池状态监测(如电压、电流、温度等)、电池均衡控制、SOC(State of Charge,荷电状态)和 SOH (State of Health,健康状态)估算、故障诊断与保护等。
通过优化这些功能的算法和参数,实现对电池的更精确管理和控制。
五、实验步骤1、电池组初始化对电池组进行全面检查和初始化,确保电池处于良好的初始状态。
记录电池的初始参数,如电压、内阻、容量等。
2、系统参数设置根据电池组的规格和实验要求,设置电池管理系统的相关参数,如均衡阈值、SOC 和 SOH 估算算法的参数等。
3、数据采集在实验过程中,通过传感器和数据采集系统实时采集电池的电压、电流、温度等数据,并将其传输至计算机进行存储和分析。
4、工况模拟采用不同的驾驶工况(如城市道路、高速公路、拥堵路况等)对电池进行充放电测试,模拟实际使用场景。
5、优化算法调试根据采集到的数据,对电池管理系统的算法进行调试和优化,如改进均衡控制策略、优化 SOC 和 SOH 估算算法等。
新能源汽车专业实训室建设方案随着全球对于环境保护的重视和对传统燃油汽车排放的关注,新能源汽车的发展在近年来呈现出爆发式增长的态势。
为了培养适应未来社会需求的专业人才,建设一间符合要求的新能源汽车专业实训室势在必行。
本文将介绍新能源汽车专业实训室建设的目标、设备以及布局等方面的内容。
一、建设目标新能源汽车专业实训室的建设目标在于为学生提供一个模拟真实工作环境的实践场所,加强理论知识与实际操作的结合,培养学生的实际操作技能以及解决实际问题的能力。
针对这一目标,我们提出以下具体的建设要求。
1.设备齐全:实训室内需要配置新能源汽车的核心设备,包括电池管理系统、电机驱动系统、充电桩以及车辆数据监测等设备,以满足学生进行实际操作的需求。
2.实践环境模拟:实训室的环境应尽可能地模拟真实工作环境,包括车辆检测与维修的工作台、专用工具等,使学生能够熟悉操作流程和工作规范。
3.数据监测与分析:实训室需要具备数据采集与监测系统,可以实时监测汽车相关的参数和数据,并提供相应的数据分析软件,使学生能够掌握数据分析的技能。
二、设备配置1.电池管理系统:实训室内应配置电池管理系统,包括锂电池、电池控制器、电池组等,以满足学生对于电池管理的学习和实践需求。
2.电机驱动系统:实训室内配置新能源汽车的电机驱动系统,包括电动机、电机控制器等,使学生能够了解电机的工作原理及其控制方法。
3.充电桩:为了满足学生对于充电桩的学习和实践需求,实训室应配置充电桩设备,供学生进行实际操作和实验。
4.车辆数据监测系统:为了学生能够掌握整车的数据监测和分析技能,实训室内需要配置相应的监测设备,能够实时监测车辆相关的参数和数据。
三、实训室布局为了使实训室能够满足实际操作和学生学习的需求,应合理规划实训室的布局。
下面是一个合理的实训室布局建议:1.实训区域:实训区域应该占据实训室的主要空间,包括车辆维修、电池管理、充电桩等区域,每个区域都应有明确的功能划分。
SG-XNY06纯电动汽车锂电池组实验台(电池管理系统)一、产品简介选用单体电池3.2V20AH,铝壳方形,共24串,总容量73.6V50AH,带CAN总线的一体机BMS电池管理系统,有被动均衡功能;真实地呈现了磷酸铁锂动力电池包核心零部件之间的连接控制关系、安装位置和运行参数,以及高压系统安全注意事项,并培养学员对磷酸铁锂动力电池包(BMS)故障分析和处理能力。
二、功能特点1.真实可运行的新能源动力电池充放电总成,充分展示各主要零部件组成结构和逻辑控制关系。
2.各主要部件安装在实训台上,电气连接方式与实车相同,可以方便拆卸,让学员在拆装连线过程掌握高压系统零部件拆装要点和安全保护;提供课件,讲述各主要零部件功能和引脚定义。
3.BMS电池管理系统带被动均衡功能,带开关控制保护(单体断线、短路、过压、欠压、过流、过温),与充电机CAN通讯,通过BMS控制车载充电机工作,估算SOC(荷电状态)等。
4.动力电池包显示器(7寸)安装在面板上,可以观察充放电过程各项参数,掌握动力电池包充放电过程控制逻辑和主要部件参数变化规律。
5.实训台配放电模块,模仿车辆能量消耗过程,放电电流大小可以选择(配套可运行操作的上位机软件)。
动力电池包设置有机械维修开关,拔出机械维修开关后,可以打开上盖观察;高压电器连接器均采用国标产品,性能可靠。
6.动力电池包半透明设计,内置LED排灯照明,便于学员观察电池内部结构。
实训台配备12V电源接地机械开关,可随时断开12V接地,切断整个系统电源。
7.动力电池包输出线路另配机械断开式紧急开关,适用于紧急情况下很轻松断开主电源回路。
8. UV平板喷绘彩色面板完整显示动力电池包,充电,放电工作原理图,并安装用检测端子,借助万用表和示波仪,实时检测各种状态下参数变化。
9.实训台由移动实训台(带原理面板)组成,实训台水平放置,安装主要零部件;实训台底部安装4个脚轮,移动灵活,同时脚轮带自锁装置,可以固定位置。
10.配备智能化故障设置和考核系统,故障设置含动力电池组与BMS之间的电压采集线,温度采集线,继电器控制线,霍尔电流传感器采集线等,故障点不少于12个;实时在现单体电压,电池温度等异常情况下BMS系统反应。
11.整体采用1.5mm厚冷轧板,严格按钣金加工工艺操作,经酸洗、喷塑,外形美观;底架部分采用钢结构焊接,表面采用喷涂工艺处理,带自锁脚轮装置,底座上配有30cm左右的桌面,方便放置资料、轻型检测仪器等。
12. BMS系统软件可动态现实电池的电压、温度等数据流检测与标定。
三、技术规格1.外形尺寸(mm):1240×600×1700mm(长*宽*高)2.输入电源:AC220V±10% 50Hz3.工作电源:DC12V4.动力电池类型:环保型磷酸铁锂动力电池(方形铝壳,单体电池3.2V20AH)动力电池包容量:72V50AH完全充放电次数:2000次工作温度:-20°~60°5.BMS锂电管理一体机:带CAN通讯6.动力电池包显示屏:7寸7.高压大电流继电器:线圈电压:12VDC最大额定工作电压:1000VDC额定电流:200A四、实训项目1.新能源动力电池包(BMS)控制原理认知。
2.新能源动力电池包(BMS)主要零部件功能认知。
3.新能源动力电池包(BMS)各种状态下逻辑控制关系,掌握电流,电压,电池压差,电池温度等参数变化规律认知。
4.BMS如何采集动力电池组压差,并控制充电和放电过程实训实验。
5.BMS如何采集动力电池组温差,并控制充电和放电过程实训实验。
6.新能源高压系统操作安全注意事项,高压连接器插拔方法实训实验。
7.新能源动力电池包(BMS)故障分析与诊断。
8.新能源动力电池包(BMS)拆装与维护实训。
9.新能源动力电池(BMS)管理系统CAN总线测试与控制实训。
五、基本配置磷酸铁锂动力电池包,BMS锂电管理一体机,动力电池包显示屏,车载充电机,国标充电插口,国标充电枪,紧急断电开关,直流接触器,DC-DC转换器,辅助蓄电池,放电控制继电器与放电负载,铝壳电阻,可移动实训台(带检测端子的原理面板)。
六、软件附件1:多媒体显示屏一体机软件采样及教学仿真计算机:14寸电容触摸屏一体机工业控制机,Intel/Celeron双核1.8G,win8系统;显示屏采用侧杆支撑,可360°左右旋转,可前后调整前后左右倾斜角度.附件2:智能教学系统智能教学系统作为资源载体与平台,内置丰富的可课程资源,并具备人机交互功能。
1.概述:理实融合一体化教学平台突破以往理论与实践相脱节的现象,教学环节相对集中。
它强调充分发挥教师的主导作用,通过设定教学任务和教学目标,让师生双方边教、边学、边做,全程构建素质和技能培养框架,丰富课堂教学和实践教学环节,提高教学质量。
在整个教学环节中,理论和实践交替进行,直观和抽象交错出现,没有固定的先实后理或先理后实,而理中有实,实中有理。
突出学生动手能力和专业技能的培养,充分调动和激发学生学习的兴趣。
2.组成:理实融合一体化教学平台由数据采集仪、无线远程通信模块及理实融合一体化教学软件组成。
3.数据采集仪:采用主流8位单片机,单片机内部4K Flash,512字节RAM;模拟量采集芯片采用美国TI公司的10位开关电容逐次逼近型模数转换器;输入信号量程:0~50VDC,采样频率≮5次/秒,分辨率10Bit,最大误差<±2% 4.无线远程通信:通信方式:采用基于IEEE802.11标准的wifi热点,有效通信距离:空旷地:80米,接口速率:150M,频率范围:2.412GHz-2.484GHz。
5.移动终端实训系统:采用安卓版平板电脑作为移动终端软件载体,主界面分布发动机电控系统原理图。
5.1. 移动终端智能识别功能:手持移动终端靠近实训台,移动终端可智能识别相对应的实训台,并与之配对.5.2. 移动终端设置故障:教师可通过点击电控原理图中的传感器或执行器等元件进入故障设置区,点击传感器或执行器不同的引脚线可设置不同故障,设置故障命令通过wifi的传递到实训台,并使实训台产生相应的故障。
5.3.移动终端故障诊断:故障诊断页面分布有工具栏,工具栏中的理实一体万用表可对传感器或执行器线路中的检测点进行实时测量,测量数据与实训台同步。
工具栏中的解码器可通过无线方式与实训台标准OBD-Ⅱ诊断接头相联,能实现对电控单元的编码查询、故障查询、读取数据流、波形分析等诊断功能。
理实融合一体化教学软件:1.以实训台的动力电池系统为原型精准测绘,利用先进的实时渲染引擎与物理引擎,逼真展现现实物理教学模型,直观展现纯电动汽车动力电池系统的结构原理与拆装。
逻辑关系科学严谨,无冗余元素。
渲染满足可读性和真实性,给予用户真实体验感觉。
2.拟现实3D仿真系统利用人机交互系统具有强大的交互操作功能:具有便捷、人性化的操作方式,可任意控制虚拟现实3D仿真系统中虚拟摄像机,对任意视角的控制------观察物体局部、拉近、围绕物体旋转。
3.虚拟现实3D仿真系统符合院校纯电动汽车教学大纲,对其进行子系统分解学习。
4.动力电池系统的BMS系统模拟:通过平面动画模拟纯电动汽车BMS系统控制策略,动画通俗易懂,操作界面友好。
5.虚拟现实3D仿真系原理统教学功能:通过三维仿真技术虚拟再现动力电池系统的工作过程:可屏蔽动力电池组外壳,在三维环境中模拟整车上下电过程中,主正继电器,主负继电器及温度传感器等的工作机制,动态显示电流流通方向。
6.虚拟现实3D仿真系统模拟拆装教学功能:模型按照原厂维修手册标准的拆装顺序进行程序化设计,学生在分解和装配动力电池组时必须按照科学的顺序进行操作,有助于规范学生的实操标准。
7.虚拟现实3D仿真系统具有结构认知功能:三维模型对动力电池系统的每个零部件(包括:动力电池组总成、分体电池、电流传感器、主正继电器、主负继电器)等部件进行专业术语标识,可任意控制虚拟现实3D仿真系统中虚拟摄像机,对任意视角的控制------观察物体局部、拉近、围绕物体旋转,可进行结构认知教学。
故障系统故障系统采用图形化故障设置的方式,配置标准电路图,教师可通过电路图直接设置或清除故障。
具有直观操作,隐蔽设故等特点。
教师可通过单点设故、组合设故、考核设故等多种方式进行故障设置,通过wifi的方式远程向实训设备发送设故指令。
理实一体诊断:理实一体诊断采用图形化设计,标准电路图与实训台相耦合,电路图简洁明了,图形符合标准化设计。
工具栏有万用表等工具,使用万用表测量实时电压数据。
电路图上分布有检测点,与实训台标准检测点一一对应,设备准备就绪后可使用万用表,示波器等仪器测量检测点的实时数据。
理论考核:创建试题库:教师可通过试题管理系统添加或批量添加试题以扩充试题库管理员权限:管理员可添加或删除教师,修改或设置教师密码、管理班级等。
教师权限:教师可管理试题库、编辑试卷、设定考试时限,编辑学生信息、编辑班级信息及查询成绩单等。
学生权限:学生可编辑本人登陆密码,答题回顾,考试答题等。
考试答题:教师将编辑好的试卷通过局域网发送到学生机,学生登陆学生端后可进行限时考核,答题结束后系统会进行自动评分,并将每个学生端的成绩上传到教师端。
实训考核:教师在综合设故中使用考核设故的方式进行故障设置,学生通过观察实训台当前故障现象在理实一体诊断中进行远程故障诊断及排查,将诊断结果填写至实训考核中,系统判定诊断结果并对该次考核进行自动评分。
软件架构:C/S软件版本:网络版40个节点。