2021届广西钦州市学高三年级第一次月考考试理科数学试题Word版含解析
- 格式:doc
- 大小:2.16 MB
- 文档页数:14
3钦 州 市 、 崇 左 市 2021 届 高 三 第 一 次 教 学 质 量 监 测理 科 数 学 参 考 答 案一 、 (60 分 )1 .D ( 犃 = {狓 狘 狓 (狓 - 1 ) > 0 }, 解 得 狓 > 1 或 狓 < 0 , 故 犃 = (- ∞ ,0 ) ∪ (1 , + ∞ ),故 瓓 犝 犃 = [0 ,1 ]. 底 面 是 一 个 直 角 梯 形 , 犃 犇 ⊥ 犃 犅 , 犃 犇 ∥ 犅 犆 , 犃 犇 = 4 , 犃 犅 = 犅 犆 = 犘 犗 = 2 , 且 犘 犗 ⊥ 底面 犃犅犆犇 ,∴ 该 四 棱 锥 的 体 积 为 犞 = 1 犛 犃犅犆犇犺故 应 选 D .)2 .C (∵ 狕 = (i - 2 )(1 + i ) = i + i2 - 2 - 2i = - 3 - i , 因 此 复 数 狕 对 应 点 的 坐 标 为 (- 3 , - 1 ), 在 第 三 象 限 .故 应 选 C .)3 .A (由 题 意 ,若 犪 > 狘犫 狘 ,则 犪 > 狘犫 狘 ≥ 0 ,则 犪 > 犫 , 所 以 犪 狘 犪 狘 = 犪 2 , 则 犪 狘 犪 狘 > 犫 狘 犫 狘 成 立 ,当 犪 = 1 ,犫 = - 2 时 , 满 足 犪 狘 犪 狘 > 犫 狘 犫 狘 , 但 犪 > 狘 犫 狘 不 一 定 成 立 , 所 以 “ 犪 > 狘 犫 狘 ” 是“犪 狘 犪 狘 > 犫 狘 犫 狘 ” 的 充 分 不 必 要 条 件 .故 应 选 A .)4 .B ( 由 题 意 ,狔 2 = 4 狓 的 焦 点 犉 (1 ,0 ), 准 线为 狓 = - 1 , 设 抛 物 线 上 的 动 点 犘 (狓 0 ,狔 0 ), 根 据抛 物 线 的 定 义 可 知 ,狘 犘犉 狘 = 1 + 狓 0 ,因 为 狓 0 ∈ [0 , + ∞ ),所 以 狘 犘犉 狘 = 1 + 狓 0 ≥ 1 ,故 抛 物 线 狔 2 = 4 狓 上 的 点 与 其 焦 点 的 距 离 的 最 小 值 为 1 .故 应 选 B .)= 1 × (2 + 4 ) × 2 × 2 = 4 . 3 2 故 应 选 D .)烄 狓 + 狔 + 1 ≥ 08 .C ( 不 等 式 组 烅 3 狓 - 2 狔 + 6 ≥ 0 表 示 的 平烆 5 狓 + 狔 - 3 ≤ 0面 区 域 为 图 中 的 △ 犃犅犆 (包 括 边 界 ),5 .A (∵ 犗 犃→ ⊥ 犃 犅→ ,狘 犗 犃→ 狘 = 1 ,由 图 知 , 平 移 直 线 狕 = 狓 - 2 狔 , 当 经 过 点 犆 ∴ 犗 犃→ · 犃 犅→ = 犗 犃→ · (犃 犗→ + 犗 犅→ ) = - 狘 犗 犃→ 狘 2时 ,狕 狓 2 取 得 最 小 值 ,+ 犗 犃→ · 犗 犅→ = - 1 + 犗 犃→ · 犗 犅→ = 0 ,犗 犃→ · 犗 犅→ = 1 , = - 狔∴ 犗→犃 · (犗→犃 + 犗→犅 ) = 犗→犃 2 + 犗→犃 · 犗→犅 = 2 .易 得 犆 (0 ,3 ), 即 狕 = 0 - 6 = - 6 . 故 应 选 C .)故 应 选 A .) 116 .B (由 折 线 图 可 知 A 、D 项 均 正 确 ,该 年 第9 .C (犫 = log 32 ∈ (0 ,1 ), 犮 = 3 3 > 2 3 > 1 , 1 1 1一 季 度 G D P 总 量 和 增 速 由 高 到 低 排 位 均 居 同 一 位 的 省 份 有 江 苏 均 第 一 . 河 南 均 第 四 , 共 2 个 , 故 C 项 正 确 ; 今 年 浙 江 省 的 G D P 增 长 率 最 低 . 故 B 项 不 正 确 .故 应 选 B .)7 .D ( 根 据 三 视 图 可 得 直 观 图 为 四 棱 锥 犘 - 而 狔 = 狓 3 为 增 函 数 , 故 3 3 > 2 3 , 即 犮 > 犪 .故 犮 > 犪 > 犫 . 故 应 选 C .)10 .C ( 判 断 框 中 的 条 件 应 该 满 足 经 过 第 一 次 循 环 得 到 1 ,2犃犅犆犇 ,如 图 :经 过 第 二 次 循 环 得 到 1 2 经 过 第 三 次 循 环 得 到 1 2+ 2 ,3 + 2 + 3 ,3 4 …故 判 断 框 中 的 条 件 应 该 为 犛 = 犛 + 犻 .犻 + 1故 应 选 C .)+ 52 5 3 3 11 .C (∵ 犪 2 + 犫 2 - 犮 2 = 犪 犫 ,14 .1 ( 二 项 式 (犪 狓 2 +1 )5 展 开 式 的 通 项 为∴ 可 得 cos 犆 =犪 2 + 犫 2 - 犮 2 2犪犫 = 犪犫 12犪犫 =2 犜 狉 1 = 犆 狉犪 5 - 狉狓 槡狓10 - 5狉 , ∵ 犆 ∈ (0 ,π ),∴ 犆 = π,3令 10 - 5狉 = 0 , 则 2狉 = 4 . ∵ ∠ 犃 = π4 ,犮 = 3 ,∵ 二 项 式 (犪 狓 2 + 1 )5 展 开 式 中 的 常 数 项 由 正 弦 定 理 犪犮 , 可 得 : 犪 槡狓∴ 3 , 解 得犪 = 槡 6 .槡3 2sin 犃 = sin犆槡2 = 为 5 ,2∴ 犆 4 犪 5 - 4 = 5 . ∴ 犪 = 1 .)15 .3 + 2 槡 2 ( 函 数 狔 = 1+ 1 的 图 象 可 由狓 - 1故 应 选 C .)12 .A ( 如 图 , 连 结 犘 犉 2 、犗 犕 ,∵ 犕 是 犘 犉 1 的 狔 = 1狓向 右 平 移 1 个 单 位 , 再 向 上 1 个 单 位 得中 点 ,到 , 又 狔 = 1 狓是 奇 函 数 , 故 其 对 称 中 心 为 (0 ,0 ),故 犳 (狓 ) 的 对 称 中 心 为 (1 ,1 ),所 以 2 犪 + 犫 = 1 ,1 + 1 犪 犫 = (1 犪 + 1 )(2 犪 + 犫 ) = 3 + 犫犫 犪 + 2 犪犫≥ 3 + 2 槡 2, 当 且 仅 当 犫 = 槡 2 犪 时 等 号 成 立 .) 16 . [0 ,2 槡2 ](犳 (狓 ) = sin狓 cos狓 = 2 狘 sin狓∴ 犗 犕 是 △ 犘 犉 1 犉 2 的 中 位 线 ,∴ 犗犕 ∥ 犘犉 2 ,且 狘 犘犉 2 狘 = 2 狘 犗犕 狘 = 2犪 . - cos狓 狘 = 2 槡 2 狘 sin (狓 - π4) 狘 ∈ [0 ,2 槡 2 ].)∵ 犘 犉 1 与 以 原 点 为 圆 心 犪 为 半 径 的 圆 相 切 , ∴ 犗犕 ⊥ 犘犉 1 ,可 得 犘犉 2 ⊥ 犘犉 1 , △ 犘犉 1犉 2 中 ,狘 犘犉 1 狘2 + 狘 犘犉 2 狘2 = 狘 犉 1犉 2 狘2, 三 、 (70 分 )17 . (1 ) 由 题 知 ,犪 2 = 16 ,∴ 犪 1 = 犛 1 = 犪 - 4 2= 4 , ①3……………………………… 1 分 根 据 双 曲 线 的 定 义 ,得 狘 犘犉 1 狘- 狘 犘犉 2 狘 = 2犪 , ∴ 狘 犘 犉 1 狘 = 狘 犘 犉 2 狘 + 2 犪 = 4 犪 , 代 入 ① 得 ∴ 3犛狀 = 犪狀 + 1 - 4 ,∴ 犛 = 1 犪 狀 + 1 - 4 ,(4 犪 )2 + (2 犪 )2 = 狘 犉 1 犉 2 狘 2 ,1 4∴ (2 犮 )2 = 狘 犉 1 犉 2 狘 2 = 20 犪 2 , 解 之 得 犫 = 当 狀 ≥ 2 时 ,犛 狀 - 1 = 3 犪 狀 - 3 ,2犪 .由 此 可 得 双 曲 线 的 渐 近 线 方 程 为 狔 = ± 2狓 .故 应 选 A .) 两 式 相 减 可 得 犪 狀= 1 犪 3 狀 + 1 - 1犪狀 3,即 犪 狀 + 1 = 二 、 (20 分 )4犪狀 , ………………………………………… 4 分13 . - 1( 因 为 α ∈ (π ,3 π ),sinα = 4 , 所因 为 犪 2 = 4 , 数 列 {犪 狀 } 为 等 比 数 列 , 首 项 为7以 α ∈ (π ,π 2 2 2 ), 所 以 tanα = - 4,3 5 犪 14 ,公 比 为 4 ,所 以 通 项 公 式 为 犪狀 = 4 狀 ,狀 ∈ 犖 .………………………………………… 6 分 tanα + tan π(2 )犫狀 = log 2犪狀 = log 24 狀 = 2狀 ,则 tan (α + π ) = 4 =1 1 1 14 1 - tanαtan π4∴ = =( - 犫狀犫 狀 + 1 2 狀 × 2 (狀 + 1 ) 4 狀- 4 + 1 1 ), …………………………………… 8 分 3 = - 1 .)狀 + 11 +4 7 3 ∴ 犜 狀 = 1 4 (1 - 1 2 + 1 - 1 2 3+ … + 1 -狀 , 狀1 1 犆 1 2 =5= 5 = 5犮21 ) = 1(1 - 1 ) =狀 … 11 分2 ,0 ), 犈 (0 ,1 ,1 ), 犆 犈→ = (- 2 ,1 ,1 ),犆犅→ = (- 2 , 狀 + 1 4 狀 + 1 4 (狀 + 1 )2 ,0 ),犅犆→= (2 ,2 ,0 ), …………………… 6 分∴ 犜 2020 = 505…………………… 12 分 设 平 面 犆 犅 1 犈 的 法 向 量 为 狀 = (狓 ,狔 ,狕 ), 2021狀 · 犆 犈→ = - 2 狓 + 狔 + 狕 = 0 18 .(1 ) 抽 取 的 5 人 中 男 员 工 的 人 数 为 545 由 {狀 · 犆犅→= - 2狓 + 2狔 = , 取 狓 = 1 , 027 = 3 ,女 员 工 的 人 数 为 5× 18 = 2 . ……… 4 分得 狀 = (1 ,1 ,1 ), ………………………… 9 分设 直 线 犅 犆 1 与 平 面 犅 1 犆 犈 所 成 角 为 θ ,狘 狀 ·犅犆→ 狘(2 ) 由 (1 45) 可 知 , 抽 取 的 5 名 员 工 中 , 有 男 员 则 sinθ = 狘cos < 狀 ,犅犆→ > 狘 =1狘 狀 狘狘 犅犆→狘 工 3 人 ,女 员 工 2 人 .所 以 , 随 机 变 量 犡 的 所 有 可 能 取 值 为 0 ,1 ,= 狘 2 × 1 + 2 × 1 狘= 4 = 槡 6 , 槡 1 + 1 + 1 × 槡 4 + 4 + 0 2 槡6 32 .…………………………………………… 6 分即 直 线与 平 面 所 成 角 的 正 弦 值 为 槡 6 犆 3 犆 0 1犅犆 1 3 .根 据 题 意 ,犘 ( 犡 = 0 ) =3 23 10,犘 ( 犡 = ………………………………………… 12 分犆 2 犆 1 6 犆 1 · 犆 2 3犪 = 2 1 ) = 3 2 3 10 ,犘 ( 犡 = 2 ) = 3 2 3 10 烄 烄 犪 = 2 1 随 机 变 量 的 分 布 列 是 :20 .(1 ) 由 题 意 知 烅 犪 = 2烅 犮 = 1 , 烆 犪 2 = 犫 2 + 犮 2 烆犫 = 槡 3 ………………………………………… 3 分由 于 椭 圆 焦 点 在 狓 轴 上 , 所 以 椭 圆 犆 的 方 程 为 狓 2 狔2 …………………………… 分 数 学 期 望 犈 犡 = 0 + 1 × 6 + 2 × 3 = 6 .4 + 3= 1 .4 10 105犿 2 狀 2…………………………………………… 10 分(2 ) 设 犘 ( 犿 ,狀 ), 则 犙 ( 犿 , - 狀 ), +=4 3 (3 )狊2 = 狊2 . ………………………… 12 分 1 狀 2 = 3 (1 -犿 ). ……………………… 6 分 19 . (1 )∵ 犃 犅 ⊥ 平 面 犅 犆 犆 1 犅 1 , 在 三 棱 柱 犃 犅 犆 - 犃 1 犅 1 犆 1 中 , 有 犃 犅 ∥ 犃 1 犅 1 ,∴ 犃 1 犅 1 ⊥ 平 面 犅 犆 犆 1 犅 1 , 得 犃 1 犅 1 ⊥ 犅 犆 1 ,………………………………………… 2 分 4依 题 意 可 知 - 2 < 犿 < 2 , 且 犿 ≠ 0 . 直 线 犃 犘 的 方 程 为 狔 = 狀 (狓 + 2 ), 直 线犿 + 2∵ 四 边 形 犅犆犆 1 犅 1 是 边 长 为 2 的 正 方 形 , ∴ 犅 犆 1 ⊥ 犅 1 犆 , 而 犃 1 犅 1 ∩ 犅 1 犆 = 犅 1 ,犅 犙 的 方 程 为 狔 = 狀 (狓 - 2 ). 2 - 犿 ……… 8 分∴ 犅 犆 1 ⊥ 平 面 犃 1 犅 1 犆 ; ……………… 4 分 烄 狔 = 狀 (狓 + 2 ) 烄 狓 = 4(2 ) 由 (1 ) 知 , 犃 犅 ⊥犅犅 1 ,平 面 犅犆犆1犅 1 ,又 犅犆 ⊥由 犿 + 2 解 得 犿,烅 狔 = 狀 (狓 - 2 ) 烅 狔 = 2 狀烆 2 - 犿 烆犿 ∴ 以 犅 为 坐 标 原 点 , 分 别 以 犅 犆 ,犅 犅 1 ,犅 犃 所 在 直 线 为 狓 ,狔 ,狕 轴 , 建 立 如 图 所 示 的 空 间 直 即 犕 (4 犿 ,2 狀 ) 犿. ……………………… 11 分角 坐 标 系 ,所 以 犘 , 犕 两 点 的 横 坐 标 之 积 为 犿 · 4 犿4 . ………………………………………… 12 分21 . (1 ) 由 题 可 知 犳 (狓 ) 的 定 义 域 为 (0 ,+ ∞ ),……………………………………… 1 分函 数 犳 (狓 ) = 1 狓 2 + ln 狓 ,犳 ′ (狓 ) = 狓 + 1 > 2 狓0 ,则 犅 (0 ,0 ,0 ), 犆 (2 ,0 ,0 ), 犅1(0 ,2 ,0 ), 犆 1 (2 ,所 以 函 数 犳 (狓 ) 在 区 间 [1 ,犲 ] 上 是 增 函 数 .11 1犆 犆 ×. =犡 0 1 2 犘1 106 103 10………………………………………… 3分{犳 (狓 ) 在 区 间 [1 ,犲 ] 上 的 最 大 值 为 犳 (犲 ) = 代 入 圆 的 方 程 得 (3槡3 狋 )2(1 狋 )2 4 .1 2, 最 小 值 为 ( ) 1 ………… 分+2 +2=2犲 + 1犳 1 = 2 . 5 ………………………………………… 7 分 (2 )犳 (狓 ) > (1 - 犪 )狓 2 , 令 犵 (狓 ) = 犳 (狓 )- (1 整 理 得 :狋 2 + 3 槡 3 狋 + 5 = 0 ,狋 1 + 狋 2 = - 3 槡 3 , - 犪 )狓 2 = ln 狓 + (犪 - 121)狓 2 ,犵 ′ (狓 ) = (2 犪 - 1 )狓狋1狋2 = 5 . 由 狋1+ 狋2 <0 且 狋 1 狋 2 > 0 ,………… 9 分+ 狓. ……………………………………… 6 分 可 知 狘 犘犃 狘+ 狘 犘犅 狘 = 狘 狋1 狘+ 狘 狋2 狘 = - (狋1当 1 时 , ( ) , ( )1 + 狋2 ) = 3 槡 3 . …………………………… 10 分犪 ≥ 2 犵 ′ 狓 > 0 犵 1 = 犪 - 2≥23 .(1 )∵ 狘 2 狓 + 3 狘 - 狘 狓 - 1 狘 ≤ 3 ,0 , 显 然 犵 (狓 ) > 0 有 解 .1………………… 8 分 1 ∴ 狓 ≥ 12 狓 + 3 - 狓 + 1 ≤ 3当 犪 < 2 时 , 由 犵 ′ (狓 ) = (2 犪 - 1 )狓 + 狓=烄- 3< 狓 < 1 0 得 狓 =1 , 或 烅2 槡 1 - 2 犪当 狓 ∈ (0时 ,犵′(狓 ) > 0 , 烆 2 狓 + 3 + 狓 - 1 ≤ 3 烄 狓 ≤ - 3或烅2 . ………… 3 分 当() 时 , ( ) ,烆 - 2 狓 - 3 + 狓 - 1 ≤ 3狓 ∈+ ∞ 犵′ 狓 < 0 狓 ≥ 1 烄 - 3 < 狓 <1 2烄 狓 ≤ - 3 故 犵 (狓 ) 在 狓 =处 取 得 最 大 值∴ {狓 ≤ - 1 或 烅 1 或 烅 2 .1 -2犪 烆 狓 ≤ 3烆 狓 ≥ - 7 犵 (= - 1-1 ln (1 -2 犪 ).∴ - 7狓 1 . …………………… 5 分 2 2≤≤ 3若 使 犵 (狓 ) > 0 有 解 , 只 需 - 1 2 - 1ln (1 -2即 不 等 式 犳 (狓 ) ≤3 的 解 集 为 [- 7 ,1].32 犪 ) > 0 ,解 得 犪 > 1 - 1 .22犲………………………………………… 6 分 (2 )犳 (狓 ) > 2犪 - 狘 2狓 - 2 狘 ,得 狘 2狓 + 3 狘+ 狘 2 狓 - 2 狘 > 2 犪 . ………………………… 7 分结 合 犪 < 12, 此 时 犪 的 取 值 范 围 为 (1 2 - 1 ,2犲∵ 狘 2 狓 + 3 狘 + 狘 2 狓 - 2 狘 ≥ 狘 2 狓 + 3 - 2 狓 +1 ). ………………………………………11 分 22 狘 = 5 , 当 且 仅 当 - 32≤ 狓 ≤ 1 取 “= ”. ……综 上 所 述 ,犪 的 取 值 范 围 为 (1- 1,+ ∞ ). ………………………………………… 9 分52 2犲∴ 2 犪 < 5 ,犪 < 2.…………………………………………… 12 分22 .(1 ) 由 ρ = 4sinθ 得 ρ 2 = 4ρsinθ , …… 所 以 实 数 犪 的 取 值 范 围 是 (- ∞ ,5 ). …2 ………………………………………… 2 分从 而 有 狓 2 + 狔 2 = 4 狔 , 即 狓 2 + (狔 - 2 )2 = 4 .……………………………………………… 4 分(2 ) 设 直 线 犾 的 参 数 方 程 为………………………………………… 10 分烄 狓 = 3 + 狋 cos π6 烄 狓 = 3 + 槡 3 狋 ,即 2 . …… 5 分 烅 狔 = 2 + 狋 sin π烆 6 烅 1 狔 = 2 + 狋烆2。
广西省钦州市2021届新高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆22y a +22x b =1(a>b>0)与直线1y a x b -=交于A ,B 两点,焦点F(0,-c),其中c 为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( ) A.2B.2C.14D.14【答案】A 【解析】 【分析】联立直线与椭圆方程求出交点A ,B 两点,利用平面向量垂直的坐标表示得到关于,,a b c 的关系式,解方程求解即可. 【详解】联立方程222211y x a b y x a b⎧+=⎪⎪⎨⎪-=⎪⎩,解方程可得0x y a =⎧⎨=⎩或0x b y =-⎧⎨=⎩,不妨设A(0,a),B(-b ,0),由题意可知,BA u u u r ·BF u u u r=0,因为(),BA b a =u u u r ,(),BF b c =-u u u r,由平面向量垂直的坐标表示可得,0b b ac ⋅-=, 因为222b a c =-,所以a 2-c 2=ac , 两边同时除以2a 可得,210e e +-=, 解得e=2或12e -=,所以该椭圆的离心率为2. 故选:A 【点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于,,a b c 的关系式是求解本题的关键;属于中档题、常考题型. 2.已知集合{(,)|A x y y ==,{}(,)|2B x y y x ==,则A B I 中元素的个数为( )A .3B .2C .1D .0【答案】C 【解析】 【分析】集合A 表示半圆上的点,集合B 表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数. 【详解】由题可知:集合A 表示半圆上的点,集合B 表示直线上的点,联立y 2y x =,2x =,整理得215x =,即x =±,当x =时,20y x =<,不满足题意;故方程组有唯一的解55⎛⎫⎪ ⎪⎝⎭.故A B ⎧⎫⎪⎪⋂=⎨⎬⎪⎪⎝⎭⎩⎭. 故选:C. 【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.3.已知定义在R 上的函数()f x 的周期为4,当[2,2)x ∈-时,1()43xf x x ⎛⎫=-- ⎪⎝⎭,则()()33log 6log 54f f -+=( )A .32B .33log 22- C .12-D .32log 23+ 【答案】A 【解析】 【分析】因为给出的解析式只适用于[2,2)x ∈-,所以利用周期性,将3(log 54)f 转化为32(log )3f ,再与()3log 6f -一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】Q 定义在R 上的函数()f x 的周期为43332(log 54)(log 544)(log )3f f f ∴=-=,Q 当[2,2)x ∈-时,1()()43x f x x =--,3log 6[2,2)-∈-,32log [2,2)3∈-,()()33log 6log 54f f ∴-+332log log 6333112()(log 6)4()log 4333-=---+-- 11333log 6log 233112()()(log 6log )8333=++--3336log (6)822=++⨯-32=. 故选:A. 【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题. 4.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤ ⎥⎝⎦B .59,610⎛⎤ ⎥⎝⎦C .715,816⎛⎤ ⎥⎝⎦D .1531,1632⎛⎤ ⎥⎝⎦【答案】C框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【详解】第一次循环:1,22S n ==;第二次循环:2113,3224S n =+==;第三次循环:231117,42228S n =++==;第四次循环:234111115,5222216S n =+++==; 此时满足输出结果,故715816P <≤. 故选:C. 【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 5.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( )A .2B .0C .1-D .1【答案】D 【解析】 【分析】推导出函数()y f x =是以4为周期的周期函数,由此可得出()()20200f f =,代值计算即可. 【详解】由于偶函数()y f x =的图象关于点()1,0对称,则()()f x f x -=,()()20f x f x ++-=,()()()2f x f x f x ∴+=--=-,则()()()42f x f x f x +=-+=,所以,函数()y f x =是以4为周期的周期函数,由于当10x -≤≤时,()21f x x =-+,则()()()2020450501f f f =⨯==.故选:D. 【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.6.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12B .2C D【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果. 【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点, 故可得120F A M x x x +==,故可得A x c =;代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=,故可得A 点的坐标为2,b c a ⎛⎫⎪⎝⎭,则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭,将B 点坐标代入椭圆方程得225a c = 故选:D. 【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题. 7.将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后,所得图象关于y 轴对称,则ϕ的最小正值是( ) A .8π B .34π C .2π D .4π 【答案】D 【解析】 【分析】由函数()sin y A ωx φ=+的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于ϕ的方程,对k 赋值即可求解. 【详解】由题意知,函数()sin(2)f x x ϕ=-的最小正周期为22T ππ==,即88T π=, 由函数()sin y A ωx φ=+的图象平移变换公式可得,将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后的解析式为 ()sin 2sin 284g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=--=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为函数()g x 的图象关于y 轴对称, 所以,42k k z ππϕπ--=+∈,即3,4k k z πϕπ=-+∈, 所以当1k =时,ϕ有最小正值为4π. 故选:D 【点睛】本题考查函数()sin y A ωx φ=+的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型. 8.关于函数22tan ()cos 21tan xf x x x=++,下列说法正确的是( )A .函数()f x 的定义域为RB .函数()f x 一个递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦ C .函数()f x 的图像关于直线8x π=对称D .将函数2y x =图像向左平移8π个单位可得函数()y f x =的图像 【答案】B 【解析】 【分析】化简到()24f x x π⎛⎫=+ ⎪⎝⎭,根据定义域排除ACD ,计算单调性知B 正确,得到答案.【详解】22tan ()cos 2sin 2cos 221tan 4x f x x x x x x π⎛⎫=+=+=+ ⎪+⎝⎭,故函数的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,故A 错误; 当3,88x ππ⎡⎤∈-⎢⎥⎣⎦时,2,224x πππ⎡⎤+∈-⎢⎥⎣⎦,函数单调递增,故B 正确;当4πx =-,关于8x π=的对称的直线为2x π=不在定义域内,故C 错误.平移得到的函数定义域为R ,故不可能为()y f x =,D 错误. 故选:B . 【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.9.据国家统计局发布的数据,2019年11月全国CPI (居民消费价格指数),同比上涨4.5%,CPI 上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI 上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是( )A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18% 【答案】D 【解析】 【分析】A.从第一个图观察居住占23%,与其他比较即可.B. CPI 一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI 一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI 一篮子商品中所占权重约为2.1%+2.5%=4.6%. 【详解】A. CPI 一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI 一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI 一篮子商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI 一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误. 故选:D 【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.10.已知向量()34OA =-u u u v ,,()15OA OB +=-u u u v u u u v ,,则向量OA u u u r 在向量OB uuu r上的投影是( )A .B .C .25-D .25【答案】A 【解析】 【分析】先利用向量坐标运算求解OB uuu v ,再利用向量OA u u u v 在向量OB uuu v上的投影公式即得解 【详解】由于向量()34OA =-u u u v ,,()15OA OB +=-u u u v u u u v, 故()21OB =u u u v,向量OA u u u v 在向量OB uuu v上的投影是OA OB OB⋅==u u u v u u u vu u u v . 故选:A 【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.11.()252(2)x x -+的展开式中含4x 的项的系数为( ) A .20- B .60 C .70 D .80【答案】B 【解析】 【分析】展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,由二项式的通项,可得解 【详解】由题意,展开式中含4x 的项是由5(2)x +的展开式中含4x 和2x 的项分别与前面的常数项2-和2x 项相乘得到,所以()252(2)x x -+的展开式中含4x 的项的系数为1335522260C C -⨯+⨯=.故选:B 【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.12.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .4【答案】C 【解析】 【分析】根据等差数列的求和公式即可得出. 【详解】 ∵a 1=12,S 5=90, ∴5×12+542⨯ d=90, 解得d=1. 故选C . 【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
广西钦州市高三元月调考数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)定义集合A、B的一种运算:A*B={x|x1×x2 ,其中x1∈A,x2∈B},若A={1,2,3,5},B={1,2},则A*B中的所有元素之和为为()A . 30B . 31C . 32D . 342. (2分) (2017高二下·安阳期中) 复数z1=1+bi,z2=﹣2+i,若的实部和虚部互为相反数,则实数b 的值为()A . 3B .C . ﹣D . ﹣33. (2分)下图是求x1 , x2 , ...,x10的乘积S的程序框图,图中空白框中应填入的内容为()A . s=s*(n+1)B . s=s*xnC . s=s*xn-1D . s=s*n4. (2分)(2017·南充模拟) 已知函数f(x)是定义在R上的偶函数,且f (2﹣x)=f(x)当x∈[0,1]时,f (x)=e﹣x ,若函数y=[f (x)]2+(m+l)f(x)+n在区间[﹣k,k](k>0)内有奇数个零点,则m+n=()A . ﹣2B . 0C . 1D . 25. (2分) (2018高一下·北京期中) 同时投掷两枚骰子,计算向上的点数之和,则以下各数出现概率最大的是()A . 5B . 6C . 76. (2分)已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A .B .C .D .7. (2分)(2017·鄂尔多斯模拟) 二项式(x﹣)n(n∈N*)的展开式中存在常数项的一个充分条件是()A . n=5B . n=6C . n=7D . n=98. (2分) (2017高二下·赣州期末) 定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A . 0B . 6C . 129. (2分) (2019高三上·葫芦岛月考) 已知定义在R上的函数满足,且的图象关于点对称,当时,,则()A .B . 4C .D . 510. (2分) (2016高二上·三原期中) 设0<a<b,则下列不等式中正确的是()A . a<b<<B . a<<<bC . a<<b<D . <a<<b11. (2分)等轴双曲线(a>0,b>0)的右焦点为F(c,0),方程ax2+bx-c=0的实根分别为x1和x2 ,则三边长分别为|x1|,|x2|,2的三角形中,长度为2的边的对角是()A . 锐角B . 直角C . 钝角D . 不能确定12. (2分) (2019高三上·安徽月考) ()A .B .C .D .二、填空题: (共4题;共4分)13. (1分)(2017·银川模拟) 如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为________.14. (1分)设x∈(0,π),则f(x)=cos2x+sinx的最大值是________15. (1分) (2016高一下·湖北期中) 如图,在△ABC中,已知∠BAC= ,| |=2,| |=3,点D 为边BC上一点,满足 +2 =3 ,点E是AD上一点,满足 =2 ,则| |=________.16. (1分) (2017高一上·汪清期末) 如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有________个直角三角形.三、解答题: (共7题;共65分)17. (10分)(2020·泉州模拟) 记为数列的前n项和.已知, .(1)求的通项公式;(2)设,求数列的前n项和 .18. (5分)如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.19. (15分) (2016高一下·福州期中) 某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.20. (5分)(2018·南充模拟) 已知椭圆的左焦点左顶点.(Ⅰ)求椭圆的方程;(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.21. (10分) (2017高二下·淄川期中) 已知函数f(x)=ex﹣mx,(1)求函数f(x)的单调区间.(2)若函数g(x)=f(x)﹣lnx+x2存在两个零点,求m的取值范围.22. (10分) (2016高三上·西安期中) 已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|= ,求直线的倾斜角α的值.23. (10分) (2017高一上·山西期末) 某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益与投资成正比,其关系如图1所示;投资股票等风险型产品B的收益与投资的算术平方根成正比,其关系如图2所示(收益与投资单位:万元).(1)分别将A、B两种产品的收益表示为投资的函数关系式;(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共65分) 17-1、17-2、18-1、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
2021年广西壮族自治区钦州市市湾中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 执行如图所示的程序框图,输出的S值为( )A.1 B.C.D.参考答案:C考点:程序框图.专题:算法和程序框图.分析:从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.解答:解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选C.点评:本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.2. 下列叙述中,正确的个数是()①命题p:“?x∈[2,+∞),x2﹣2≥0”的否定形式为¬p:“?x∈(﹣∞,2),x2﹣2<0”;②O是△ABC所在平面上一点,若?=?=?,则O是△ABC的垂心;③在△ABC中,A<B是cos2A>cos2B的充要条件;④函数y=sin(2x+)sin(2x)的最小正周期是π.A.1 B.2 C.3 D.4参考答案:B【考点】命题的真假判断与应用.【分析】求出命题p的否定形式可判断①,由已知条件得到OB⊥AC,同理可得O是△ABC三条高线的交点可判断②,由二倍角公式和正弦定理可判断③,直接求出函数y=sin(2x+)sin(2x)的最小正周期可判断④.【解答】解:对于①,命题p:“?x∈[2,+∞),x2﹣2≥0”的否定形式为¬p:“?x∈[2,+∞),x2﹣2<0”,故①错误;对于②,由?=?,得到,又,得,可得OB⊥AC,因此,点O在AC边上的高BE上,同理可得:O点在BC边上的高AF和AB边上的高CD上,即点O是△ABC三条高线的交点,因此,点O是△ABC的垂心,故②正确;对于③,在△ABC中,cos2A>cos2B?1﹣2sin2A>1﹣2sin2B?sin2A<sin2B?sinA<sinB?a<b?A<B,∴“A<B”是“cos2A>cos2B”的充要条件,故③正确;对于④,y=sin(2x+)sin(2x)=,∴T==,故④错误.∴正确的个数是:2.故选:B.3. (2016郑州一测)设(是虚数单位),则()A.B.C.D.0参考答案:C.4. 若函数|(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则 ( )A |(x)与g(x)均为偶函数B |(x)为偶函数,g(x)为奇函数C |(x)与g(x)均为奇函数D |(x)为奇函数,g(x)为偶函数参考答案:B5. 如图所示,输出的n为()A.10 B.11 C.12 D.13参考答案:D【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量n的值,并输出满足条件:“S<0“的n的值.模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:n=1,S=﹣满足条件S<0,执行循环体,依此类推,n=12,S=满足条件S<0,执行循环体,n=13,S=+不满足条件S<0,退出循环体,最后输出的n即可.故选D.【点评】本题主要考查了当型循环结构,根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.6. 执行如图所示的程序框图,则输出s的值为 ( )A.30 B.31 C.62 D.63参考答案:A7. 如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50m,,后,就可以计算出A,B两点的距离为()A.B.C.D.参考答案:A8. 在△ABC中,D为BC边的中点,若=(2,0),=(1,4),则=( )A.(﹣2,﹣4)B.(0,﹣4)C.(2,4)D.(0,4)参考答案:D 考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据向量的几何意义和向量的坐标运算计算即可解答:解:=﹣=﹣=(1,4)﹣(2,0)=(1,4)﹣(1,0)=(0,4),故选:D.点评:本题考查了向量的坐标运算,属于基础题.9. 要得到函数y=2sin(2x﹣)的图象,只需将函数y=2sin2x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位参考答案:D考点:函数y=Asin(ωx+φ)的图象变换.专题:作图题.分析:y=2sin(2x﹣)=2sin2(x﹣),根据平移规律:左加右减可得答案.解答:解:y=2sin(2x﹣)=2sin2(x﹣),故要得到y=2sin(2x﹣)的图象,只需将函数y=2sin2x的图象向右平移个单位,故选D.点评:本题考查三角函数图象的平移变换,该类题目要注意平移方向及平移对象.10. 对定义域分别为D1,D2的函数,规定:函数若,则的解析式=。
保密★启用前钦州市、崇左市 20 21 届高三第一次教学质量监测理科数学注意事项:1. 本卷共 150 分,考试时间120 分钟.答卷前,考生务必将自己的 姓名 、考生号等填写在答题 卡和试卷指定位置上.2. 回答选择题时选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用 橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上 ,写在本试卷上无效.3. 考试结束,将本试题和答题卡一并交回.一、选择题:本题共12 小题,每小题 5 分,共 60 分 在每小题给出的四个选项中,只有一项是符合题 目要求的.1. 已知全集 U = R , 集合A = {x | x (x -1) >0}, 那么集合C U AA. (-∞,0] U [l , +∞)B.(-∞,0) U (1,+∞)C.(0,1) D .[0,1]2. 在复平面内,复数z = ( i -2 ) (1 + i) 对应的点位于A.第一象限B. 第二象限C.第三象限D.第四象限3. 已知a , b ∈R , 则“a >|b |”是“a | a |> b | b |”的A.充分不必要条件B. 必要不充分条件C.充要条件 D . 既不充分也不必要条件4. 抛物线24y x =上的点与其焦点的距离的最小值为 A.2 B.1 C.116 D. 125. 若,||1OA AB OA ⊥=,则()OA OA OB ⋅+=A. 2 B . 1 C . -1 D.06. 图 1 所示是某年第一季度五省 GDP 情况图,则下列说法中不正确...的是A.该年第一季度 GDP 增速由高到低排位第 3 的是山东省B.该年第一季度浙江省的 GDP 总量最低C.该年第一季度 GDP 总量讯和增速由高到低排位均居同一位次的省份有 2 个D.与去年同期相比,该年第一季度的 GDP 总量实现了增长 7. 某四棱锥的三视图如图 2 所示,则该四棱锥的体积为A.2B.2 2C.2 3D.48. 已 知 实 数 x , y 满足不等式 组11,3260,530,x y x y x y ++≥⎧⎪-+≥⎨⎪+-≤⎩则目标函数 x - 2y 的最小值为 (A. -4B. 145-C. -6D.-7 9. 设113332,log 2,3a b c ===,则A. c > b > aB. a > c > b C . c > a > b D.a >b >c 10. 如图 3 是求数列123457,,,,,,234568…前 6 项和的程序框图,则① 处应 填入的内容为 A. 1i S S i =-+ B. 1i S S i =-- C. 1i S S i =++ D. 1i S S i =+- 11. 在△ABC 中,∠ A = π4,a 2+b 2 - c 2 = ab , c = 3 , 则 a = A.2 B.5C. 6D.312. 双曲线2222:1(0,0)x y C a b a b-=>>的 左 、右焦点分别为F 1、F 2,P 为双曲线C 的右支上一点.以O 为圆心 a 为半径的圆与 PF 1相切于点 M ,且PM = F 1M , 则该双曲线的渐近线为A.y =±2xB.y =±xC. y=±3xD.y =±3x二、填空题:本 题 共 4 小 题 ,每小题 5 分,共 20 分.13. 已知 a π3π4(,),sin 225α∈=,则πtan()4α+= . 14. 二项式25()ax x +展开式中的常数项为 5 , 则实数a = . 15. 直 线 2a .x 十 by - l =0 (a > 0 ,b > 0) 过函数111y x =+-图象的对称中心,则11a b +的最小值为 .16. 对任意两实数 a , b , 定义运算“*”:2,,2,,a b a b a b b a a b -≥⎧*=⎨-<⎩则函数 f ( x ) = sin x *cos x 的值域为 .三、解答题:共 70 分 解答应写出 文字说明 、证明过程或 演算 步骤.第1 7~21 题为必考题 ,每个试 题考生都必须作答.第 22、23 题为选考题 ,考生根 据要求作答.( 一)必考题:共 60 分.17. ( 本小 题 满分 12 分)已知数列{}n a 的前n 项和为S n ,且2116,34n n a S a +==-.(1) 求数列{}n a 的通项公式;(2) 若2log n n b a =,求数列11{}n n b b +的前2020项和T 2020.18. ( 本小题满分 12 分)某单位共有员工 45人,其中男员工 27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的 方法抽取 5 名员工进行 考核.(1 ) 求抽取的 5 人中男、女员工的人数分别是多少; ( 2) 考核前,评估小组从抽取的 5 名员工中,随机选出 3 人 进行访谈.设选出的 3人中女员工人数为 X , 求随机变量 X 的分布列和数学期望;( 3 ) 考核分笔试和答辩两项.5 名员工的笔试成绩分别为78 , 85 , 89 , 92 , 96 ; 结合答辩情况,他们的考核成绩分别为 95 , 88 , 102, 106 , 99.这5名员工笔试成绩与考核成绩的方差分别记2212,s s ,试比较21s 与 22s 的大小.(只需写出结论)19. (本小题满分12分)如图4,在三棱柱 ABC -A 1B 1C 1中,四边形 BCC 1B 1是边长为2的正方形,AB ⊥平面BCC 1B 1,AB = 1, 点 E 为棱 AA 1 的中点.(1 ) 求证 ,BC 1⊥平面 A 1B 1C 1;(2 ) 求直线 BC 1与平面B 1CE 所成角的正弦值.20. ( 本小题 满分 12 分)如图 5 , 已知焦点在x 轴上的 椭圆 C 的长轴长为4, 离心率为12. (1) 求椭圆 C 的方程;(2) 设O 为原点,椭圆 C 的左、右两个顶点分别为 A 、B ,点 P 是椭圆上与A ,B 不重合的任意一点 ,点 Q 和点 P 关于x 轴对称,直线 AP 与直线 BQ 交于点 M , 求证: P , M 两点的横坐标 之积为定 值.21. ( 本小题 满分 12 分)已知函数 21()ln 2f x x x =+. (1 ) 求函数f (.x ) 在区间[1 ,e] 上的最大值和最小值;(2 ) 若 f ( x ) > (l -a ) x 2有解,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23 题中任选一 题作答,如果多做,则按所做的第一题计分.22. ( 本小题 满分 10 分)[选修 4-4 : 坐标系与参数方程]在平面直角 坐标系内,直线 l 过点 P ( 3 , 2) , 且倾斜角 a = π6,以坐标原点 O 为极点 ,x 轴的非负半轴为极轴建立极坐标系,已知圆 C 的极坐标方 程为=4sin ρθ..(1) 求圆 C 的直角坐标方程1(2) 设直线l 与圆C 交于A , B 两点,求| PA |+| PB |的值.23. (本小题 满分10 分)[选修 4- 5 , 不等式选讲]已知函数()|23|f x x =+.(1 ) 求不等式()3|1|f x x ≤+-的解集 ,( 2) 若不等式()2|22|f x a x >--对任意x ∈R 恒成 立,求实数a 的取值范围.。
广西钦州一中2021届高三数学8月月考试题 理一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,若(1)2z i i ⋅+=,则z =( )A . 2B .2C .1D .2 2.已知集合{|24},{|lg(2)}A x x B x y x =-<<==-,则()R A C B ⋂=( ) A .(2,4)B .(﹣2,4)C .(﹣2,2)D .(﹣2,2]3.已知向量()3,1a =,(),2b m m =+,若//a b ,则m =( ) A .-12B .-9C .-6D .-34.已知12313log 2a b -==,,121log 3c =,则a ,b ,c 的大小关系是( ) A .a c b >>B .c a b >>C .a b c >>D .c b a >>5.函数3()2xy x x =-的图像大致是( )A. B. C. D.6.设函数()f x 是定义在R 上的偶函数,(1)1f =,当[0,)x ∈+∞时,()f x 单调递增,则不等式()21f x ->的解集为( )A .{1x x <或}3x > B .{}13x x << C .{}12x x << D .{}02x x <<7.如图是为了求出满足321000->n n 的最小偶数n ,那么在和两个空白框中,可以分别填入( )A.1000>A 和1=+n nB.1000>A 和2=+n nC.1000≤A 和1=+n nD.1000≤A 和2=+n n8.函数()()02f x sin x πωϕωϕ⎛⎫=+ ⎪⎝⎭>,<的最小正周期为π,若其图象向左平移6π个单位后得到的函数为奇函数,则函数()f x 的图象关于( )对称.A .点,012π⎛⎫⎪⎝⎭ B .点5,012π⎛⎫ ⎪⎝⎭C .直线512x π=D .直线12x π=9.下列有关命题的说法正确的是( )A .若命题p :0x R ∃∈,01x e <,则命题p ⌝:x R ∀∈,1x e ≥B .“3sin x =”的一个必要不充分条件是“3x π=”C .若a b a b +=-,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,βn//,那么αβ⊥ 10.已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( )A .32 B .52 C .72 D .9211.已知三棱锥D -ABC 中,AB =BC =1,AD =2,BD =5,AC =2,BC ⊥AD ,则该三棱锥的外接球的表面积为( )A .6πB .5πC .6πD .8π12.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则|QF|=( )A .72B .52 C .3 D .2二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在答题卡相应的位置上)13.若,满足约束条件10,0,4,x x y x y -≥⎧⎪-≤⎨⎪+≤⎩则y x 的最大值为 .14.甲、乙、丙三位同学被问到是否去过,,A B C 三个城市时,甲说:我去过的城市比乙多,但没去过A 城市;乙说:我没去过C 城市;丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________.15.α、β是两个平面,m 、n 是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m∥α,那么m∥β. ④如果m∥n,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号) 16.已知,,a b c 分别为三个内角,,A B C 的对边,4a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC ∆面积的最大值为____________.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程)。
2021届广西钦州市高三上学期第一次质量检测数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,集合,则集合的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】∵A={1,2, 3,4},B={3,4,5,6},∴集合C的子集为∅,{3},{4},{3,4},共4个.故选:D.2. 已知复数,则下列命题中正确的个数为()①;②;③的虚部为;④在复平面上对应点在第一象限.A. 1B. 2C. 3D. 4【答案】C【解析】故正确;,也正确;的虚部为1,这是复数概念错误;在复平面上对应点是在第一象限,故正确;故选C.3. 命题,则的否定是()A. ,则B. ,则C. ,则D. ,则【答案】D【解析】,则的否定是,则,全称命题的否定是换量词,否结论,不改变条件.故选D;4. 已知等差数列的公差为2,若,,成等比数列,则()A. 2B. 0C.D.【答案】C【解析】∵等差数列{a n}的公差为2,且a1,a3,a4成等比数列,则即解得a1=﹣8.∴a4=a1+3d=﹣8+3×2=﹣2.故选:D.5. 若“”是“函数的图象不过第三象限”的必要不充分条件,则实数的取值范围是()A. B. C. D.【答案】D【解析】∵函数的图象不过第三象限,∴m﹣≥﹣1,解得m≥﹣.∵“m>a”是“函数的图象不过第三象限”的必要不充分条件,3∴a<﹣.则实数a的取值范围是.故选:D.点睛:函数的图象不过第三象限,可得:m﹣≥﹣1,解得m范围.由“m>a”是“函数的图象不过第三象限”的必要不充分条件,即可得出.6. 执行如图所示的程序框图(),那么输出的是()A. B. C. D.【答案】C【解析】第一次执行循环体,k=1,p=A11,满足继续循环的条件,k=2;第二次执行循环体,k=2,p=A22,满足继续循环的条件,k=3;第三次执行循环体,k=3,p=A33,满足继续循环的条件,k=4;…第N次执行循环体,k=N,p=A N N,满足继续循环的条件,k=N+1;第N+1次执行循环体,k=N+1,p=A N+1N+1,不满足继续循环的条件,故输出的p值为A N+1N+1,故选:C点睛:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量p的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.7. 设是定义在上周期为2的奇函数,当时,,则()A. B. C. 0 D.【答案】C【解析】因为设是定义在上周期为2的奇函数,当时,,故;故选C;8. 某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的体积为()A. B. C. D.【答案】C【解析】由已知中的三视图可得:该几何体是一个以正视图为底面的柱体,(也可以看成一个三棱柱与半圆柱的组合体),其底面面积S=×2×2+π=2+π,高h=3,故体积V=Sh=6+π,故选:C.点睛:由已知中的三视图可得:该几何体是一个以正视图为底面的柱体,代入柱体体积公式,可得答案.9. 我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为()(结果保留一位小数.参考数据:,)()A. 1.3日B. 1.5日C. 2.6日D. 2.8日【答案】C【解析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A,B n=,由题意可得:,化为:2n+=7,解得2n=6,2n=1(舍去).∴n==1+=≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.10. 已知是所在平面内一点,且,现将一粒黄豆随机撒在内,则黄豆落在内的概率是()A. B. C. D.【答案】C【解析】以PB、PC为邻边作平行四边形PBDC,则,∵=,∴,得=﹣由此可得,P是△ABC边BC上的中线AO的中点,点P到BC的距离等于A到BC的距离的.∴S△PBC=S△ABC.将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为P==故选C点睛:根据向量加法的平行四边形法则,结合共线向量充要条件,得点P是△ABC边BC上的中线AO的中点.再根据几何概型公式,将△PBC的面积与△ABC的面积相除可得本题的答案.11. 抛物线的焦点为,点为该抛物线上的动点,点是抛物线的准线与坐标轴的交点,则的最小值是()A. B. C. D.【答案】B【解析】由题意可知,抛物线的准线方程为x=﹣1,A(﹣1,0),过P作PN垂直直线x=﹣1于N,由抛物线的定义可知PF=PN,连结PA,当PA是抛物线的切线时,有最小值,则∠APN最大,即∠PAF最大,就是直线PA的斜率最大,设在PA的方程为:y=k(x+1),所以,解得:k2x2+(2k2﹣4)x+k2=0,所以△=(2k2﹣4)2﹣4k4=0,解得k=±1,所以∠NPA=45°,=cos∠NPA=.故选B.点睛:通过抛物线的定义,转化PF=PN,要使有最小值,只需∠APN最大即可,作出切线方程即可求出比值的最小值.12. 已知定义在上的奇函数,设其导函数为,当时,恒有,令,则满足的实数的取值范围是()A. B. C. D.【答案】C【解析】定义在R上的奇函数f(x),所以:f(﹣x)=﹣f(x)设f(x)的导函数为f′(x),当x∈(﹣∞,0]时,恒有xf′(x)<f(﹣x),则:xf′(x)+f(x)<0即:[xf(x)]′<0所以:函数F(x)=xf(x)在(﹣∞,0)上是单调递减函数.由于f(x)为奇函数,令F(x)=xf(x),则:F(x)为偶函数.所以函数F(x)=xf(x)在(0,+∞)上是单调递增函数.则:满足F(2)>F(x﹣1)满足的条件是:|x﹣1|<2,解得:﹣1<x<3.所以x的范围是:(﹣1,3)故选:C点睛:根据已知条件利用函数的单调性和奇偶性构造出新函数,利用xf′(x)+f(x)<0,得到:[xf(x)]′<0,进一步分析出偶函数的单调性在对称区间内单调性相反.故建立不等式组,解不等式组求的结果.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知(,为正实数),则的最小值为__________.【答案】【解析】∵a,b∈R+,a+4b=1∴=≥,当且仅当,即a=2b时上述等号成立,故答案为:914. 若,满足约束条件,则的最大值是__________.【答案】0【解析】约束条件对应的平面区域如下图示:由z=x﹣y可得y=x﹣z,则﹣z表示直线z=x﹣y在y轴上的截距,截距越小,z越大由可得A(1,1)当直线z=x﹣y过A(1,1)时,Z取得最大值0故选D15. 现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为__________.【答案】189【解析】若没有红色卡片,若是3种颜色,那么有种方法,若是2种颜色,有种方法,若有红色卡片,那有一张红色的卡片,共有种方法,所以共有种方法,故填:189.【点睛】本题考查了有限制条件的组合问题,对这类问题容易出错在:本来是组合问题,但选元素的时候出现“顺序”,象这种不能同一种颜色,或是选出的鞋不能是同一双等等题型,第一步先选颜色,第二步从颜色中选卡片,如果是不同双的鞋,那第一步就先选哪几双,第二步在每一双里选一只,这样就能保证不同颜色,选出的鞋不是同一双.16. 在锐角三角形中,若,则的取值范围是__________.【答案】【解析】由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC =,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数.(1)求函数的单调增区间;(2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 【答案】(1)函数的单调增区间为,(2)【解析】试题分析:(1)由化一公式得,,得结果;(2),∴,再由余弦定理得.化简可得:.(1)由,.得:.∴函数的单调增区间为,.(2)∵,即.∴.可得,.∵,∴.由,且的面积为,即.∴.由余弦定理可得:.∴.18. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2017年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数,求的分布列;(3)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.【答案】(1)(2),其中(3)一年中平均120天的空气质量达到一级【解析】试题分析:(1)古典概型;(2)符合超几何概型;(3)一年中每天空气质量达到一级的概率为,由第二一问中的条件知道.(1)记“从这15天的数据中任取一天,这天空气质量达到一级”为事件,则;(2)依据条件,服从超几何分布,其中,,,的可能值为0,1,2,3,其分布列为:,其中;(3)依题意可知,一年中每天空气质量达到一级的概率为.一年中空气质量达到一级的天数为,则;∴(天).∴一年中平均120天的空气质量达到一级.19. 如图,四棱锥底面为正方形,已知平面,,点、分别为线段、的中点.(1)求证:直线平面;(2)求直线与平面所成的角的余弦值.【答案】(1)证明见解析(2)与平面夹角的余弦值为【解析】试题分析:(1)延长AN,交CD于点G,推出MN∥PG,然后证明直线MN∥平面PCD;(2)以DA,DC,DP为x,y,z轴建立空间直角坐标系,设A(1,0,0),求出相关点的坐标,=(1,1,﹣1),平面AMN的法向量,利用向量的数量积求解PB与平面AMN夹角的余弦值.(1)证明:由底面为正方形,连接,且与交于点因为、分别为线段、的中点,可得,平面,平面,则直线平面. (2)由于,以,,为,,轴建立空间直角坐标系,设,则,,,,,则.设平面的法向量为.所以.令,所以.所以平面的法向量为.则向量与的夹角为,则.则与平面夹角的余弦值为.20. 已知椭圆:()的长轴长是短轴长的2倍,过椭圆的右焦点且垂直于轴的直线与椭圆交于,两点,且.(1)求椭圆的标准方程;(2)过点的直线交椭圆于,两点,若存在点使为等边三角形,求直线的方程. 【答案】(1)椭圆的标准方程:(2)直线的方程:【解析】试题分析:(Ⅰ)利用椭圆的离心率,椭圆的通径公式,及a2=b2+c2及可求得a和b的值,求得椭圆方程;(Ⅱ)设直线l的方程,代入椭圆方程,根据韦达定理及中点坐标公式求得D点坐标,根据等边三角形的性质,求得G点坐标,由丨GD丨=丨EF丨,即可取得t的值,即可求得直线l的方程.(1)由椭圆的长轴长是短轴长的2倍,所以,①由椭圆的通径,②解得:,.∴椭圆的标准方程:.(2)设直线:,,.易知:时,不满足,故,则,整理得:,显然,∴,,于是.故的中点.由为等边三角形,则.连接则,即,整理得,则,由为等边三角形,则,.∴.整理得:,即,解得:,则,∴直线的方程,即.点睛:本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,中点坐标公式,等边三角形的性质公式,考查计算能力.21. 已知函数.(1)求函数的单调区间;(2)当,且时,证明:.【答案】(1)单调递减区间为,单调递增区间为(2)证明见解析【解析】试题分析:(1)令,得增区间,,得减区间;(2),需证,变量集中.(1)的定义域为,令,得.当时,,在上单调递增;当时,,在上单调递减.∴单调递减区间为,单调递增区间为.(2)证明:因为,故,().由(),得,即.要证,需证,即证.设(),则要证().令.则.∴在上单调递增,则.即.故.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为:,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线.(1)求曲线的直角坐标方程;(2)已知直线与曲线交于,两点,点,求的值.【答案】(1)曲线:(2)【解析】试题分析:(1)由图像伸缩平移的规律得到曲线:;(2),由韦达定理解出即可;(1)曲线的极坐标方程为:,即,化为直角坐标方程:.将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线:.(2)直线的极坐标方程为,展开可得:.可得直角坐标方程:.可得参数方程:(为参数).代入曲线的直角坐标方程可得:.解得,.∴.23. 选修4-5:不等式选讲已知,.(1)解不等式;(2)若不等式恒成立,求实数的取值范围.【答案】(1)的解集为或(2)时,不等式恒成立【解析】试题分析:(1)零点分区间,取绝对值,解不等式组;(2)由已知恒成立,又,,求出结果即可;(1)当时,解得.当时,无解,当时,解得.∴的解集为或.(2)由已知恒成立.∴恒成立.又.∴,解得.∴时,不等式恒成立点睛:第二问中,不等式恒成立,求实数范围,先变量分离,,再根据绝对值三角不等式,求得,这是绝对值三角不等式很重要的一个应用.。
2021届广西钦州四中高三上学期第一次月考数学(理)试题一.选择题(12×5=60分)1.已知集合A ={0,2,4},B ={x |3x -x 2≥0},则A ∩B 的子集的个数为( )A .2B .3C .4D .82.已知集合U ={1,2,3,4,5,6,7},A ={x |3≤x ≤7,x ∈N },则∁U A =( )A .{3,4,5,6,7}B .{1,2}C .{1,3,4,7}D .{1,4,7}3.若x ∈A ,则∈A ,就称A 是伙伴关系集合,集合M =的所有非1x {-1,0,12,13,2,3}空子集中具有伙伴关系的集合的个数是 ( )A .31B .7C .3D .14.设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面5.已知命题“∃x 0∈[1,2],x -2ax 0+1>0”是真命题,则实数a 的取值范围为( )20A. B . C. D .(-∞,54][54,+∞)(-∞,54)(54,+∞)6.“φ=k π+(k ∈Z )”是“函数f (x )=cos(ωx +φ)是奇函数”的 ( )π2A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<08.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( )A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 09.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是 ( )A .∀x ∈(-∞,0),x 3+x <0B .∀x ∈(-∞,0),x 3+x ≥0C .∃x 0∈[0,+∞),x +x 0<0D .∃x 0∈[0,+∞),x +x 0≥0303010.函数f (x )=log 2(1-2x )+的定义域为( )1x +1A. B.C .(-1,0)∪D .(-∞,-1)∪(0,12)(-∞,12}(0,12)(-1,12)11.已知具有性质:f=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函(1x )数:①y =x -;②y =x +;③y =Error!1x 1x其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①12.设函数f (x )=Error!则满足f (f (a ))=2f (a )的a 的取值范围是( )A. B .[0,1] C. D .[1,+∞)[23,1][23,+∞)二、填空题(4×5=20分)13.已知集合A ={x |x 2-2 019x +2 018<0},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是________.14.若“x >3”是“x >m ”的必要不充分条件,则m 的取值范围是________.15.命题:“存在实数x ,满足不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.16.已知函数f (x )=Error!若f (1)=,则f (3)=________.12三、解答题(70分)17. (17分)已知集合A ={x |x ≤-3或x ≥2},B ={x |1<x <5},C ={x |m -1≤x ≤2m }.(1)求A ∩B ,(∁R A )∪B ;(2)若B ∩C =C ,求实数m 的取值范围.18.(16分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)若a =1,且p ∧q 是真命题,求实数x 的取值范围;(2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.19.(20分)已知p :∀x ∈R ,mx 2+1>0,q :∃x 0∈R ,x +mx 0+1≤0.20(1)写出命题p 的否定綈p ,命题q 的否定綈q ;(2)若(綈p )∨(綈q )为真命题,求实数m 的取值范围.20. (20分)对于两个定义域相同的函数f(x),g(x),若存在实数m、n,使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.(1)若f(x)=x2+3x和g(x)=3x+4生成一个偶函数h(x),求h(2)的值;(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;(3)试利用“基函数f(x)=log4(4x+1),g(x)=x-1”生成一个函数h(x),使之满足下列条件:①是偶函数;②有最小值1.求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).第一次月考参考答案1.C2.B3.B4.B5.C6.C7.C8.D9.C10.D11.B12.C13.(-∞,1] 14. (3,+∞) 15. 16.(233,+∞)1417.(1)A ∩B ={x |2≤x <5},∁R A ={x |-3<x <2},(∁R A )∪B ={x |-3<x <5}.(2)∵B ∩C =C ,∴C ⊆B .①当C =∅时,有m -1>2m ,即m <-1.②当C ≠∅时,有Error!∴2<m <.52综上所述,m 的取值范围是(-∞,-1)∪.(2,52)18:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,当a =1时,p :1<x <3;由x 2-5x +6≤0,得2≤x ≤3,所以q :2≤x ≤3.若p ∧q 为真,则p 真且q 真,所以2≤x <3, 故x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},∵p 是q 成立的必要不充分条件, ∴B A .∴Error!即1<a <2, ∴实数a 的取值范围是(1,2).19.解:(1)綈p :∃x 0∈R ,mx +1≤0;20綈q :∀x ∈R ,x 2+mx +1>0.(2)由题意知,綈p 真或綈q 真.当綈p 真时,m <0;当綈q 真时,Δ=m 2-4<0,解得-2<m <2.因此,当(綈p )∨(綈q )为真命题时,綈p 、綈q 至少有一个为真.当綈p 真綈q 假时,Error!解得m ≤-2;当綈p 真綈q 真时,Error!解得-2<m <0;当綈p 假綈q 真时,Error!解得0≤m <2.综上所述,m 的取值范围是m <2.20.解:(1)设h (x )=m (x 2+3x )+n (3x +4)=mx 2+3(m +n )x +4n ,∵h (x )是偶函数,∴m +n =0,∴h (2)=4m +4n =0.(2)设h (x )=2x 2+3x -1=m (x 2+ax )+n (x +b )=mx 2+(am +n )x +nb ,∴Error!得Error!∴a +2b =--.32n 22n 由ab ≠0知,n ≠3, 当n <0时,--≥2,n 22n ∴a +2b ≥,当且仅当n =-2时取等号;72当n >0时,--≤-2,n 22n∴a +2b ≤-,当且仅当n =2时取等号,又n ≠3,12∴a +2b ≠-.23综上,a +2b ∈∪∪.(-∞,-23)(-23,-12][72,+∞)(3)设h (x )=m log 4(4x +1)+n (x -1)∵h (x )是偶函数,∴h (-x )-h (x )=0,即m log 4(4-x +1)+n (-x -1)-m log 4(4x +1)-n (x -1)=0,∴(m +2n )x =0,得m =-2n ,则h (x )=-2n log 4(4x +1)+n (x -1)=-2n [log 4(4x +1)-x +]=-2n [log 4(2x +)+].121212x 12∵h (x )有最小值1,则必有n <0,且有-2n =1,∴m =1,n =-.12∴h (x )=log 4+,在[0,+∞)上是增函数,在(-∞,0]上是减函数.(2x +12x )12。
广西壮族自治区钦州市市小董中学2021年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设复数z=2+bi (b∈R)且=2,则复数的虚部为( )A. 2B.±2iC.±2D.±2参考答案:C略2. (x﹣2y)5的展开式中x2y3的系数是( )A.5 B.﹣5 C.20 D.﹣20参考答案:D考点:二项式系数的性质.专题:二项式定理.分析:在二项展开式的通项公式中,令y的幂指数等于3,求出r的值,即可求得展开式中x2y3的系数.解答:解:(x﹣2y)5的展开式的通项公式为T r+1=??(﹣2y)r,令r=3,可得展开式中x2y3的系数是??(﹣8)=﹣20,故选:D.点评:本题主要考查二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.3. 已知x∈(0,2),关于x的不等式<恒成立,则实数k的取值范围为()A.[0,e+1) B.[0,2e﹣1)C.[0,e)D.[0,e﹣1)参考答案:D【考点】函数恒成立问题.【分析】根据题意显然可知k≥0,整理不等式得出k<+x2﹣2x,利用构造函数f(x)=+x2﹣2x,通过导函数得出函数在区间内的单调性,求出函数的最小值即可.【解答】解:依题意,k+2x﹣x2>0,即k>x2﹣2x对任意x∈(0,2)都成立,∴k≥0,∵<,∴k<+x2﹣2x,令f(x)=+x2﹣2x,f'(x)=+2(x﹣1)=(x﹣1)(+2),令f'(x)=0,解得x=1,当x∈(1,2)时,f'(x)>0,函数递增,当x∈(0,1)时,f'(x)<0,函数递减,∴f(x)的最小值为f(1)=e﹣1,∴0≤k<e﹣1,故选:D.4. 若变量满足约束条件,则的最大值为A. B.C.D.参考答案:C5. 已知函数,若,则()(A)>(B)=(C)<(D)无法判断与的大小参考答案:C略6. i为虚数单位,若复数(1+mi)(i+2)是纯虚数,则实数m=()A.1 B.﹣1 C.D.2参考答案:D【考点】复数的基本概念.【分析】先求出(1+mi)(i+2)=2﹣m+(2m+1)i,再由复数(1+mi)(i+2)是纯虚数,能求出实数m.【解答】解:i为虚数单位,(1+mi)(i+2)=2﹣m+(2m+1)i,∵复数(1+mi)(i+2)是纯虚数,∴,∴实数m=2.故选:D.7. 已知直线与直线平行,则实数的值为A.4 B.-4 C.-4或4 D.0或4参考答案:B8. 已知tan(+α)=2,则sin2α=()A.﹣B.C.﹣D.参考答案:D【考点】二倍角的正弦.【分析】由已知及两角和与差的正切函数公式,二倍角公式,同角三角函数关系式即可求值.【解答】解:∵tan(+α)==2,解得:tanα=,∴sin2α===.故选:D.9.设U为全集,M,P是U的两个子集,且,则等于()A. MB. PC.D.参考答案:答案:D10. 已知平面外不共线的三点A,B,C到的距离都相等,则正确的结论是(A)平面ABC必平行于(B)平面ABC必不垂直于(C)平面ABC必与相交(D)存在△ABC的一条中位线平行于或在内参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知平面区域U={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x﹣2y≥0},若向区域U内随机投一点P,则点P落入区域A的概率为.参考答案:【考点】几何概型. 【专题】计算题.【分析】本题考查的知识点是几何概型的意义,关键是要找出A={(x ,y )|x≤4,y≥0,x ﹣2y≥0}对应面积的大小,然后将其代入几何概型的计算公式进行求解.在解题过程中,注意三角形面积的应用.【解答】解:依题意可在平面直角坐标系中作出集合U 与A 所表示的平面区域(如图), 由图可知S U =18,S A =4,则点P 落入区域A 的概率为.故答案为:.【点评】本题考查的知识点是几何概型的意义,关键是要找出A={(x ,y )|x≤4,y≥0,x ﹣2y≥0}对应面积的大小,并将其和长方形面积一齐代入几何概型计算公式进行求解.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.12. 公差不为零的等差数列的前n 项和为是的等比中项,,则=______ 参考答案: 60 略13. 设满足约束条件.若目标函数的最大值为1,则的最小值为.参考答案:14. 已知sinα+cosα=,0<α<π,则tan (α﹣)= .参考答案:【考点】两角和与差的正切函数;三角函数的化简求值.【分析】由平方关系化简已知的式子求出2sinαcosα的值,由三角函数值的符号和α的范围进一步缩小α的范围,由正切函数的性质求出tanα的范围,由条件和同角三角函数的基本关系列出方程,化简后求出tanα的值,由两角差的正切公式化简、求值. 【解答】解:由题意知,sinα+cosα=,两边平方得,2sinαcosα=, ∵0<α<π,且sinα+cosα=>0∴,则tanα<﹣1,又,则, 解得tanα=或tanα=(舍去),∴tan(α﹣)=====,故答案为:.【点评】本题考查两角差的正切函数,同角三角函数的基本关系,三角函数值的符号,以及角的范围缩小的方法,考查化简、变形、计算能力. 15. 已知函数(1).a≥-2时,求F(x)= f(x)- g(x)的单调区间;(2).设h(x)= f(x)+ g(x),且h(x)有两个极值点为x1 , x2 ,其中,求h(x1)- h(x2)的最小值.参考答案:(1)由题意,其定义域为,则,2分对于,有.①当时,,∴的单调增区间为;②当时,的两根为,∴的单调增区间为和,的单调减区间为.综上:当时,的单调增区间为;当时,的单调增区间为和,的单调减区间为. ………6分(2)对,其定义域为.求导得,,由题两根分别为,,则有,,………8分∴,从而有,……10分.当时,,∴在上单调递减,又,. ……12分略16. (5分)已知函数f(x)=lnx+2x,若f(x2﹣4)<2,则实数x的取值范围.参考答案:(﹣,﹣2)∪(2,)【考点】:函数单调性的性质.【专题】:函数的性质及应用.【分析】:解法一:不等式即 ln(x2﹣4)+<2,令t=x2﹣4>0,不等式即lnt+2t<2 ①.令h(t)=lnt+2t,由函数h(t)的单调性可得x2﹣4<1,从而求得x的范围.解法二:根据函数f(x)=lnx+2x在定义域(0,+∞)上式增函数,f(1)=2,由不等式可得x2﹣4<1,从而求得x的范围.解:解法一:∵函数f(x)=lnx+2x,∴f(x2﹣4)=ln(x2﹣4)+,∴不等式即 ln(x2﹣4)+<2.令t=x2﹣4>0,不等式即lnt+2t<2 ①.令h(t)=lnt+2t,显然函数h(t)在(0,+∞)上是增函数,且h(1)=2,∴由不等式①可得t<1,即 x2﹣4<1,即x2<5.由解得﹣<x<﹣2,或2<x<,故答案为:(﹣,﹣2)∪(2,).解法二:由于函数f(x)=lnx+2x,∴f(1)=2,再根据函数f(x)=lnx+2x在定义域(0,+∞)上式增函数,∴由f(x2﹣4)<2可得x2﹣4<1,求得﹣<x<﹣2,或2<x<,故答案为:(﹣,﹣2)∪(2,).【点评】:本题主要考查函数的单调性的应用,体现了转化的数学思想,属于基础题.17. 已知双曲线C:的右焦点为F,左顶点为A,以F为圆心,为半径的圆交C的右支于M,N两点,且线段AM的垂直平分线经过点N,则C的离心率为_________.参考答案:【分析】先证明是正三角形,在中,由余弦定理、结合双曲线的定义可得,化为,从而可得结果. 【详解】由题意,得,另一个焦点,由对称性知,,又因为线段的垂直平分线经过点,,则,可得是正三角形,如图所示,连接,则,由图象的对称性可知,,又因为是等腰三角形,则,在中,由余弦定理:,上式可化为,整理得:,即,由于,则,故,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.三、解答题:本大题共5小题,共72分。
2021届广西钦州市学高三年级第一次月考考试理科数学试题一、(选择题每题5分,共60分)1. 已知全集,则()A. B.C. D.【答案】C【解析】,选C2. 若复数满足,则复数的实部与虚部之和为()A. -2B. 2C. -4D. 4【答案】B【解析】由题意可得:,则实部与虚部之和为.本题选择B选项.3. 设为虚数单位),则()A. B. C. D. 2【答案】B【解析】,,故选B.4. 已知O是△ABC所在平面内一点,D为BC边中点,且,那么()A. B. C. D.【答案】A【解析】试题分析:根据题意可知,,即,所以有,故选B.考点:向量的运算.5. 用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.【答案】C【解析】由题意可得:每个实数都大于的概率为,则3个实数都大于的概率为.本题选择C选项.6. 对于锐角,若,则A. B. C. 1 D.【答案】D【解析】由题意可得: .本题选择D选项.点睛: (1)应用公式时注意方程思想的应用,对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α可以知一求二.(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子.7. 若,则()A. B. C. D.【答案】C【解析】由题意可得:,据此整理可得:,则:.本题选择C选项.点睛:(1)应用公式时注意方程思想的应用,对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α可以知一求二.(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子.8. 设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】,但,不满足,所以是充分不必要条件,选A.【考点】充要条件【名师点睛】本题考查充要条件的判断,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件;从集合的角度看,若,则是的充分条件,若,则是的必要条件,若,则是的充要条件,若是的真子集,则是的充分不必要条件,若是的真子集,则是的必要不充分条件.9. 已知中,内角的对边分别为,若,则的面积为( )A. B. 1 C. D. 2【答案】C【解析】,故选C.考点:1、余弦定理;2、三角形面积公式.10. 已知函数是定义在上的偶函数,当时,,则函数的零点个数为()个A. 6B. 2C. 4D. 8【答案】A【解析】∵函数是定义在上的偶函数,当时,,函数的零点就是函数的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数图象与直线有6个交点,故答案为:6.【点睛】本题考查的知识点是函数的奇偶性,函数的零点与方程根的关系,属于中档题.解题的关键是求出函数的值域11. 若函数恰有4个零点,则的取值范围为()A. B.C. D.【答案】B【解析】当仅与轴交于时,与轴有三个交点,满足题意,此时与满足;当与轴有两个交点,与轴有两个时,满足题意,此时满足;当与轴有三个交点,与轴有一个时,满足题意,此时满足;故选C。
点睛:与在与轴的交点都是三个,本题的分段函数与轴交点为四个,需分情况讨论:与轴交点个数:0,1,2,3四种情况即可得结论。
本题难度较大,主要考查了的图象。
12. 定义在上的偶函数,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是()A. 有两个B. 有一个C. 没有D. 上述情况都有可能【答案】A【解析】由于函数,为偶函数,且在单调递增,如图所示,函数,在上恒成立,函数在上的图象位于的图象上方,当时,由可得,解得,故的图象至少向左平移两个单位,才符合题意,即,由于函数的值域为,故函数的图象和直线有个交点,关于的方的根有个,故选A.【方法点睛】本题主要考查函数的奇偶性、对称性以及函数图象的应用,属于难题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.解答本题的关键是根据把在上恒成立转化为函数在上的图象位于的图象上方,然后求出,再利用数形结合将方程f(2x+1)=t的根转化为函数的图象和直线的交点.第II卷(非选择题)二、填空题(每题5分,共20分)13. 已知,向量在方向上的投影为,则=________.【答案】9【解析】∵,∵向量在方向上的投影为故答案为914. 若,则__________.【答案】593【解析】由题意可得:∴log3x=4,log2y=9,∴x=34=81,y=29=512,∴x+y=81+512=593,故答案为:593.15. 已知是边长为2的等边三角形,为平面内一点,则的最小值是___________.【答案】【解析】以以为轴,以边上的高为轴建立坐标系,则,设,则,,当时,取得最小值,故答案为.16. 在中, ,若,则周长的取值范围______________.【答案】.由正弦定理,得的周长,周长的取值范围是(2,3],故答案为.【点睛】本题解题的关键是利用三角函数的诱导公式、两个角的和、差公式、倍角公式以及辅助角公式将三角函数化为形式.进而解决问题三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17. 在等差数列中,,公差.记数列的前项和为.(1)求;(2)设数列的前项和为,若成等比数列,求.【答案】(1)(2)【解析】试题分析:(1)由题意可求得数列的首项为1,则数列的前n项和.(2)裂项可得,且,据此可得.试题解析:(1)∵,∴,∴,∴,∴,.(2)若成等比数列,则,即,∴,∵,∴.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 已知命题,命题。
(1)若p是q的充分条件,求实数m的取值范围;(2)若m=5,“”为真命题,“”为假命题,求实数的取值范围。
【答案】(1)(2)【解析】试题分析:(1)当命题是用集合表示时,若是的充分条件,则表示命题所对应的集合是命题所对应集合的子集,转化为子集问题解决,通过数轴,列不等式组;(2)”为真命题,“”为假命题表示一真一假,所以分两种情况,真代表集合本身,假代表集合的补集,列不等式解决.试题解析:解:(1),,,,那么解得:(2)根据已知一真一假,真假时,解得,或假真时,解得考点:命题的真假判定与应用19. 共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.(1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1)(备注:称为相应于点的残差(也叫随机误差));租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7估计值 2.4 2.1 1.6模型甲残差0 -0.1 0.1模型乙估计值 2.3 2 1.9残差0.1 0 0②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好. (2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).【答案】(1)①见解析②模型乙的拟合效果更好(2)投放1万辆能获得更多利润,应该增加到投放1万辆. 【解析】试题分析(1)①通过对回归方程的计算可得两种模型的估计值,代入,即可得残差;②计算可得可知模型乙拟合效果更好;(2)分别计算投放千辆和一万辆时该公司一天获得的总利润,即可得结论。
(1)①经计算,可得下表:②,,,故模型乙的拟合效果更好.(2)若投放量为8千辆,则公司获得每辆车一天的收入期望为,所以一天的总利润为(元)若投放量为1万辆,由(1)可知,每辆车的成本为(元),每辆车一天收入期望为,所以一天的总利润为(元)所以投放1万辆能获得更多利润,应该增加到投放1万辆.20. 已知数列中,且且.(1)证明:数列为等差数列;(2)求数列的前项和.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)要证明数列为等差数列,只需证明为常数)即可;(2)由等差数列的通项公式,进而可求,利用错位相减法可求数列的前项和.试题解析:(1)设=所以数列为首项是2公差是1的等差数列.(2)由(1)知,①②②-①,得.【方法点睛】本题主要考查等差数列的定义以及错位相减法求数列的的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.21. 设函数,是定义域为R上的奇函数.(1)求的值;(2)已知,函数,,求的值域;(3)若,试问是否存在正整数,使得对恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.【答案】(1)(2)(3)【解析】试题分析:试题解析:(1)先利用为上的奇函数得求出以及函数的表达式,(2)先由得,得出函数的单调性,再对进行整理,整理为用表示的函数,最后利用函数的单调性以及值域,得到的值域.(3)利用换元法,将不等式转化为对勾函数问题求解,注意分类讨论思想的应用.试题解析:(1)是定义域为R上的奇函数,,得.(2),即,或(舍去),令,由(1)知在[1,2]上为增函数,∴,,当时,有最大值;当时,有最小值,∴的值域.(3)=,,假设存在满足条件的正整数,则,①当时,.②当时,,则,令,则,易证在上是增函数,∴.③当时,,则,令,则,易证在上是减函数,∴.综上所述,,∵是正整数,∴=3或4.∴存在正整数=3或4,使得对恒成立.【点睛】本题考查函数单调性与奇偶性的综合,考查解不等式,考查二次函数最值的研究,解题的关键是确定函数的单调性,确定参数的范围.选做题(22题,23题选做一题,共10分)22. 【选修4-4:坐标系与参数方程】在极坐标系中,曲线的极坐标方程为,点.以极点为原点,以极轴为轴的正半轴建立平面直角坐标系.已知直线(为参数)与曲线交于两点,且.(1)若为曲线上任意一点,求的最大值,并求此时点的极坐标;(2)求.【答案】(1)最大值,(2)【解析】试题分析:(1)由两角和的正弦公式可得,可以求出的最大值及此时点的极坐标方程;(2)将曲线转化成普通方程,将的参数方程代入,由的几何意义可得的大小,可得结论。