度300MHz超导核磁共振谱仪上机操.ppt
- 格式:ppt
- 大小:4.70 MB
- 文档页数:64
PINMRFVarian 300 MHz NMR SpectrometersTraining Guide for Basic 1D NMR SpectroscopyINCLUDING:Inova-300-1 w/ 5mm 4-Nucleus Plus probe – 365 WTHRInova-300-2 w/ 5mm Autoswitchable probe – 369 WTHRTable of Contents1. Basic Spectrometer Operation (1)2. Supplementary Instructions (7)3. Parameter File and Macro Listings (9)4. VNMR Commonly Used Keyboard Commands (10)5. Checkout Requirements (11)11-03-2015: Revision – JDH.11-27-2007: Revision - JSH.11-20-2006: Revision - JSH.Basic Spectrometer Operation Guidelines – 1D SpectraVarian 300 MHz NMR SpectrometersPINMRFPlease note the following generalities•Under no circumstances lean against or otherwise move the magnet.•The Varian VNMR software enables the user to easily access and change functions, options, and their properties. If you are not sure about an option, button or command contact PINMRF staff for assistance.•If you encounter problems at any time during locking, shimming, acquiring you should halt the experiment and reload the standard parameters for your experiment.•In order for shimming to work well, samples should be filtered and prepared in good-quality tubes. Sample volume should be at least 0.7 mL. Do not use more than 0.1% TMS.•The VNMR software works best with the Common Desktop Environment (CDE) graphics on the Sun computer. Please check when you log in that you are using CDE.Conventions in this guide•Buttons are depicted with small caps in bold, e.g. A BORT A CQ.•Commands entered in the command window are described in geneva font, e.g. h1cdcl , and are executed by hitting the return key.Important basic functions•A BORT A CQ button -> aborts acquisition (BEWARE this discards data!)•R ESIZE button -> enlarges/reduces spectrum window•F LIP button -> flips the spectrum window over the display window and vice versa •jexpx command -> switches to experiment number x (1, 2, 3, 4, etc.)•ds command -> switches back to interactive display modeLogging on to the Sun computer and starting VNMR1. In order to log in enter your login ID, followed by the password into the welcome screens.2. Click the spectrum icon on the left side of the toolbar to start the VNMR software.Sample change3. e(ejects existing sample)4. Remove sample from spinner and replace it with your cleaned sample (use Kimwipe and Isopropanol).5. i(inserts new sample)Acquisition of 1H-NMR Spectra6. jexp1(join experiment 1)7. h1xxxx(macro loads solvent-dependent parameters; xxxx = cdcl, acet, d2o, dmso, meth; for benzene use xxxx = cdcl) then WAIT for the BEEP!8. acqi(opens acquisition window)9. click L OCK to open lock sub-window, then set and/or check the following:•turn on sample spinning (if not on already) by setting the spin value to 20 (Hz.)•the sample should be locked - lock should be established automatically•decrease lock power until lock level is stable (not bouncy; 24 for cdcl3)•Change lock gain in steps of 4 units until lock level is between 30 - 60%•if sample is not locked, increase lock power by 16, wait for lock to be established, then decrease lock power in steps of 4 units until lock level is stable•do not change the Z0 and lock phase values10. click S HIM to open shim sub-window11. adjust Z1C and Z2C (if the lock level increases beyond 100, decrease the lock gain at the bottom of the current window)12. click C LOSE13. nt=xx(sets number of scans; default is nt=8)14. ga(starts acquisition) – then WAIT for the BEEP! (spectrum should be displayed)15. aph(automatic phasing)for manual phasing:•click P HASE•click and hold on peak farthest to the right•while holding the click, drag to correct the phasing for this peak (NOTE: right mouse button allows for fine phase control)•then click and hold on peak farthest to the left, and drag until correctly phased•interactively repeat phasing these two peaks until phasing is completed•ds (switches back to interactive display mode)16. vsadj(vertical scale adjustment - highest peak automatically adjusted to top of window)for manual vertical scale adjustment:•use the center mouse button, a left mouse click above the baseline causes the spectrum to scale up and a left click below the baseline causes the spectrum to scaledown, the distance of the cursor from the baseline while clicking determines themultiplication factoralternative vertical scale adjustment:•vs=xxx, the current value of the vertical scale (vs) is displayed in the lower portion of the spectrum window17. C URSOR,B OX,E XPAND,F ULL:•left-click and drag red left cursor to desired left cutoff position (cr position is shown at bottom of spectrum window)•click B OX•right-click and drag red right cursor to desired right-hand cutoff position (delta = difference in ppm)•click E XPAND (expands spectrum to cursor box limits)•click F ULL (returns spectrum to full size)18. integration:•NOTE: the button for integration consists of three sequential choices: P ART(ial)I NTEGRAL, F ULL I NTEGRAL, N O I NTEGRAL; the button shows the next mode thatcan be accessed, not the current integration mode•click P ART I NTEGRAL(green integral trace appears; see also ‘Adjustment of Integral Trace’ at the end of this document)•cz(clears currently defined integral)•click R ESETS•click the left mouse button closely to the left of the left-most peak•click the left mouse button closely to the right of the left-most peak•repeat for each peak or group of peaks across the spectrum (clicking the right mouse button at any time anywhere in the spectrum window causes an undo of the lastintegral section)•click F ULL I NTEGRAL,N O I NTEGRAL,P ART I NTEGRAL•click inside a known integral region to leave the cursor inside the region•click S ET I NT•enter desired whole integral for the selected region (the display window generates a list of integrals)•click N O I NTEGRAL19. set peak picking threshold:•click T H to display the yellow threshold line•click and drag the yellow line to the desired threshold•click T H20. view chemical shift labels and scale:•dpf displays the peak labels•dscale displays a scale beneath the spectrum•ds clears the labels and scale to redisplay the spectrum alone21. text('xxxxx') (enters a title to be printed on top of your spectrum)22. print, printp, printi or printpi (i = with integration, p = with peak labels)Proceed with additional samples from step 3, continue to step 23 for 13C spectrum, or to step 39 ‘Finishing up Acquisition of Spectra’Acquisition of 13C-NMR Spectra (note: 1H spectrum must be acquired first)23. jexp2 (join experiment 2)24. c13xxxx (macro loads solvent-dependent parameters; xxxx = cdcl, acet, d2o, dmso, meth; for benzene use xxxx = cdcl). WAIT for the BEEP!25. nt=xx (sets number of scans; default is 256)26. ga (starts acquisition) - then WAIT for the BEEP! (spectrum should be displayed)27. wft (check progress before the beep) sa (stops acquisition and retains data)28. aph (automatic phasing, the software does a good job if the signal-to-noise ratio is good)for manual phasing see step 1529. vsadj (vertical scale adjustment - highest peak automatically adjusted to top of window)for other vertical scale adjustment methods see step 1630. C URSOR,B OX,E XPAND,F ULL: (same as step 17)31. set peak picking threshold: (T H same as step 19)32. view chemical shift labels and scale: (dpf, dscale,ds, same as step 20)33. text('xxxxx') (enters a title to be printed on top of your spectrum)34. print or printp (p = with peak picking)Proceed with additional samples from step 3, continue to step 35 for 19F or 31P spectrum, or to step 39 ‘Finishing up Acquisition of Spectra’Acquisition of 19F and 31P NMR Spectra (note: 1H-NMR must be acquired first)35. jexp4(join experiment 4)36. f19cdcl or p31cdcl(loads solvent-dependent parameters)37. nt=xx(sets number of scans)38. ga(starts acquisition) - then WAIT for the BEEP! (spectrum should be displayed) Phasing and other processing procedures are exactly as for 1H spectra; see steps 15 – 21, above.Finishing up Acquisition of Spectra and Logging Out39. e (eject sample)40. remove your sample and insert standard sample (clean with Kimwipe and Isopropanol)41. i42. jexp1 (go back to experiment 1)43. standard - then WAIT for the BEEP!44. exit – then WAIT for all 4 VNMR windows to close.45. Log out from the Sun computer by clicking the E XIT button in the toolbar at the bottom of desktop.Supplementary InstructionsMiscellaneous Functions•to change the chemical shift reference, place the cursor on the peak of known shift, then enter rl(x.xx*sfrq). x.xx is the chemical shift value to be entered (e.g. 7.26) •to observe a spectrum during acquisition enter wft and process the spectrum as described above•if the number of scans was not satisfactory repeat wft after additional scans•if the spectrum is satisfactory type sa (stop acquisition) and process the spectrum•axis='h' changes the axis unit to Hertz; axis='p' changes it to ppm•if you would like to restart phasing with its initial values type lp=0 rp=0 ds, then repeat the phasing procedureStoring and Retrieving NMR Data and Shim sets•to save NMR data from the current experiment, enter: svf(‘filename’)(filenames can include letters, numbers, dash and underscore characters ONLY)•to retrieve stored NMR data into the current experiment, enter: rt(‘filename’)•to save and retrieve shims files use: svs(‘filename’) and rts(‘filename’) (after retrieving shims you must enter su to load the shim values into hardware)Adjustment of the integral traceThe L VL/T LT button activates interactive zero and first-order baseline correction mode. The zero order correction is represented by the L VL parameter; the first order correction is represented by the T LT parameter.Position the cursor on an integral region of interest, about halfway vertically up the screen, and click the left mouse button. A horizontal line will intersect at the cursor and two vertical lines will be placed on either side of the cursor. Now moving the cursor above or below the horizontal line, but within the two vertical lines, and clicking the left or right mouse button will adjust the zero-order baseline correction parameter L VL. Placing the cursor right on the horizontal line and clicking the mouse button will restore the initial value of L VL.Now move the cursor to another region of the spectrum, outside the vertical lines, and click the left mouse button again. A new horizontal line and two vertical lines will be displayed again and a single vertical line will be displayed in the middle of the region where L VL was being updated. The mouse will now control the first-order baseline correction parameter T LT. Clicking the left or right mouse button above or below the horizontal line will now increase or decrease T LT., and will also change L VL so that the total drift correction at the single vertical cursor in the middle of the previous region will be held constant. This process substantially reduces the necessity to iteratively adjust the two parameters L VL and T LT. As with the zero-order correction, clicking onto the horizontal baseline will restore the initial value of T LT.Each time the cursor is moved outside the two vertical lines and the mouse button is clicked, a new vertical and horizontal line is displayed. The parameter adjustment alternates between adjusting L VL and adjusting L VL and T LT. The left and the right mouse button both adjust the baseline correction parameters and differ only in their sensitivity; changes with the left mouse button are eight times larger than changes caused with the right mouse button.The middle mouse button adjusts the integral scale (height of integral trace). To exit the interactive baseline correction mode, type ds .Using the sample temperature controller for Variable Temperature NMRIf you need to carry out VT experiments, please consult with PINMRF staff for further training. VT operation requires extended instrument time for the probe to return to room temperature prior to the next user starting his or her experiment. The upper limit for sample temperature control is 80˚ Celcius, or 10˚C below the boiling point of your solvent, whichever is lower.Varian 300 MHz NMR SpectrometersParameter Files and MacrosBoth Inova300-1 and Inova300-2h1acet h1cdcl h1d2o h1dmso h1methf19cdclhomodecjsh (sets up a homonuclear decoupling experiment from the current 1H experiment) noediffjsh (sets up an NOE difference experiment from the current 1H experiment) presatjsh (sets up a presaturation experiment from the current 1H experiment)Inova300-1 onlyb11cdclh2cdcl (requires training and recabling)Inova 300-2 onlyc13acet c13cdcl c13d2o c13dmso c13methp31cdcl (requires training on retuning the probe)deptjsh (sets up DEPT-135 experiment from the current 13C experiment)cosyjsh (sets up a 2D-COSY experiment from the current 1H experiment)hetcorjsh(1) (sets up 2D-HETCOR experiment from the current 13C experiment with the 1H spectrum already in experiment 1)VNMRCommonly Used Keyboard CommandsExperiment Setupjexpn - join (go to) experiment #nrt(‘abcd’) - read NMR data file “abcd”rtp(‘abcd’) - read parameter set “abcd”rts(‘abcd’) - read shim set “abcd”svf(‘abcd’) - save NMR data file “abcd”svp(‘abcd’) - save parameter set “abcd”svs(‘abcd’) - save shim set “abcd”mf(x,y) - move NMR data (FID and parameters) from experiment “x” to experiment “y” Data Acquisitionh1xxxx - load acquisition and lock parameters for 1H experiment in solvent xxxx (xxxx = acet, cdcl, d2o, dmso, meth)acqi - open lock / shim windowsu - set up all parameters in hardwaregain=xy - set receiver gain to value “xy” (“xy” = 1 – 60)nt=xy - set number of scans to value “xy”bs=xy - set block size to “xy” scansga - zero current data, start acquisition, and automatically display spectrumgo - zero current data and start acquisitionaa - abort data acquisition and discard datasa - stop acquisition and keep datastandard - set up spectrometer for CDCl3 standard sample and next userf19xxxx - load acquisition parameters for 19F experiment in solvent xxxxp31xxxx - load acquisition parameters for 31P experiment in solvent xxxxc13xxxx - load acquisition parameters for 13C experiment in solvent xxxxdeptjsh - set up DEPT-135 experiment from current 13C experimenthomodecjsh - sets up a homonuclear decoupling experiment from the current 1H experiment noediffjsh - sets up a nOe difference experiment from the current 1H experiment presatjsh - sets up a presaturation experiment from the current 1H experimentcosyjsh - set up 2D-COSY experiment from current 1H experimenthetcorjsh - set up 2D-HETCOR experiment from current 13C experimentData Processing and Plottingtext(‘abcd’) - set title for plot to be the text string “abcd”ft - Fourier transformationwft - exponential multiplication and Fourier transformation (can use after bs scans completed) lb=xy - set amount of exponential multiplication equal to “xy”aph - automatic phase correctionrl(x.yz*sfrq) - set chemical shift at location of cursor to x.yz ppmth - set threshold for peak picking using mousedpf - show peak labelsds - display spectrum with cursor activedir - show a listing of the current directoryprint, printp, printi, printpi - print spectrum. Include peak labels (p) and/or integration (i)print135, print135p - print DEPT-135 spectrum with/without peak labels (p)Practical Demonstration Checkout RequirementsPINMRF Varian 300 MHz NMR SpectrometersPrior to performing this practical demonstration you must first take a 30 minute written quiz. The quiz will test you on material from this document and the Facility Overview document, and other NMR-related matters. For both the quiz and checkout, you may use any training handouts and notes.This is an outline of the tasks you will be required to perform correctly in order to pass the practical demonstration checkout. You will be allowed up to 30 minutes to complete the following tasks. Standard samples will be used for the checkout and will be provided by the NMR lab. PINMRF staff may, at their discretion, observe you performing all or part of the checkout exam.Test Sample - 10% Ethylbenzene in CDCl3 (or other sample as required)- login to computer and start VNMR- remove CDCl3 standard, insert new sample, lock and shim- run 1H spectrum, process, integrate and print- set up new experiment for 13C spectrum- run 13C spectrum, process and printStandard Sample - 100% CDCl3- remove test sample and replace with CDCl3 standard sample, lock and shim- reset spectrometer for next user- shutdown VNMR and logout from UNIX。
300兆核磁氢谱操作步骤1.装样。
将装有样品(1H谱: 1 ~ 40 mg)及适量氘代溶剂(约0.5 ml)的核磁管(溶液高度不低于3.5 cm)用绸布擦干净,插入转子中,用量规(高度定为1.8 cm)确定好高度。
2.放样。
打开磁体顶端的安全盖,在BSMS控制板上点击LIFT-ON/OFF (灯亮),听到磁体中部有气流声时,放入核磁管(切记:未听到气流声绝对不可放入样品!!!)。
再点击LIFT-ON/OFF(灯灭),样品进入磁体。
3.调实验指南。
点击菜单栏的Spectrometer,选Data Acquisition Guide,出现界面(左下图):4.建新实验。
点击“New Eexperiment”图标,出现界面(右上图):①NAME 输入测试者姓名(英文字母缩写)②EXPNO 实验采样号1(下一个样品就是2,依此类推)③USER 输入所在课题组名,一般以导师名。
④其余部分不改动。
注:如果已经建立了课题组文件夹(USER),则从左侧的数据浏览器中(D盘)找出USER及NAME并选中最后的实验号,点中鼠标左键直接拖入即可。
5.锁场。
点击Lock,回车,选择所用氘代试剂(如:CDCl3,Acetone,DMSO等);锁场需等待几分钟,待状态栏显示finished后,再进行下一步操作。
注: 连续测相同溶剂的样品时,其它样品锁场可在BSMS面板直接点击Lock On/Off 完成锁场。
6.匀场。
点击“shim”,选“Gradient Shimming”,在“Gradient Shimming”界面下点中“Start Gradient Shimming”,开始自动匀场,待状态栏“setsh”显示finished后,在新出现的“Shimming Results”界面下击点“OK”,自动匀场结束。
注:1.若状态栏有“Gradient Shimming”小图标,可直接点击进入。
2.等待匀场时可点击菜单栏的“Title”设定样品标题并保存。
核磁共振图谱课件核磁共振简介核磁共振现象核磁共振(NMR)是一种物理现象,指的是具有奇数个中子的原子核在外加磁场中会产生共振吸收特定频率的射频辐射。
最常见的核磁共振现象是氢原子的核磁共振,即氢核磁共振(^1H NMR)。
发展历史1946年,美国物理学家Bloch和Purcell独立发现了核磁共振现象。
此后,核磁共振技术得到了迅速发展,广泛应用于物理、化学、生物、医学等多个领域。
核磁共振的原理核磁共振的原理基于原子核的自旋和外加磁场之间的相互作用。
具有奇数个中子的原子核(如氢原子核)在外加磁场中会呈现出不同的能级,当射频辐射的频率与原子核的进动频率相原子核会吸收射频辐射,产生核磁共振信号。
核磁共振图谱核磁共振图谱的定义核磁共振图谱是一种用来表征样品中不同核素共振频率和强度信息的谱图。
它反映了样品中不同化学环境下的核磁共振信号,常用于分析化合物的结构、鉴定化合物和了解化合物的物理化学性质。
核磁共振图谱的主要参数1. 化学位移(δ):表示共振信号相对于参照标准的偏移量,化学位移的大小与原子核所处的化学环境有关。
2. 耦合常数(J):表示相邻原子核之间的耦合作用强度,反映了原子核之间的空间接近程度。
3. 积分强度:表示某个特定化学位移处的信号强度,与该化学位移处原子核的数目有关。
核磁共振图谱的类型1. 一维核磁共振图谱:最基本的核磁共振图谱,显示了一个检测器频率维度上的信号。
2. 二维核磁共振图谱:通过两个检测器频率维度上的信号进行绘图,可以提供更丰富的化学信息。
3. 三维核磁共振图谱:通过三个检测器频率维度上的信号进行绘图,具有更高的化学分辨率。
核磁共振图谱的解析核磁共振图谱的解析步骤1. 确定化学位移范围:根据样品的化学成分,确定核磁共振图谱的化学位移范围。
2. 寻找特征峰:在核磁共振图谱中寻找具有代表性的特征峰,这些峰对应于样品中的不同化学环境。
3. 分析耦合常数:根据耦合常数的大小,判断相邻原子核之间的连接方式,从而推断化合物的结构。
---------------------------------------------------------------最新资料推荐------------------------------------------------------300兆核磁操作步骤300 兆核磁操作步骤 BRUKER DPX 300 13C 谱: 100~300 mg)及适当氘代溶剂 (约1. 预备。
将装有样品(1H 谱: 1~40 mg;0.5 ml)的核磁管(溶液高度一般不低于 4cm)用绸布擦干净,插入转子中,用量规(1. 8cm) 量好高度。
2. 放样。
打开 BSMS 控制面板,点击 Lift On-Off(灯亮) ,听到磁体中部有气流声时,方可放入核磁管(切记:未听到气流声绝对不可放入样品!!! ) 。
再点击Lift On-Off(灯灭) 使样品进入磁体。
将 BSMS 面板最小化(点右上角小圆点) 。
3. 建立新的文件或查找已有文件。
键入 edc,回车,出现以下界面:Current data Parameter name of current data set Experiment number PROCNO 1 DU /u USER guest Owner of data TYPE nmr NAME EXPNO processed data number disk unit Data type ①Name 输入自己的姓名 (英文字母) ②Expno 实验采样号 1(下一个样品就是 2,依此类推) ③其余部分不需要改动。
④如果您已经建立了自己的文件名,则从 File 中点search 寻找自己的名字,点中最后的实验号,点 append 后再点1/ 5apply,将出现主界面 Xwin-nmr 将实验号改为新的号码,并保存。
4. 锁场。
键入 Lock 后回车,选择所用氘代试剂 (如:CDCl3, Acetone, DMSO 等) ,待主界面(Xwinnmr 下面) 显示finished 后,打开 Lock 和 BSMS 两个界面,点击 spin on-off,该灯亮而且不闪则表明样品旋转稳定。
300M核磁共振仪操作(1D谱)1、装样1、用抹布沿一个方向擦核磁管;用手拿着核磁管上侧,另一手捏着转子(勿捏着两白点处),垂直转入,使黑线为于液体一半处。
2、点击Acqi——eject;用右手拇指、食指捏住核磁管上方,中指、无名指夹住转子下方将核磁管插入使之浮在其中;点击insert,听到“嗒”、“嗒”两声的声音;点击close。
二、匀场1、输入j9。
2、点击Setup Exp后,在点击Find Z0,等听到“嘀”的一声。
3、点击Aqci,点击lock——on;观察lockl evel的数值,使之不低于30(可通过调整lock power和lock gain)。
4、输入gm;点击Autoshim On Z进行自动匀场;当rms error<1时完成自动匀场。
(如十次还不能完成,输入su再次重新匀场)5、点击Acqi,点击Spin on,达到20转后,观察lock level,是在60——80之间(可通过调整lock power和lock gain)(如果平台变为直线,输入su),然后lock关掉窗口。
三、1HNMR1、输入j1;2、点击Set up,选择Solvent和Basic 1D,Experiment:Proton 1D。
3、输入参数:lb=0 fn=np nt=8。
4、当转子转速达到20Hz时,输ga。
5、处理:输入wft aph dc点击pscale;选择合适的峰区(box/ ),用红线扩开(点击extant);找到溶剂峰,用红线置于其上,输入nl,点击Ref输入位移值;点击part integral,输入cz,点击Resets,进行细积分,点full integral,再点no integral;把红线至于某一积分段上,输入nl,点击Ref,输入积分值;输入vp=12 dpir ,看一比是否合适,不合适再设积分值;点Th,调整黄线高度,确定ppm最低见出限,再点Th使黄线消失;输入dpf,看位移;输入ds,显示处理后的图谱。