Bearing capacity of concrete filled bidirectional FRP tube subjected to axial compression
- 格式:pdf
- 大小:207.95 KB
- 文档页数:4
Part IV:Commonly Used Professional Terms of Civil Engineeringdevelopment organization 建设单位design organization 设计单位construction organization 施工单位reinforced concrete 钢筋混凝土pile 桩steel structure 钢结构aluminium alloy 铝合金masonry 砌体(工程)reinforced ~ 配筋砌体load-bearing ~ 承重砌体unreinforced ~非配筋砌体permissible stress (allowable stress) 容许应力plywood 胶合板retaining wall 挡土墙finish 装修finishing material装修材料ventilation 通风natural ~ 自然通风mechanical ~ 机械通风diaphragm wall (continuous concrete wall) 地下连续墙villa 别墅moment of inertia 惯性矩torque 扭矩stress 应力normal ~ 法向应力shear ~ 剪应力strain 应变age hardening 时效硬化air-conditioning system空调系统(air) void ration(土)空隙比albery壁厨,壁龛a l mery壁厨,贮藏室anchorage length锚固长度antiseismic joint 防震缝architectural appearance 建筑外观architectural area 建筑面积architectural design 建筑设计fiashing 泛水workability (placeability) 和易性safety glass安全玻璃tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃asphalt沥青felt (malthoid) 油毡riveted connection 铆接welding焊接screwed connection 螺栓连接oakum 麻刀,麻丝tee三通管tap存水弯esthetics美学formwork 模板(工程)shoring 支撑batching 配料slipform construction (slipforming) 滑模施工lfit-slab construction 升板法施工mass concrete 大体积混凝土terrazzo水磨石construction joint 施工缝honeycomb蜂窝,空洞,麻面piled foundation桩基deep foundation 深基础shallow foundation浅基础foundation depth基础埋深pad foundation独立基础strip foundation 条形基础raft foundation筏基box foundation箱形基础BSMT=basement 地下室lift 电梯electric elevatorlift well电梯井escalator 自动扶梯Poisson’s ratio 泊松比μYoung’s modulus , modulus of elasticity 杨氏模量,弹性模量Esafety coefficient 安全系数fatigue failure 疲劳破坏bearing capacity of foundations 地基承载力bearing capacity of a pile 单桩承载力two-way-reinforcement 双向配筋reinforced concrete two-way slabs钢筋混凝土双向板single way slab单向板window blind 窗帘sun blindwind load 风荷载curing 养护watertight concrete 防水混凝土white cement白水泥separating of concrete混凝土离折segregation of concretemortar 砂浆~ joint 灰缝pilaster 壁柱fire rating耐火等级fire brick 耐火砖standard brick标准砖terra cotta 琉璃瓦mosaic 马赛克ceramic mosaic陶瓷锦砖,马赛克,ceramic mosaic tileceramic tile 瓷砖rubble wall毛石墙marble 大理石,大理岩granite 花岗石,花岗岩ready-mixed concrete 商品混凝土,预拌混凝土real estate房地产reinforcement bar 钢筋veinforcement meal, reinforcing bar, reinforcing steel reinforcement cover混凝土保护层reinforcement mat 钢筋网, reinforcing mesh reinforcing ratio 配筋率reinforcement percentagereinforcing work钢筋工程residential building居住建筑rigid foundation刚性基础roof 屋顶,屋盖,屋面; roof board 屋面板; roof garden屋顶花园roof live load 屋面活荷载rustic terrazzo粗面水磨石,水刷石sand cushion砂垫层saw-tooth skylight锯齿形天窗scaffold 脚手架sill窗台silty soil粉质土single door单扇门double door双扇门single reinforcemen单筋tsliding door推拉门sliding window水平推拉窗staircase楼梯间stair rail(ing) 楼梯栏杆,楼梯扶手stair step楼梯踏步stair string (er)楼梯梁stair clearance 楼梯净空高度stair headroom steel forms钢模板store room贮藏室structural drawings结构图soft substratum软弱下卧层sun louver 遮阳板supporting block 支座supporting layer持力层tensile reinforcement 受拉钢筋tensile steel, tension reinforcementterrace roof 平屋顶thermal insulation隔热through ventilation穿堂风timber structure 木结构wood structuretoilet 盥洗间,浴室,厕所,便池tracing paper描图纸lawn 草坪treatment of elevation立面处理drawing board 绘图板triaxial compression test 三轴压缩试验tubular steel scaffolding钢管脚手架uniformly distributed load均布荷载unnotched bar 光面钢; threadbar螺纹钢筋urinal 小便池,小便斗,小便槽valley天沟ventilating skylight 通风天窗waterproof barrier 防水层aquatardTerzaghi bearing capacity theory太沙基承载力理论Terzaghi consolidation theory 太沙基固结理论foundation treatment 地基处理foundation pressure 基底压力span 跨度specific gravity比重quicklime生石灰,氧化钙hydrated lime 熟石灰,消石灰hydration 水化作用plaster of Paris熟石膏portland cement 波特兰水泥,硅酸盐水泥,普通水泥portland blastfurnace slag cement矿渣水泥portland fly-ash cement粉煤灰(硅酸盐)水泥portland-pozzolana cement火山灰质硅酸盐水泥gas-foaming admixture发泡剂retarding admixture缓凝剂water-reducing agent减水剂air-entrained agent 加气剂slump坍落度water-cement ratio水灰比w/carchitectural lighting 建筑采光,建筑照明architectural perspective建筑透视图architectural section 建筑剖面图architectural specifications建筑规范architectural working drawing 建筑施工图architecture sketch建筑草图arc welding 电弧焊stress concentration 应力集中multi storied building 多层建筑settlement of foundation 地基沉降tensile strength抗拉强度compressive strength抗压强度bending strength抗弯强度construction material 建筑材料building material continuous beam连续梁tower crane 塔式起重机,塔吊SPT=standard penetration test 标准贯入度试验wall between two windows窗间墙stability稳定性stress-strain curve应力-应变曲线stress-strain diagram应力-应变图damp-proof coating防潮层osmosis渗透osmotic co-efficient渗透系数osmotic pressure渗透压力finite element method 有限单无法finite-difference method有限差分法finite slice method 条分法deformation 变形displacement位移allowable bearing capacity 容许承载力total and differential settlement 总沉降量和沉降差Mohr’s circle of stress 摩尔应力圆snow laod雪(荷)载bent reinforcement bar 弯起钢筋bent steel 弯起钢筋bent-up bar 弯起钢筋bid 投标,标书bid call招标bid opening开标bidding sheet 标价单bid price 出价,投标价格binding reinforcement 绑扎钢筋blocking course檐口墙,女儿墙parapet (wall) bloodwood 红木redwoodbrick lintel 砖砌过梁brick masonry structure 砖石结构BRKT =bracket 牛腿building height 建筑高度building industrialization建筑工业化building-in fitting 预埋件building law 建筑法building line 建筑红线building module 建筑模数building orientation 建筑物朝向building permits for construction建筑施工执照building equipment 建筑设备building physics建筑物理building rubble 建筑垃圾building storm sewer 房屋雨水管built –in cupboard 壁厨cable structure 悬索结构cable-supported construction悬索结构canopy雨篷cast-in-place concrete 现浇混凝土cast-in-situ concrete 现浇混凝土caterpillar crane 履带式起重机cavity brick空心砖cavity wall空心墙ceiling 顶棚,吊顶,天花板cement floor水泥地面cement mortar水泥砂浆center-to-center中心距(中到中间距)chain-pull switch拉线开关cromatics色彩学city planning城市规划civil architecture民用建筑civil building民用建筑civil engineering土木工程clay brick粘土砖clerestory天窗clerestory windows高侧窗closet 盥洗室,厕所,卫生间coated glass 玻璃幕墙glass curtain wall collapsible loess 湿陷性黄土slumping loess collar tie beam 圈梁combination beam 组合梁combination construction 混合结构shear wall 剪力墙shear strength 抗剪强度transom (门上的)亮子bar 棒,条,杆件,(粗)钢筋beam 梁framework 框架truss桁架statically determinate ~ 静定桁架statically indeterminate ~ 超静定桁架elasticity弹性plasticity塑性stiffness刚度fiexibility挠度bending moment弯矩~ diagram 弯矩图~ envelope弯矩包络线influence line 影响线aggregate 骨料coarse ~ 粗骨料fine ~ 细骨料admixture外加剂concrete mixer混凝土搅拌机paint 油漆density密度viscosity粘度,粘滞性geology地质earth pressure 土压力active ~ 主动土压力coarse sand 粗砂; medium sand中砂; fine sand细砂artificial daylight人工采光artificial illumination人工照明art of architecture建筑艺术seismatic design 抗震设计back view 背立面balcony阳台balustrade 栏杆,扶手bamboo scaffolding竹脚手架band iron扁铁,扁钢bar cutter钢筋切断机bar list钢筋表bar spacing钢筋间距base board踢脚板basic module基本模数BC=building code建筑法规beam-and-column construction梁柱结构(框架结构)beam-and-girder construction主次梁梁格结构beam-and-slab construction梁板结构beam with one overhanging end 悬臂梁cantilever beam, overhanging beambeam with simply supported ends 简支梁simple beam, simple-supported beam, simply supported beambeam with fixed ends 固端梁bending stiffness弯曲刚度bending strength抗弯强度bending stress弯曲应力bend bar 弯起钢筋,弯筋commemorative architecture 纪念性建筑commercial buildings商业建筑物,商业房屋compacted fill 压实填土,夯实填土compacted soil压实土compaction by layers分层填土夯实compaction by rolling 碾压compaction by vibration振动压实compartmentation隔断completion acceptance竣工验收completion date 竣工日期compression bar 受压钢筋compression steel受压钢筋concealed work 隐蔽工程conductor 水落管construction administration 施工管理constructional drawing 施工图,构造图construction and installation work 建筑安装工程construction company 建筑公司construction economics建筑经济construction industry建筑(工)业construction in process 在建工程construction management plan 施工组织设计construction period施工工期construction site 施工现场creep 徐变,蠕变cross wall横墙dark room暗室design development phase 技术设计阶段design scheme设计方案detail drawing 详图,大样图,细部图development area 开发区digestion tank 化粪池septic tank, sewage tank distributed load分布荷载distributing bars 分布钢筋distribution reinforcement分布钢筋BL=dead load 恒载,自重dogleg stair 双折楼梯half turndomestic building居住房屋,住宅door window落地窗dormitory宿舍downspout 雨水管,落水管drain spout, fall pipe, leader pipe, rain conductor, rain leader, rain-water leaderdrip line 滴水线dunny厕所,盥洗室earthquake intensity地震烈度earthquake load 地震荷载earthquake resistant design抗震设计earthwork土石方工程earthwork quantity土方工程量eave 屋檐effective depth 有效高度,有效深度,有效厚度enameled tile 琉璃瓦,釉面砖engineering geological prospecting工程地质勘探expanded joint 伸缩缝,温度缝shrinkage joint, temperature jointfactory building厂房figured glass 图案玻璃,压花玻璃patterned glass fixed window固定窗flat skylight平天窗flexible foundation 柔性基础floor load楼面荷载floor plan楼屋平面图floor-to-ceiling height楼面至顶棚高度,室内净高floor-to-floor height楼面至楼面高度story height层高farmed steel 型钢shape(d) steelfoundation beam 基础梁foundation bed 基础垫层gable 出墙~ wallgalvanized iron 镀锌铁皮,白铁皮general arrangement drawing总体布置图,总平面图general layout 总平面图,总体布置glass fiber reinforced plastics玻璃纤维增强塑料,玻璃钢glued board 胶合板gravel 砾石; ~ cobble 卵石pebble gravel, pebble stoneground engineering地基工程ground floor plan底层平面图groundwater surface 地下水位phreatic (water ) surfacegutter明沟,天沟rain-gutter檐沟,天沟hair 麻刀hempmixed sand 混合砂mechanics of materials 材料力学theoretical mechanics 理论力学elastic mechanics弹性力学structural mechanics结构力学architectural mechanics建筑力学fracture mechanics断裂力学soil mechanics土力学rock mechanics岩石力学fluid mechanics流体力学abrasive floor防滑地板accelerated cement 快凝水泥accelerator促凝剂,速凝剂acceptance of hidden subsurface work 隐蔽工程验收acceptance of tender得标acceptance of work subelements分项工程验收access eye 清扫孔,检查孔access hole 检修孔access plate 检修孔盖板accordion shades 折叠式活动隔断,屏风acid 酸alkali碱acoustical insulation 隔声red cray 红粘土adamic earthadhesive bitumen primer冷底子油administration of the construction contract 施工合同管理aerial ledder消防梯non-bearing wall 非承重墙non-load bearing wall norm for detailed estimates 预算定额norm for preliminary estimates 概算定额norm for estimating labor requirements劳动定额norm for estimating material requirements材料定额open ditch 明沟open trenchoutside finish 外装修partion 隔壁, ~ screen 隔断pea shingle 豆砾石,绿豆砂pipeline gas 管道煤气plastic hinge 塑性铰plinth (wall)勒脚pointing (joints)勾缝pointing masonry勾缝砌体,清水墙porch 门廊,走廊pore water 孔隙水post-tensioning method后张法precast concrete lintel 预制混凝土过梁precast reinforced concrete building预制钢筋混凝土房屋monolithic reinforced concrete building整体式钢筋混凝土房屋prestressed concrete 预应力混凝土pretensioning method先张法protecting cap 安全帽protective cap, safety helmet protecting net 安全网public building公共建筑public comfort station 公共厕所public conveniencepump concrete 泵送混凝土pumping concrete halfpace landing楼梯平台landing platform, stair landing, stair platformhallway门厅,过道hemp thread麻丝high-rise hotel高层旅馆,高层饭店hip 屋脊线hoop reinforcement环筋,箍筋hull core structure筒体结构inside finish内装修jalousie window 百叶窗, louver windowjunior beam 次梁secondary beam, secondary girder main beam 主梁primary beam, primary girder kick strip 踢脚step踏步L & CM=lime and cement mortar石灰水泥砂浆lintol (门窗)过梁lintellongitudinal bar纵向钢筋low-rise building低层建筑LR = living room 起居室,客厅sitting room, parlo(u)rmastic 玛碲脂,树脂,嵌缝料membrane curing薄膜养护metallic tape钢卷尺metal window钢窗mid-span moment跨中弯矩mix(ing) proportion 配合比,混合比mix(ing) ratio mopboard踢脚板mosquito screen 纱窗, screen window。
TSINGHUA SCIENCE AND TECHNOLOGYISSN1007-021420/21pp124-130Volume11,Number1,February2006Push-Over Analysis of the Seismic Behavior of a Concrete-Filled Rectangular Tubular Frame Structure*NIE Jianguo (聂建国) **, QIN Kai (秦凯), XIAO Yan (肖岩)Department of Civil Engineering, Tsinghua University, Beijing 100084, China;†Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089, USAAbstract: To investigate the seismic behavior of concrete-filled rectangular steel tube (CFRT) structures, a push-over analysis of a 10-story moment resisting frame (MRF) composed of CFRT columns and steel beams was conducted. The results show that push-over analysis is sensitive to the lateral load patterns, so the use of at least two load patterns that are expected to bound the inertia force distributions is recom-mended. The -Mφ curves and -N M interaction surfaces of the CFRT columns calculated either by Han’s formulae or by the USC-RC program (reinforced concrete program put forward by University of Southern Califonia) are suitable for future push-over analyses of CFRT structures. The -P∆effect affects the MRF seismic behavior seriously, and so should be taken into account in MRF seismic analysis. In addition, three kinds of RC structures were analyzed to allow a comparison of the earthquake resistance behavior of CFRT structures and RC structures. The results show that the ductility and seismic performance of CFRT struc-tures are superior to those of RC structures. Consequently, CFRT structures are recommended in seismic regions.Key words: concrete-filled rectangular steel tube; push-over analysis; capacity curve; reinforced concreteIntroductionOver the past twenty years the static push-over proce-dure has been presented and developed by several au-thors, including Saiidi and Sozen[1], Fajfar and Gasper-sic[2], Bracci et al.[3], amongst others. This method is also described and recommended as a tool for design and assessment purposes for the seismic rehabilitation of existing buildings[4]. The purpose of push-over analysis is to evaluate the expected performance of a structural system by estimating its strength and defor-mation demands in design earthquakes by means of a static inelastic analysis, and by comparing these de-mands to available capacities at the performance levels. Push-over analysis is basically a nonlinear static analysis that is performed by imposing an assumed dis-tribution of lateral loads over the height of a structure and increasing the lateral loads monotonically from zero to the ultimate level corresponding to the incipient collapse of the structure. The gravity load remains con-stant during the analysis. Push-over analysis is very useful in estimating the following characteristics of a structure: 1) the capacity of the structure as represented by the base shear versus top displacement graph; 2) the maximum rotation and ductility of critical members; 3) the distribution of plastic hinges at the ultimate load; and 4) the distribution of damage in the structure, as expressed in the form of local damage indices at the ul-timate load. Although push-over analyses of reinforced﹡Received: 2004-06-30; revised: 2004-11-07Supported by the Overseas Youth Cooperative Foundation of the National Natural Science Foundation of China (No. 50128807)﹡﹡To whom correspondence should be addressed.E-mail: niejg@; Tel: 86-10-62772457NIE Jianguo (聂建国) et al Push-Over Analysis of the Seismic Behavior of …125 concrete (RC) structures and steel structures have beencarried out by many researchers and designers, at present push-over analyses for the concrete-filled steel tube (CFT) structures are rarely reported in the literature.CFT columns have become increasingly popular in structural applications. This is partly due to their ex-cellent earthquake resistant properties such as high strength, high ductility, and large energy absorption capacity [5]. At present, theoretical analysis of these structures focuses mostly on the static behavior of the CFT members, such that the seismic responses of the CFT structures have been rarely studied. Some re-search on the seismic behavior of CFT structures is, however, documented in the literature. The elasto-plastic time-history analysis of CFT structures has been discussed by Li et al.[6] Their results show that no irreparable damage occurs in structures under in-tense earthquake loading, which demonstrates that CFT structures excel in seismic performance. The seismic behaviors of four kinds of 5-story frame structures that are composed of CFT and of RC col-umns have been studied by Huang et al.[7] The SAP2000 program was used in the time-history analyses for calculating the seismic responses of the structures. The dynamic behavior and earthquake re-sponse of the CFT and RC structures were analyzed. The authors conclude that the earthquake resistance behavior of CFT structures is excellent compared to that of RC structures. Experimental investigation of a 2-span, 3-story model of a CFT frame has been car-ried out under vertical stable loads and lateral cyclic loads by Li et al.[8] Based on the CFT frame model experiment, a nonlinear finite element analysis wascompleted [9]. The calculated results coincided with the test results, providing a practical method for the seismic design of CFT frames. Although the seismic behavior of CFT frame structures has been investi-gated by many researchers in recent years, the differ-ent elasto-plastic analysis methods are confined by their rationality, applicability, and efficiency. These methods need to be modified regarding aspects of their mechanical models, hysteretic characteristics, and calculation efficiency, and more experimental re-search still needs to be carried out to check the accu-racy of these analysis methods.Although concrete-filled steel rectangular tubular columns are inferior to concrete-filled steel circular tubular columns in terms of bearing capacity, they are superior in many other aspects, such as beam-column connection constructability, stability, and fire resis-tance. Therefore, they are increasingly used for high-rise buildings in many countries all around the world. However, application of concrete-filled rectangular steel tube (CFRT) structures is still restricted because of the lack of engineering information on the overall seismic behavior of CFRT structures. For the purpose of investigating the seismic responses under severe earthquake conditions, a push-over analysis of a 10-story CFRT structure has been carried out and is re-ported in this paper.1 Push-Over AnalysisA 10-story moment resisting frame structure that is com-posed of concrete-filled rectangular steel tube columns and steel beams was studied. The plan, elevation, andtypical cross-sections of structural members of the CFRTFig. 1 Plan, elevation, and typical cross-sections of structural members of the CFRT structure (mm)Tsinghua Science and Technology, February 2006, 11(1): 124-130 126structure are shown in Fig. 1. The SAP2000 programis used for the push-over analysis of the CFRT struc-ture. The floors of the building are 100 mm deep, andare modeled as shell elements in SAP2000. The di-mensions and material properties of the structuralmembers are shown in Table 1. In SAP2000 theCFRT columns and steel beams are modeled as frameelements.Table 1 Dimensions and material properties of thestrutural members of the CFRT structureStory No. Steel beams(mm)CFRT columns(mm)1,2 7003001324 700203 7003001324 700184-6 6923001320 700187-10 6923001320 70016 Material property Q345 Q345C401.1 Hinge propertiesIn frame structures plastic hinges usually form at the ends of beams and columns under earthquake action. For beam elements, plastic hinges are mostly caused by uniaxial bending moments, whereas for column elements, plastic hinges are mostly caused by axial loads and biaxial bending moments. Therefore, in push-over analysis different types of plastic hinges should be applied for the beam elements and the col-umn elements separately.In SAP2000, the M3 hinge is used to simulate the plastic hinge caused by uniaxial moment, so user-defined M3 hinges are applied to the steel beams in this model. To calculate moment-rotation curves of the steel beams, the following assumptions are adopted: 1) a classical bilinear isotropic hardening model is applied to represent the stress-strain behav-ior of the steel beam; and 2) plane sections remain plane. The typical M-φ curve for the steel beams is shown in Fig. 2.Fig. 2 M-φcurve of steel beams in the 1st-3rd storiesSimilarly, the PMM hinge is used by SAP2000 to simulate the plastic hinge caused by axial load and biaxial bending moments. User-defined PMM hinges are therefore applied to the CFRT columns in this model. The M-φ curves and N-M interaction surfaces of the CFRT columns are calculated using both Han’s formulae[10] and the USC-RC program(RC program put forward by University of Southern California), for the purpose of comparison. The typical N−M interac-tion surface and M-φ curve of the CFRT columns areshown in Fig. 3.Fig. 3 -N M interaction surface and -Mφ curve of CFRT columns in the 1st and 2nd stories1.2 Lateral load patternsThe lateral load patterns are intended to represent the distribution of inertia forces in a design earthquake[11]. It is clear that the distribution of inertia forces will vary with the severity of the earthquake (i.e., the extent of inelastic deformations) and with time during an earthquake. Since no single load pattern can capture the variations in the local demands expected in a de-sign earthquake, two lateral load patterns that are ex-pected to bound the inertia force distributions are used in this push-over analysis. One is an inverted triangular lateral load pattern calculated by the base shear method; the other is the design lateral load pattern calculated using SAP2000 including higher mode effects. TheNIE Jianguo (聂建国) et al Push-Over Analysis of the Seismic Behavior of (127)horizontal loads are applied in the X-direction and Y-direction in turn for the purpose of investigating the seismic behavior of the whole structure.As Dong et al. mentioned in Ref. [12], the -P∆ effect seriously affects the stability of an unbraced frame. There-fore, push-over analyses with and without accounting for the -P∆ effect are carried out in order to investigate the -P∆effect on the seismic behavior of the CFRT structure.1.3 ResultsThe results of the push-over analysis can be used to es-timate the potential ductility of the structure, to evalu-ate its lateral load resistant capacity, and to identify the failure mechanism. It is thus important to analyze the push-over results to obtain the seismic behavior of the CFRT structure.1.3.1 Load-deformation relationshipThe capacity of the structure as represented by the base shear versus top displacement graph is very use-ful in estimating the seismic behavior of a structure in a push-over analysis. The capacity curves obtained in the push-over analyses are shown in Fig. 4, from which we find that for the cases Accel X(Y)-Han-P−, Accel X(Y)-USC-RC-P−, EQ X(Y)-Han-P−, EQ X(Y)-USC-RC-P−, and EQ X(Y)-Han-P+ the termination is caused by exceeding the target top displacement (1.6 m), while for the cases Accel X(Y)-Han-P+, Ac-cel X(Y)-USC-RC-P+, and EQ X(Y)-USC, RC-P+ the termination is caused by the formation of a plastic mechanism for the whole structure. The initial stiff-ness values and yield base shears of the cases using Accel X(Y) lateral load patterns are higher than the cases using EQ X(Y) lateral load patterns. Therefore, the conclusion can be drawn that the push-over analy-sis results are sensitive to lateral load patterns. More-over, the trends of the capacity curves in the X-direction and in the Y-direction are similar, as shown in Fig. 4. Consequently, the seismic behavior of the whole structure can be evaluated by one of the direc-tions for this case.As shown in Fig. 4, the capacity curves are almost the same in the elastic region despite the different -Mφ curves and -N M interaction surfaces of the CFRT columns. The post-yield stiffness values for cases using -Mφ and -N M curves calculated by Han’s formulae are higher than those calculated by USC-RC program, but the differences are small compared to other parameters.Figure 4 also shows that the ultimate base shears de-crease remarkably in the push-over analyses as a result of the -P∆effect. Similarly, the post-yield stiffness de-creases for the same reason. Therefore, we can draw a con-clusion that the -P∆ effect affects the seismic behavior of the moment resisting frame seriously and consequently, the effect should be taken into account in any future MRFseismic analyses.Fig. 4 Capacity curves of different push-over cases of the CFRT structureNotes: EQ X(Y) represents cases using the inverted trian-gular lateral load pattern calculated by the base shear method, Accel X(Y) represents cases using the design lat-eral load pattern calculated using SAP2000 including higher mode effects; Han represents cases using the -Mφ and -N M curves calculated by Han’s formulae, USC-RC represents cases using the -Mφ and -N M curves calculated using the USC-RC program; P− repre-sents cases without considering the -P∆ effect, P+ represents cases including the -P∆ effect.1.3.2 Final interstory driftsThe interstory drifts at the moment of termination in the push-over analyses are shown in Fig. 5. These data are useful in predicting the weak stories of the CFRT structure. From Fig. 5, we observe that the interstory drifts of the 1st-3rd stories are remarkably higher thanTsinghua Science and Technology, February 2006, 11(1): 124-130 128those of the other stories. Therefore, the weak section of the CFRT structure should be the first 3 stories for this ex-ample, and it is necessary to strengthen them in engineering application.1.3.3 Plastic hinge distributionsIt can be found that the plastic hinge distributions are similar in all the push-over analysis cases despite variations in the lateral load patterns, the -P∆ ef-fect, the -Mφ and -N M curves of the CFRT col-umns and the lateral load directions. Figure 6 illus-trates the progressive occurrence and extent of theplastic behavior of the CFRT frame atvarious Fig. 5Final interstory drifts of different push-over cases of the CFRT structureFig. 6 Progressive occurrence of plastic hinges in EQ X-USC-RC-P− push-over analysisNIE Jianguo (聂建国) et al Push-Over Analysis of the Seismic Behavior of (129)performance levels for the EQ X-USC-RC-P− push-over analysis case. Plastic yielding first occurs at base-support sections of the first-story column members as seen in Fig. 6a. With increasing the lateral load, plastic hinges occur at all of the base-support sections of the first-story columns and some of the bottom sections of the second-story and third-story columns. More-over, both end-sections of some beams in the 2nd-6th stories also reach plastic yielding at this stage as shown in Fig. 6b. Subsequently, the number of plastic hinges at the sections of the CFRT columns and steel beams inreases continually as shown in Fig. 6c. The extent of plastic behavior of the hinges develops with increas-ing horizontal load. Finally, the push-over analysis terminates due to either exceeding the target top dis-placement or the formation of a plastic mechanism for the whole structure. At this stage, shown in Fig. 6d, the extent of the plastic hinges at base-support sections of the first-story columns develops sufficiently, while the other plastic hinges of the CFRT columns and steel beams in the 2nd-3rd stories also develop to a certain extent. Therefore, we can draw the conclusion that the weak section of the CFRT structure should be the 1st-3rd stories for this example, and it is necessary to strengthen them in engineering application, in agree-ment with the conclusion drawn in Section 1.3.2.2 ComparisonFor the purpose of comparing the seismic performance of CFRT structures with RC structures, four kinds of 10-story frames, composed of CFRT and RC columns, have been studied. SAP2000 was used for push-over analyses of these structures. For convenience of comparison, the structures are almost identical except for the vertical columns, which are formed from different materials and dimensions, as shown in Table 2. The dimensions of the strength-equivalent RC columns are calculated based on the EA equivalence with the CFRT columns where E is the modulus of elasticity, A is the area of the section. Similarly, the stiffness-equivalent RC columns are calculated on the basis of EI equivalence, and the side-length-equivalent RC columns are calculated on the basis of B equivalence with the CFRT columns, where I is the moment of inertia of the section, and B is the side-length of the columns. For the push-over analyses of these different structures, the Accel X(Y) lateral load patterns calculated using SAP2000 were used; -P∆ effects were not taken into account.Table 2 Dimensions of the vertical columns indifferent structures (mm) Story No. 1,2 3-6 7-10 CFRT columns 70020 70018 70016 CFT columns 79022.6 79020.3 79018.1 Strength-equivalentRC columns855 842 828 Stiffness-equivalentRC columns822 813 805 Side-length-equivalentRC columns700 700 700From the X-direction capacity curves of the CFRT and RC structures, shown in Fig. 7a, we may find that the termination of the push-over analysis for the CFRT structure is caused by exceeding the target top displacement of 1.6 m, while the termination of the push-over analyses for RC structures is caused by the formation of a plastic mechanism over the whole structure. As the RC structures cannot reach the target top displacement, we can draw the conclusion that the CFRT structure is superior to the RC structures inFig. 7 Capacity curves of different structuresTsinghua Science and Technology , February 2006, 11(1): 124-130130 terms of ductility and deformation capacity. Moreover, the yield and ultimate base shears of the CFRT struc-ture are higher than those of the RC structures, so the conclusion that the CFRT structure has better earth-quake resistance capacity than the RC structures can be drawn. Similar conclusions can be obtained from inspection of Fig. 7b, so the seismic behavior of the CFRT structure is superior to the RC structures.The push-over results of CFRT structure and CFT structure are also compared in Fig. 7. The dimensions of the CFT columns are calculated based on s A and c A equivalence with the CFRT columns, where s Ais the section area of steel tube, and c A is the section area of filled concrete. Although the CFRT columns are inferior to the CFT columns in terms of axial bearing capacity, they are superior in flexural capacity. In this model, the axial compression ratio is less than 0.2, so the influence of the moment resistant capacity of the columns is more important than the axial bearing ca-pacity. As a result, the seismic behavior of the CFRT structure is superior to the CFT structure in this model.3 ConclusionsIn this paper the seismic behaviors of five kinds of 10-story frame structures, composed of CFRT columns, CFT columns, and RC columns, have been studied. The seismic responses of the CFRT, CFT, and RC structures in push-over analyses have been compared and some concluding remarks can be obtained as follows:1) The push-over analysis results show that the duc-tility and seismic behavior of the CFRT structure are superior to those of the RC structures. Consequently, CFRT structures are recommended in seismic regions. 2) Since the push-over analysis results are sensitive to the lateral load patterns, the use of at least two load patterns that are expected to bound the inertia force distributions is recommended in push-over analysis. 3) The push-over analysis results are slightly influenced by the M-φ curves and N-M interaction surfaces of the CFRT columns. Therefore, curves calculated either by Han’s formulae or by the USC-RC program are suitable for future push-over analyses of CFRT structures.4) Since the P-∆ effect seriously affects the seismic behavior of MRF, this effect should be taken into account in MRF seismic analyses in future research. References[1] Saiidi M, Sozen M A. Simple nonlinear seismic analysis ofRC structures. Journal of the Structural Division , 1981, 107(5): 937-952.[2] Fajfar P, Gaspersic P. The N2 method for the seismic damageanalysis of RC buildings. Earthquake Engineering and Struc-tural Dynamics , 1996, 25(1): 31-46.[3] Bracci J M, Kunnath S K, Reinhorn A M. Seismic perform-ance and retrofit evaluation of reinforced concrete structures. Journal of Structural Engineering , 1997, 123(1): 3-10. [4] FEMA. NEHRP guidelines for the seismic rehabilitation ofbuildings. Federal Emergency Management Agency, Report No. FEMA-273. Washington D.C., 1997.[5] Shams Mohammad, Saadeghvaziri M A. State of the art ofconcrete-filled steel tubular column. ACI Structural Journal , 1997, 94(5): 558-571.[6] Li Xiangzhen, Cheng Guoliang, Yu Dejie, Zhou Fulin. Elasto-plastic time-history analysis of concrete filled steel tubular structure. World Earthquake Engineering , 2002, 18(1): 73-76. (in Chinese)[7] Huang Xiangyun, Zhou Fulin, Xu Zhonggen. Comparativestudy on the earthquake behavior of concrete filled steel tubu-lar structures. World Earthquake Engineering , 2001, 17(2): 86-89. (in Chinese)[8] Li Zhongxian, Xu Chengxiang, Wang Dong, Wang Chengbo.Experimental research on the seismic behavior of concrete filled steel tubular frame structure. Building Structure , 2004, 34(1): 3-6. (in Chinese)[9] Ding Yang, Xu Chengxiang, Dai Xuexin, Li Xianzhong.Nonlinear finite element analysis of concrete filled steel tubu-lar frame structure. Building Structure , 2004, 34(1): 7-10. (in Chinese)[10] Han Linhai. Concrete-filled Steel Tubular Structure. Beijing:Science Press, 2000: 169-200. (in Chinese)[11] Krawinkler H, Seneviratna G D P K. Pros and cons of a push-over analysis of seismic performance evaluation. Engineering Structures , 1998, 20(4-6): 452-464.[12] Kim Hee Dong, Lee Myung Jae. The -P ∆ effects of non-symmetric frames. In: Proceedings of Sixth Pacific Structural Steel Conference. Beijing, China, 2001: 394-399.。
岩土工程专业词汇英汉对照一. 综合类,blog1.geotechnical engineering岩土工程2.foundation engineering基础工程3.soil, earth土4.soil mechanics土力学cyclic loading周期荷载unloading卸载reloading再加载viscoelastic foundation粘弹性地基viscous damping粘滞阻尼shear modulus剪切模量5.soil dynamics土动力学6.stress path应力路径7.numerical geotechanics 数值岩土力学二. 土的分类1.residual soil残积土 groundwater level地下水位2.groundwater 地下水groundwater table地下水位3.clay minerals粘土矿物4.secondary minerals次生矿物ndslides滑坡6.bore hole columnar section钻孔柱状图7.engineering geologic investigation工程地质勘察8.boulder漂石9.cobble卵石10.gravel砂石11.gravelly sand砾砂12.coarse sand粗砂13.medium sand中砂14.fine sand细砂15.silty sand粉土16.clayey soil粘性土17.clay粘土18.silty clay粉质粘土19.silt粉土20.sandy silt砂质粉土21.clayey silt粘质粉土22.saturated soil饱和土23.unsaturated soil非饱和土24.fill (soil)填土25.overconsolidated soil超固结土26.normally consolidated soil正常固结土27.underconsolidated soil欠固结土28.zonal soil区域性土29.soft clay软粘土30.expansive (swelling) soil膨胀土31.peat泥炭32.loess黄土33.frozen soil冻土三. 土的基本物理力学性质 compression index2.cu undrained shear strength3.cu/p0 ratio of undrained strength cu to effective overburden stress p0(cu/p0)NC ,(cu/p0)oc subscripts NC and OC designatednormally consolidated and overconsolidated, respectively4.cvane cohesive strength from vane test5.e0 natural void ratio6.Ip plasticity index7.K0 coefficient of “at-rest ”pressure ,for total stressesσ1 andσ28.K0’ domain for effective stressesσ1 ‘ andσ2’9.K0n K0 for normally consolidated state10.K0u K0 coefficient under rapid continuous loading ,simulating instantaneous loading or an undrained condition11.K0d K0 coefficient under cyclic loading(frequency less than 1Hz),as a pseudo- dynamic test for K0 coefficient12.kh ,kv permeability in horizontal and vertical directions, respectively13.N blow count, standard penetration test14.OCR over-consolidation ratio15.pc preconsolidation pressure ,from oedemeter test16.p0 effective overburden pressure17.p s specific cone penetration resistance, from static cone test18.qu unconfined compressive strength19.U, Um degree of consolidation ,subscript m denotes mean value of a specimen20.u ,ub ,um pore (water) pressure, subscripts b and m denote bottom of specimen and mean value, respectively21.w0 wL wp natural water content, liquid and plastic limits, respectively22.σ1,σ2 principal stresses, σ1 ‘ andσ2’ denote effective principal stresses23.Atterberg limits阿太堡界限24.degree of saturation饱和度25.dry unit weight干重度26.moist unit weight湿重度27.saturated unit weight饱和重度28.effective unit weight有效重度29.density密度pactness密实度31.maximum dry density 最大干密度32.optimum water content最优含水量33.three phase diagram三相图34.tri-phase soil三相土35.soil fraction粒组36.sieve analysis筛分37.hydrometer analysis比重计分析38.uniformity coefficient不均匀系数39.coefficient of gradation级配系数40.fine-grained soil(silty and clayey)细粒土41.coarse- grained soil(gravelly and sandy)粗粒土42.Unified soil classification system土的统一分类系统43.ASCE=American Society of Civil Engineer美国土木工程师学会44.AASHTO= American Association State Highway Officials 美国州公路官员协会45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy’s law 达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of driven pile打入桩(负)摩阻力3.effective stress有效应力4.total stress总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计10.recompaction再压缩11.bearing capacity承载力12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载15.a semi-infinite elastic solid半无限弹性体16.homogeneous均质17.isotropic各向同性18.strip footing条基19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载22.live load活载23.short –term transient load短期瞬时荷载24.long-term transient load长期荷载25.reduced load折算荷载26.settlement沉降27.deformation变形28.casing套管29.dike=dyke堤(防)30.clay fraction粘粒粒组31.physical properties物理性质32.subgrade路基33.well-graded soil级配良好土34.poorly-graded soil级配不良土35.normal stresses正应力36.shear stresses剪应力37.principal plane主平面38.major (intermediate, minor) principal stress最大(中、最小)主应力39.Mohr-Coulomb failure condition摩尔-库仑破坏条件40.FEM=finite element method有限元法41.limit equilibrium method极限平衡法42.pore water pressure孔隙水压力43.preconsolidation pressure先期固结压力44.modulus of compressibility压缩模量45.coefficent of compressibility压缩系数pression index压缩指数47.swelling index回弹指数48.geostatic stress自重应力49.additional stress附加应力50.total stress总应力51.final settlement最终沉降52.slip line滑动线六. 基坑开挖与降水1 excavation开挖(挖方)2 dewatering(基坑)降水3 failure of foundation基坑失稳4 bracing of foundation pit基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall挡土墙7 pore-pressure distribution孔压分布8 dewatering method降低地下水位法9 well point system井点系统(轻型)10 deep well point深井点11 vacuum well point真空井点12 braced cuts 支撑围护13 braced excavation支撑开挖14 braced sheeting支撑挡板七. 深基础--deep foundation1.pile foundation桩基础1)cast –in-place灌注桩diving casting cast-in-place pile沉管灌注桩bored pile钻孔桩special-shaped cast-in-place pile机控异型灌注桩piles set into rock嵌岩灌注桩rammed bulb pile夯扩桩2)belled pier foundation钻孔墩基础drilled-pier foundation钻孔扩底墩under-reamed bored pier3)precast concrete pile预制混凝土桩4)steel pile钢桩steel pipe pile钢管桩steel sheet pile钢板桩5)prestressed concrete pile预应力混凝土桩prestressed concrete pipe pile预应力混凝土管桩2.caisson foundation沉井(箱)3.diaphragm wall地下连续墙截水墙4.friction pile摩擦桩5.end-bearing pile端承桩6.shaft竖井;桩身7.wave equation analysis波动方程分析8.pile caps承台(桩帽)9.bearing capacity of single pile单桩承载力teral pile load test单桩横向载荷试验11.ultimate lateral resistance of single pile单桩横向极限承载力12.static load test of pile单桩竖向静荷载试验13.vertical allowable load capacity单桩竖向容许承载力14.low pile cap低桩承台15.high-rise pile cap高桩承台16.vertical ultimate uplift resistance of single pile单桩抗拔极限承载力17.silent piling静力压桩18.uplift pile抗拔桩19.anti-slide pile抗滑桩20.pile groups群桩21.efficiency factor of pile groups群桩效率系数(η)22.efficiency of pile groups群桩效应23.dynamic pile testing桩基动测技术24.final set最后贯入度25.dynamic load test of pile桩动荷载试验26.pile integrity test桩的完整性试验27.pile head=butt桩头28.pile tip=pile point=pile toe桩端(头)29.pile spacing桩距30.pile plan桩位布置图31.arrangement of piles =pile layout桩的布置32.group action群桩作用33.end bearing=tip resistance桩端阻34.skin(side) friction=shaft resistance桩侧阻35.pile cushion桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test拔桩试验38.pile shoe桩靴39.pile noise打桩噪音40.pile rig打桩机八. 地基处理--ground treatment1.technical code for ground treatment of building建筑地基处理技术规范2.cushion垫层法3.preloading预压法4.dynamic compaction强夯法5.dynamic compaction replacement强夯置换法6.vibroflotation method振冲法7.sand-gravel pile砂石桩8.gravel pile(stone column)碎石桩9.cement-flyash-gravel pile(CFG)水泥粉煤灰碎石桩10.cement mixing method水泥土搅拌桩11.cement column水泥桩12.lime pile (lime column)石灰桩13.jet grouting高压喷射注浆法14.rammed-cement-soil pile夯实水泥土桩法15.lime-soil compaction pile 灰土挤密桩lime-soil compacted column灰土挤密桩lime soil pile灰土挤密桩16.chemical stabilization化学加固法17.surface compaction表层压实法18.surcharge preloading超载预压法19.vacuum preloading真空预压法20.sand wick袋装砂井21.geofabric ,geotextile土工织物posite foundation复合地基23.reinforcement method加筋法24.dewatering method降低地下水固结法25.freezing and heating冷热处理法26.expansive ground treatment膨胀土地基处理27.ground treatment in mountain area 山区地基处理28.collapsible loess treatment湿陷性黄土地基处理29.artificial foundation人工地基30.natural foundation天然地基31.pillow褥垫32.soft clay ground软土地基33.sand drain砂井34.root pile树根桩35.plastic drain塑料排水带36.replacement ratio(复合地基)置换率九. 固结consolidation1.Terzzaghi’s consolidation theory太沙基固结理论2.Barraon’s consolidation theory巴隆固结理论3.Biot’s consolidation theory比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation多维固结8.one-dimensional consolidation一维固结9.primary consolidation主固结10.secondary consolidation次固结11.degree of consolidation固结度12.consolidation test固结试验13.consolidation curve固结曲线14.time factor Tv时间因子15.coefficient of consolidation固结系数16.preconsolidation pressure前期固结压力17.principle of effective stress。
土木工程英语证书(PEC)考试-常用桥梁词汇下部结构--substructure桥墩--pier-----墩身--pier-body墩帽--pier-cap,-pier-coping台帽--abutment-cap,-abutment-coping-盖梁--bent-cap又称“帽梁”。
重力式[桥]墩--gravity-pier实体[桥]墩--solid-pier空心[桥]墩--hollow-pier柱式[桥]墩--column-pier,-shaft-pier单柱式[桥]墩--single-columned-pier,-single-shaft-pier双柱式[桥]墩--two-columned-pier,-two-shaft-pier排架桩墩--pile-bent-pier丫形[桥]墩--Y-shaped-pier柔性墩--flexible-pier制动墩--braking-pier,-abutment-pier单向推力墩--single-direction-thrusted-pier抗撞墩--anti-collision-pier锚墩--anchor-pier辅助墩--auxiliary-pier破冰体--ice-apron防震挡块--anti-knock-block,-restrain-block桥台--abutment台身--abutment-body前墙--front-wall又称“胸墙”。
翼墙--wing-wall又称“耳墙”。
U形桥台--U-abutment八字形桥台--flare-wing-walled-abutment一字形桥台--head-wall-abutmentT形桥台--T-abutment箱形桥台--box-type-abutment拱形桥台--arched-abutment重力式桥台--gravity-abutment埋置式桥台--buried-abutment扶壁式桥台--counterfort-abutment,-buttressed-abutment 衡重式桥台--weight-balanced-abutment锚碇板式桥台--anchored-bulkhead-abutment支撑式桥台--supported-type-abutment又称“轻型桥台”。
钢管混凝土结构及钢结构单层单跨框架力学性能分析王颖;易坤【摘要】为了对比分析方钢管混凝土柱工字钢梁和方空钢管柱工字钢梁两种框架结构的力学性能,运用有限元软件分别对上述两种框架结构进行了全尺寸建模,完成非线性有限元计算分析.结果表明,计算结果与实验数据吻合较好,验证了所建模型的准确性;两种框架结构的滞回曲线均为饱满的梭形,无明显的捏缩现象,且方钢管混凝土柱工字钢梁框架梁端水平极限承载力高于方空钢管柱工字钢梁框架结构.%In order to compare and analyze the mechanical properties of two frame structures including both concrete filled square steel tube column-I beam and hollow square steel tube column-I beam frame structures, the full-scale modeling the above-mentioned two frame structures were carried out with the finite element software, and the nonlinear finite element calculation and analysis were completed. The results show that the calculated results agree well with the experimental data, which verifies the reliability of the established model. In addition, the hysteretic curves of two frame structures are in plump spindle-shape without obvious pinch phenomenon. Furthermore, the horizontal ultimate bearing capacity at the beam ends of concrete filled square steel tube column-I beam frame structure is higher than that of hollow square steel tube column-I beam frame structure.【期刊名称】《沈阳工业大学学报》【年(卷),期】2018(040)001【总页数】6页(P115-120)【关键词】钢管混凝土柱;空钢管柱;框架;工字钢梁;外加强环;节点;有限元;力学性能【作者】王颖;易坤【作者单位】沈阳工业大学建筑与土木工程学院,沈阳110870;沈阳工业大学建筑与土木工程学院,沈阳110870【正文语种】中文【中图分类】TU398.9方钢管混凝土框架结构具有节点简单、加工方便、施工周期短和便于采取防火板材等优点,在高层、超高层建筑中的应用越来越广泛.到目前为止,国内外针对钢管混凝土单个构件方面进行了较多研究,并对钢管混凝土节点进行了研究,相比之下,对于钢管混凝土框架结构上的研究较少[1-3].工程上复杂的多层多跨框架结构都是由简单的单层单跨结构组合而成,因此,对单层单跨结构整体上进行研究非常必要.在实际试验分析研究过程中,不仅试验费用较高,耗时费力,而且存在诸多试验不确定性因素影响,易造成试验与实际情况存在偏差.拥有强大工程模拟功能的有限元软件ABAQUS带来了一种更加高效、便捷、经济的研究分析方法.本文根据王文达博士的实际试验数据[4],利用有限元软件ABAQUS对方钢管混凝土柱工字钢梁框架进行低周循环荷载作用下的力学性能分析,并与试验结果进行对比,从而验证所建立的有限元计算模型的准确性.在此基础上,对方空钢管柱工字钢梁框架结构进行低周循环荷载作用下的力学性能分析,并对两种组合结构的梁柱框架结构进行对比分析.在本文中工字钢梁的钢材采用简化的两段线模型,适用于低碳钢,弹性模量为206 GPa,泊松比为0.262,其双直线模型如图1所示.核心区混凝土受到方钢管柱的约束,其塑性能力得到提高,故普通混凝土单轴应力应变曲线无法反映出核心混凝土塑性性能的提升.为了充分考虑方钢管柱对核心区混凝土的约束效应,本文采用刘威[5]提出的核心区混凝土本构模型,如图2所示.刘威在谭清华等[6]提出的混凝土本构模型的基础上对其峰值和下降段进行了修改,使其更加适用于有限元分析,其应力应变关系的函数表达式为单层单跨方钢管混凝土柱工字钢梁框架模型采用文献[4]中实际试验数据120mm×120 mm×3.46 mm方钢管柱和160 mm×80 mm×3.44 mm×3.44mm(梁高、梁宽、腹板厚度、翼缘厚度)工字钢梁.工字钢梁和外加强环通过焊接连接在方钢管柱上,模型中采用绑定连接.方钢管柱、工字钢梁和加强环板模型采用S4R壳单元,核心混凝土采用C3D8R实体单元建模.定义混凝土和方钢管之间的接触单元[7]时,应该考虑其切向行为和法向行为,切向行为采取罚摩擦公式,摩擦系数为0.6;法向行为定义为“硬”接触.一榀方钢管混凝土框架模型尺寸如图3所示(单位:mm).有限元软件建立的框架模型及单元划分模型如图4所示.本文中钢管混凝土框架试验边界条件和荷载的施加形式明确,柱脚固接,两柱顶施加轴向荷载,工字钢梁端右侧施加水平循环荷载.在有限元计算模拟中,对方钢管柱脚采取嵌固的边界条件,加劲板底部同样采用嵌固边界,由于只有柱顶板和底板限制了核心混凝土的轴向位移,所以核心混凝土的边界仅需约束其轴向位移即可.在荷载施加的过程中,梁端右侧水平循环荷载的加载过程采用位移加载控制,加载历程如图5所示,其中,Δ/Δy为试验过程中模型的位移值与模型屈服位移的比值. 对于方钢管混凝土柱工字钢梁框架模型有限元计算和试验得到的荷载位移滞回曲线如图6所示.通过滞回曲线得到的骨架曲线如图7所示.本文参考文献[8]中确定钢管混凝土柱屈服点的方法,根据骨架曲线来确定框架结构水平承载力.试件水平承载力计算结果与试验结果的比较如表1所示,其中,Pu2/Pue为钢管混凝土模型极限水平荷载模拟值与试验值的比值.模拟计算得到的滞回曲线为较饱满的梭形形状,表明整个框架结构具有很强的塑性变形性能和抗震耗能能力.有限元分析得出的模型整体刚度、水平极限承载力均大于试验结果,滞回环也相较试验结果更加饱满.分析表明,有限元模拟与试验值基本接近,总体上稍微偏大是由于有限元计算分析中未模拟结构的初始缺陷、安装过程中产生的误差等因素的影响.对比结果显示,运用有限元模拟的方法可以较好地对方钢管混凝土柱工字钢梁平面框架进行数值模拟分析.当遭遇地震荷载作用时,可采用结构吸收能量和耗散能量的多少作为评价结构抗震性能优劣的依据.滞回曲线的荷载位移加载段曲线围成的面积为整体结构吸收的能量.同理,荷载位移卸载段曲线与加载曲线围成的面积为结构耗散的能量.本文利用等效粘滞阻尼系数he和能量耗散系数E当做评价结构耗能能力的参考指标,等效粘滞阻尼系数越大,说明结构的耗能能力越强[9].表2为有限元计算和试验得到的等效粘滞阻尼系数与能量耗散系数的对比.有限元模拟没有考虑钢材在循环荷载作用下的塑性损伤引起的刚度退化,从而使有限元计算出的等效粘滞阻尼系数和能量耗散系数均略大于试验结果.分析表明,方钢管混凝土柱工字钢梁框架模型有限元计算分析结果与实测试验数据总体吻合较好.采用所建立的有限元计算模型能够简便、快捷、准确地分析实际受力情况.为进一步探明钢管柱内填充混凝土后的作用,本文建立了空钢管柱工字钢梁框架模型,并对其进行有限元计算分析.将两种框架结构的计算结果进行对比分析,从而评价两种框架结构力学性能的优劣[10].通过统一钢管混凝土柱和空钢管柱的轴压承载力,从而计算出空钢管柱的厚度为7.3 mm.方空钢管柱工字钢梁框架模型其他尺寸与方钢管混凝土柱工字钢梁框架结构模型相同.方钢管混凝土柱工字钢梁和方空钢管柱工字钢梁框架结构统一计算到5Δy时对应的应力云图如图8所示.框架结构在受力过程中,首先在靠近梁端加载端的位置形成塑性铰,由于节点区存在加强环板,翼缘屈服区域分布在加强环板之外的钢梁截面上,工字钢梁左端上翼缘与右端下翼缘表面在压应力作用下率先进入塑性状态.方钢管柱脚钢管的屈服略晚于梁端,随着梁端屈服区域的变大,钢管柱脚仅有小部分进入塑性状态.在之后的加载过程中,梁端进入全截面屈服,首先形成塑性铰,并随着水平循环位移的继续增加,柱脚处钢管向外鼓曲,形成塑性铰,框架结构丧失承载能力,发生破坏,结构整体未出现明显的失稳现象.而方空钢管柱柱脚首先因失稳发生破坏,结构整体失稳现象明显.上述框架破坏模式说明,方钢管混凝土柱工字钢梁和方空钢管柱工字钢梁框架采用外加强环板连接的节点形式满足“强柱弱梁”的抗震设防要求,形成了理想的“梁铰”破坏机制.由图8可知,塑性铰只出现在工字钢梁端部环板外侧和柱脚加劲板上方,而节点区钢管柱壁在加载过程中始终处于弹性阶段,表明采用外加强环连接节点的两种框架结构均满足“强节点、弱构件”的抗震设防要求.图9为两种框架结构荷载位移曲线.由图9可知,两种组合结构的滞回曲线都呈饱满的梭形,说明两种结构的塑性变形能力很强,具有良好的抗震耗能能力.相比之下,钢管混凝土柱框架结构的滞回曲线更加圆滑、饱满.在框架结构的受力过程当中,受到方钢管柱约束其轴向位移的混凝土处于三向受压状态,从而提高了混凝土的受压承载力.正因为混凝土的存在,延缓了方钢管柱的局部屈曲变形,进一步提高了钢管混凝土柱的承载力.骨架曲线为每个循环加载过程中荷载峰值点的连线,因此,骨架曲线能够反映出结构在每个循环过程中荷载变形对应的关系,同时有助于研究结构的抗震性能.骨架曲线能清楚地反映出结构承载力的多少,钢管混凝土柱框架结构的承载能力明显高于空钢管柱框架结构.两种框架结构的骨架曲线如图10所示.为了更好地反映结构的强度退化,本文引用荷载强度退化系数其中,为第j级加载时,第i次循环峰值点的荷载值;为第j级加载时,第i-1次循环峰值点的荷载值.图11为两种框架结构的强度退化曲线.刚度退化的定义参照《建筑抗震试验方法规程》(JGJ/T101-2015),同级变形下的割线刚度表达式为图12为两种框架结构的刚度退化曲线.图12中显示无混凝土的方空钢管柱工字钢梁框架结构的强度退化和刚度退化都更快一些.通过将钢材和混凝土两种材料组合在一起,不但克服了两者各自的缺点,而且还充分地发挥各自的优点,这也正是钢管混凝土结构的优势所在.本文利用有限元软件ABAQUS建立了采用外加强环式节点连接形式的单层单跨方钢管混凝土柱工字钢梁及方空钢管柱工字钢梁平面框架模型进行力学性能分析,并得出以下结论:1) 数值模拟计算得到的方钢管混凝土柱工字钢梁框架模型的破坏模式、滞回曲线及承载力等数据均与试验结果吻合较好,表明建立的有限元计算模型能够较为准确、简便、快捷地模拟框架实际的受力情况.2) 两种框架结构力学性能对比分析表明,方钢管混凝土柱工字钢梁框架结构在承载能力、耗能能力、强度刚度退化方面均优于方空钢管柱工字钢梁框架结构.3) 有限元模拟分析得到的两种框架结构的滞回曲线、骨架曲线均未出现明显的下降段,这是由于试验中的最终破坏为方钢管柱脚的焊缝开裂导致框架结构的承载力降低.而在有限元计算分析中,方钢管柱作为一整体建立模型,忽略了钢材焊缝的缺陷,故未产生试验分析中明显的下降段曲线.(LIU Lin-lin,TU Yong-qing,YE Ying-hua.Finite element analysis of L-shaped concrete filled steel tubular column based on ABAQUS [J].Journalof Shenyang University of Technology,2011,33(3):349-354.)(GONG Yong-zhi,NI Ming,DING Fa-xing,et al.Behavior of axially loaded steel-reinforced concrete-filled square stell tubular stub columns[J].Journal of Building Structures,2014,35(Sup2):120-124.)(HUANG Yuan,ZHU Zheng-geng,ZHANG Rui,et al.Nonlinear FEA of square concrete-filled steel tubular solumn strengthened with end studs [J].Journal of Building Structures,2014,35(Sup2):137-144.)(WANG Wen-da.Study on mechanical properties of concrete filled steel tubular column and steel beam plane frame [D].Fuzhou:Fuzhou University,2006.)(LIU Wei.Study on working mechanism of concrete filled steel tube under local compression [D].Fuzhou:Fuzhou University,2005.)(TAN Qing-hua,HAN Lin-hai.Post-fire and post-strengthening analysis of steel reinforced concrete co-lumns subjected to fire [J].Journal of Tsinghua Uni-versity (Science and Technology),2013,53(1):12-17.)(ZHUANG Zhuo.Based on ABAQUS finite element analysis and application [M].Beijing:Tsinghua University Press,2009.)(HAN Lin-hai.Steel tube concrete structure [M].Beijing:Science Press,2016.)(Ministry of Housing and Urban-Rural Deve lopment of the People’s Republic of China.JGJ/T101-2015 Specification for seismic test of buildings [S].Beijing:China Building Industry Press,2016.)(WANG Jing-feng,ZHANG Lin,DAI Yang.Seismic experimental study of end plate connections for semi-rigid concrete-filled steel tubular frames[J].China Civil Engineering Journal,2012,45(11):13-21.)【相关文献】[1] 刘林林,屠永清,叶英华.基于ABAQUS的钢管混凝土L形柱有限元分析 [J].沈阳工业大学学报,2011,33(3):349-354.(LIU Lin-lin,TU Yong-qing,YE Ying-hua.Finite element analysis of L-shaped concrete filled steel tubular column based on ABAQUS [J].Journal of Shenyang University of Technology,2011,33(3):349-354.)[2] 龚永智,倪鸣,丁发兴,等.型钢方钢管混凝土轴压短柱力学性能有限元分析[J].建筑结构学报,2014,35(增刊2):120-124.(GONG Yong-zhi,NI Ming,DING Fa-xing,et al.Behavior of axially loaded steel-reinforced concrete-filled square stell tubular stub columns [J].Journal of Building Structures,2014,35(Sup2):120-124.)[3] 黄远,朱正庚,张锐,等.端部栓钉加强方钢管混凝土柱非线性有限元分析 [J].建筑结构学报,2014,35(增刊2):137-144.(HUANG Yuan,ZHU Zheng-geng,ZHANG Rui,et al.Nonlinear FEA of square concrete-filled steel tubular solumn strengthened with end studs [J].Journal of Building Structures,2014,35(Sup2):137-144.)[4] 王文达.钢管混凝土柱钢梁平面框架的力学性能研究 [D].福州:福州大学,2006.(WANG Wen-da.Study on mechanical properties of concrete filled steel tubular column and steel beam plane frame [D].Fuzhou:Fuzhou University,2006.)[5] 刘威.钢管混凝土局部受压时的工作机理研究 [D].福州:福州大学,2005.(LIU Wei.Study on working mechanism of concrete filled steel tube under local compression [D].Fuzhou:Fuzhou University,2005.)[6] 谭清华,韩林海.火灾后和加固后型钢混凝土柱的力学性能分析 [J].清华大学学报(自然科学版),2013,53(1):12-17.(TAN Qing-hua,HAN Lin-hai.Post-fire and post-strengthening analysis of steel reinforced concrete co-lumns subjected to fire [J].Journal of Tsinghua Uni-versity (Science and Technology),2013,53(1):12-17.)[7] 庄茁.基于ABAQUS的有限元分析和应用 [M].北京:清华大学出版社,2009.(ZHUANG Zhuo.Based on ABAQUS finite element analysis and application [M].Beijing:Tsinghua University Press,2009.)[8] 韩林海.钢管混凝土结构 [M].北京:科学出版社,2016.(HAN Lin-hai.Steel tube concrete structure [M].Beijing:Science Press,2016.)[9] 中华人民共和国住房和城乡建设部.JGJ/T101-2015建筑抗震试验方法规程 [S].北京:中国建筑工业出版社,2016.(Ministry of Housing and Urban-Rural Development of the People’s Republic ofChina.JGJ/T101-2015 Specification for seismic test of buildings [S].Beijing:China Building Industry Press,2016.)[10]王静峰,张琳,戴阳.半刚性钢管混凝土框架梁柱端板连接抗震性能试验研究[J].土木工程学报,2012,45(11):13-21.(WANG Jing-feng,ZHANG Lin,DAI Yang.Seismic experimental study of end plate connections for semi-rigid concrete-filled steel tubular frames [J].China Civil Engineering Journal,2012,45(11):13-21.)。
PartIV:CommonlyUsedProfessionalTermsofCiviloakum麻刀,麻丝Engineeringtee三通管developmentorganization建设单位tap存水弯designorganization设计单位esthetics美学constructionorganization施工单位formwork模板(工程)reinforcedconcrete钢筋混凝土shoring支撑pile桩batching配料steelstructure钢结构slipformconstruction(slipforming)滑模施工aluminiumalloy铝合金lfit-slabconstruction升板法施工masonry砌体(工程)reinforced~配筋砌体massconcrete大体积混凝土load-bearing~承重砌体unreinforced~非配筋terrazzo水磨石砌体constructionjoint施工缝permissiblestress(allowablestress)容许应力honeycomb蜂窝,空洞,麻面plywood胶合板piledfoundation桩基retainingwall挡土墙deepfoundation深基础finish装修shallowfoundation浅基础finishingmaterial装修材料foundationdepth基础埋深ventilation通风padfoundation独立基础natural~自然通风stripfoundation条形基础mechanical~机械通风raftfoundation筏基diaphragmwall(continuousconcretewall)地下连boxfoundation箱形基础续墙BSMT=basement地下室villa别墅lift电梯electricelevatormomentofinertia惯性矩liftwell电梯井torque扭矩escalator自动扶梯i o松比μstress应力normal~法向应力shear~剪应Poisson’srat泊力Young’smodulus,modulusofelasticity杨氏模strain应变量,弹性模量Eagehardening时效硬化safetycoefficient安全系数air-conditioningsystem空调系统fatiguefailure疲劳破坏(air)voidration(土)空隙比bearingcapacityoffoundations地基承载力albery壁厨,壁龛bearingcapacityofapile单桩承载力a l mery壁厨,贮藏室two-way-reinforcement双向配筋anchoragelength锚固长度reinforcedconcretetwo-wayslabs钢筋混凝土双向antiseismicjoint防震缝板architecturalappearance建筑外观singlewayslab单向板architecturalarea建筑面积windowblind窗帘sunblindarchitecturaldesign建筑设计windload风荷载fiashing泛水curing养护workability(placeability)和易性watertightconcrete防水混凝土safetyglass安全玻璃whitecement白水泥temperedglass(reinforcedglass)钢化玻璃separatingofconcrete混凝土离折segregationfoamedglass泡沫玻璃ofconcreteasphalt沥青mortar砂浆~joint灰缝felt(malthoid)油毡pilaster壁柱rivetedconnection铆接firerating耐火等级welding焊接firebrick耐火砖screwedconnection螺栓连接standardbrick标准砖terracotta琉璃瓦thermalinsulation隔热mosaic马赛克throughventilation穿堂风ceramicmosaic陶瓷锦砖,马赛克,ceramictimberstructure木结构woodstructuremosaictiletoilet盥洗间,浴室,厕所,便池ceramictile瓷砖tracingpaper描图纸rubblewall毛石墙lawn草坪marble大理石,大理岩treatmentofelevation立面处理granite花岗石,花岗岩drawingboard绘图板ready-mixedconcrete商品混凝土,预拌混凝土triaxialcompressiontest三轴压缩试验realestate房地产tubularsteelscaffolding钢管脚手架reinforcementbar钢筋veinforcementmeal,uniformlydistributedload均布荷载reinforcingbar,reinforcingsteelunnotchedbar光面钢;threadbar螺纹钢筋reinforcementcover混凝土保护层urinal小便池,小便斗,小便槽reinforcementmat钢筋网,reinforcingmeshvalley天沟reinforcingratio配筋率reinforcementventilatingskylight通风天窗percentagewaterproofbarrier防水层aquatardreinforcingwork钢筋工程Terzaghibearingcapacitytheory太沙基承载力理residentialbuilding居住建筑论rigidfoundation刚性基础Terzaghiconsolidationtheory太沙基固结理论roof屋顶,屋盖,屋面;roofboard屋面板;rooffoundationtreatment地基处理garden屋顶花园foundationpressure基底压力roofliveload屋面活荷载span跨度rusticterrazzo粗面水磨石,水刷石specificgravity比重sandcushion砂垫层quicklime生石灰,氧化钙saw-toothskylight锯齿形天窗hydratedlime熟石灰,消石灰scaffold脚手架hydration水化作用sill窗台plasterofParis熟石膏siltysoil粉质土portlandcement波特兰水泥,硅酸盐水泥,普通水singledoor单扇门泥t渣水泥doubledoor双扇门portlandblastfurnaceslagcemen矿singlereinforcemen单筋tportlandfly-ashcement粉煤灰(硅酸盐)水泥slidingdoor推拉门portland-pozzolanacement火山灰质硅酸盐水泥slidingwindow水平推拉窗gas-foamingadmixture发泡剂staircase楼梯间retardingadmixture缓凝剂stairrail(ing)楼梯栏杆,楼梯扶手water-reducingagent减水剂stairstep楼梯踏步air-entrainedagent加气剂stairstring(er)楼梯梁slump坍落度stairclearance楼梯净空高度stairheadroomwater-cementratio水灰比w/csteelforms钢模板architecturallighting建筑采光,建筑照明storeroom贮藏室architecturalperspective建筑透视图structuraldrawings结构图architecturalsection建筑剖面图softsubstratum软弱下卧层architecturalspecifications建筑规范sunlouver遮阳板architecturalworkingdrawing建筑施工图supportingblock支座architecturesketch建筑草图supportinglayer持力层arcwelding电弧焊tensilereinforcement受拉钢筋tensilesteel,stressconcentration应力集中tensionreinforcementmultistoriedbuilding多层建筑terraceroof平屋顶settlementoffoundation地基沉降tensilestrength抗拉强度buildingrubble建筑垃圾compressivestrength抗压强度buildingstormsewer房屋雨水管bendingstrength抗弯强度built–incupboard壁厨constructionmaterial建筑材料buildingmaterialcablestructure悬索结构continuousbeam连续梁cable-supportedconstruction悬索结构towercrane塔式起重机,塔吊canopy雨篷SPT=standardpenetrationtest标准贯入度试验cast-in-placeconcrete现浇混凝土wallbetweentwowindows窗间墙cast-in-situconcrete现浇混凝土stability稳定性caterpillarcrane履带式起重机stress-straincurve应力-应变曲线cavitybrick空心砖stress-straindiagram应力-应变图cavitywall空心墙damp-proofcoating防潮层ceiling顶棚,吊顶,天花板osmosis渗透cementfloor水泥地面osmoticco-efficient渗透系数cementmortar水泥砂浆osmoticpressure渗透压力center-to-center中心距(中到中间距)finiteelementmethod有限单无法chain-pullswitch拉线开关finite-differencemethod有限差分法cromatics色彩学finiteslicemethod条分法cityplanning城市规划deformation变形civilarchitecture民用建筑displacement位移civilbuilding民用建筑allowablebearingcapacity容许承载力civilengineering土木工程totalanddifferentialsettlement总沉降量和沉降差claybrick粘土砖Mohr’scircleofstress摩尔应力圆clerestory天窗snowlaod雪(荷)载clerestorywindows高侧窗bentreinforcementbar弯起钢筋closet盥洗室,厕所,卫生间bentsteel弯起钢筋coatedglass玻璃幕墙glasscurtainwallbent-upbar弯起钢筋collapsibleloess湿陷性黄土slumpingloessbid投标,标书collartiebeam圈梁bidcall招标combinationbeam组合梁bidopening开标combinationconstruction混合结构biddingsheet标价单shearwall剪力墙bidprice出价,投标价格shearstrength抗剪强度bindingreinforcement绑扎钢筋transom(门上的)亮子blockingcourse檐口墙,女儿墙parapet(wall)bar棒,条,杆件,(粗)钢筋bloodwood红木redwoodbeam梁bricklintel砖砌过梁framework框架brickmasonrystructure砖石结构truss桁架BRKT=bracket牛腿staticallydeterminate~静定桁架buildingheight建筑高度staticallyindeterminate~超静定桁架buildingindustrialization建筑工业化elasticity弹性building-infitting预埋件plasticity塑性buildinglaw建筑法stiffness刚度buildingline建筑红线fiexibility挠度buildingmodule建筑模数bendingmoment弯矩~diagram弯矩图~buildingorientation建筑物朝向envelope弯矩包络线buildingpermitsforconstruction建筑施工执照influenceline影响线buildingequipment建筑设备aggregate骨料buildingphysics建筑物理coarse~粗骨料fine~细骨料completiondate竣工日期admixture外加剂compressionbar受压钢筋concretemixer混凝土搅拌机compressionsteel受压钢筋paint油漆concealedwork隐蔽工程density密度conductor水落管viscosity粘度,粘滞性constructionadministration施工管理geology地质constructionaldrawing施工图,构造图earthpressure土压力active~主动土压力constructionandinstallationwork建筑安装工程coarsesand粗砂;mediumsand中砂;finesand细constructioncompany建筑公司砂constructioneconomics建筑经济artificialdaylight人工采光constructionindustry建筑(工)业artificialillumination人工照明constructioninprocess在建工程artofarchitecture建筑艺术constructionmanagementplan施工组织设计seismaticdesign抗震设计constructionperiod施工工期backview背立面constructionsite施工现场balcony阳台creep徐变,蠕变balustrade栏杆,扶手crosswall横墙bambooscaffolding竹脚手架darkroom暗室bandiron扁铁,扁钢designdevelopmentphase技术设计阶段barcutter钢筋切断机designscheme设计方案barlist钢筋表detaildrawing详图,大样图,细部图barspacing钢筋间距developmentarea开发区baseboard踢脚板digestiontank化粪池septictank,sewagetankbasicmodule基本模数distributedload分布荷载BC=buildingcode建筑法规distributingbars分布钢筋beam-and-columnconstruction梁柱结构(框架结distributionreinforcement分布钢筋构)BL=deadload恒载,自重beam-and-girderconstruction主次梁梁格结构doglegstair双折楼梯halfturnbeam-and-slabconstruction梁板结构domesticbuilding居住房屋,住宅beamwithoneoverhangingend悬臂梁cantileverdoorwindow落地窗beam,overhangingbeamdormitory宿舍beamwithsimplysupportedends简支梁simpledownspout雨水管,落水管drainspout,fallpipe, beam,simple-supportedbeam,simplysupportedleaderpipe,rainconductor,rainleader,rain-water beamleaderbeamwithfixedends固端梁dripline滴水线bendingstiffness弯曲刚度dunny厕所,盥洗室bendingstrength抗弯强度earthquakeintensity地震烈度bendingstress弯曲应力earthquakeload地震荷载bendbar弯起钢筋,弯筋earthquakeresistantdesign抗震设计commemorativearchitecture纪念性建筑earthwork土石方工程commercialbuildings商业建筑物,商业房屋earthworkquantity土方工程量compactedfill压实填土,夯实填土eave屋檐compactedsoil压实土effectivedepth有效高度,有效深度,有效厚度compactionbylayers分层填土夯实enameledtile琉璃瓦,釉面砖compactionbyrolling碾压engineeringgeologicalprospecting工程地质勘探compactionbyvibration振动压实expandedjoint伸缩缝,温度缝shrinkagejoint, compartmentation隔断temperaturejointcompletionacceptance竣工验收factorybuilding厂房figuredglass图案玻璃,压花玻璃patternedglassaccordionshades折叠式活动隔断,屏风fixedwindow固定窗acid酸flatskylight平天窗alkali碱flexiblefoundation柔性基础acousticalinsulation隔声floorload楼面荷载redcray红粘土adamicearthfloorplan楼屋平面图adhesivebitumenprimer冷底子油floor-to-ceilingheight楼面至顶棚高度,室内净高administrationoftheconstructioncontract施工合floor-to-floorheight楼面至楼面高度同管理storyheight层高aerialledder消防梯farmedsteel型钢shape(d)steelnon-bearingwall非承重墙non-loadbearingwallfoundationbeam基础梁normfordetailedestimates预算定额foundationbed基础垫层normforpreliminaryestimates概算定额gable出墙~wallnormforestimatinglaborrequirements劳动定额galvanizediron镀锌铁皮,白铁皮normforestimatingmaterialrequirements材料定额generalarrangementdrawing总体布置图,总平面图openditch明沟opentrenchgenerallayout总平面图,总体布置outsidefinish外装修glassfiberreinforcedplastics玻璃纤维增强塑料,partion隔壁,~screen隔断玻璃钢peashingle豆砾石,绿豆砂gluedboard胶合板pipelinegas管道煤气gravel砾石;~cobble卵石pebblegravel,pebbleplastichinge塑性铰stoneplinth(wall)勒脚groundengineering地基工程pointing(joints)勾缝groundfloorplan底层平面图pointingmasonry勾缝砌体,清水墙groundwatersurface地下水位phreatic(water)porch门廊,走廊surfaceporewater孔隙水gutter明沟,天沟post-tensioningmethod后张法rain-gutter檐沟,天沟precastconcretelintel预制混凝土过梁hair麻刀hempprecastreinforcedconcretebuilding预制钢筋混凝mixedsand混合砂土房屋mechanicsofmaterials材料力学monolithicreinforcedconcretebuilding整体式钢筋theoreticalmechanics理论力学混凝土房屋elasticmechanics弹性力学prestressedconcrete预应力混凝土structuralmechanics结构力学pretensioningmethod先张法architecturalmechanics建筑力学protectingcap安全帽protectivecap,safetyhelmetfracturemechanics断裂力学protectingnet安全网soilmechanics土力学publicbuilding公共建筑rockmechanics岩石力学publiccomfortstation公共厕所publicfluidmechanics流体力学convenienceabrasivefloor防滑地板pumpconcrete泵送混凝土pumpingconcreteacceleratedcement快凝水泥halfpacelanding楼梯平台landingplatform,stairaccelerator促凝剂,速凝剂landing,stairplatformacceptanceofhiddensubsurfacework隐蔽工程验hallway门厅,过道收hempthread麻丝acceptanceoftender得标high-risehotel高层旅馆,高层饭店acceptanceofworksubelements分项工程验收hip屋脊线accesseye清扫孔,检查孔hoopreinforcement环筋,箍筋accesshole检修孔hullcorestructure 筒体结构accessplate检修孔盖板insidefinish内装修jalousiewindow百叶窗,louverwindowjuniorbeam次梁secondarybeam,secondarygirder mainbeam主梁primarybeam,primarygirder kickstrip踢脚step踏步L&CM=limeandcementmortar石灰水泥砂浆lintol(门窗)过梁lintellongitudinalbar纵向钢筋low-risebuilding低层建筑LR=livingroom起居室,客厅sittingroom,parlo(u)rmastic玛碲脂,树脂,嵌缝料membranecuring薄膜养护metallictape钢卷尺metalwindow钢窗mid-spanmoment跨中弯矩mix(ing)proportion配合比,混合比mix(ing)ratio mopboard踢脚板mosquitoscreen纱窗,screenwindow。
建筑专业笔记整理大全-结构工程常用词汇-土木工程常用英语术语结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete 双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span-to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure土木工程常用英语术语第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
第24卷 第3期2007年9月建筑科学与工程学报Journal of Architect ure and Civil EngineeringVol.24 No.3Sept.2007文章编号:1673 2049(2007)03 0031 05收稿日期:2007 06 26基金项目:国家自然科学基金项目(50678025)作者简介:郑 宏(1964 ),男,黑龙江哈尔滨人,教授,博士生导师,工学博士,博士后,E mail:cehz heng@ 。
钢板深梁屈曲分析郑 宏,杨飞颖,张维刚(长安大学建筑工程学院,陕西西安 710061)摘要:介绍了一种新型的抗侧力结构体系 钢板深梁;利用有限元分析软件ANSYS 分析了两侧加劲钢板深梁的弹塑性屈曲性能,讨论了深梁跨高比、宽厚比等参数对钢板深梁屈曲性能的影响。
研究结果表明:极限承载力与钢板深梁跨高比近似成正比关系;对厚板与薄板而言,厚板的非线性由材料的弹塑性引起,而薄板的非线性由深梁严重面外变形和材料弹塑性共同引起;厚板对加劲肋的要求较低,可不布置中部加劲肋,而薄板对加劲肋的要求较高。
关键词:抗侧力体系;钢板深梁;弹塑性屈曲;极限承载力中图分类号:T U392.4 文献标志码:ABuckling Analysis on Steel Plate Deep BeamZH ENG H ong,YA NG Fei y ing,ZH ANG Wei gang(School of A rchitectural Eng ineering ,Chang an U niver sity ,Xi an 710061,Shaanx i,China)Abstract:Steel plate deep beam (SPDB),as a new later al resistant system,w as intr oduced.The finite elem ent analysis softw are ANSYS was adopted to analyze the elastic plastic buckling behav io r o f SPDB w ith stiffened panel at both edges.The r esearch w o rk w as focused on the influences o f side length ratio,height thickness r atio and so o n.T he r esult show s that the ultimate bearing capacity o f SPDB is pro por tional to the side leng th ratio.The thick panel is different from the thin panel.The no nlinear behavior of the thick panel is resulted from the no nlinearity of material,but the nonlinear behavior o f the thin panel is from bo th the nonlinearity of material and serious g eom etry deformation of the panel.In the design of SPDB,the inter io r stiffeners are necessary for the thin panel but not necessary fo r the thick panel.Key words:lateral resistant sy stem;steel plate deep beam;elastic plastic buckling;ultim ate bearing capacity0引 言钢框架及钢框架内填剪力墙(如钢板剪力墙)是2种常用的抗侧力体系,相对而言,框架的刚度较弱,钢框架内填剪力墙的刚度过强。