2013高考数学(文)二轮复习配套作业(解析版):专题限时集训(七)(湖北省专用)
- 格式:doc
- 大小:440.50 KB
- 文档页数:4
专题限时集训(五)[第5讲 导数在研究函数中的应用](时间:45分钟)1.直线y =kx +b 与曲线y =x3+ax +1相切于点(2,3),则b 的值为( )A .-3B .9C .-15D .72.若函数f(x)=x3+x2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.13,+∞ B .-∞,13C.13,+∞ D .-∞,133.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .44.若函数f(x)=(x -2)(x2+c)在x =2处有极值,则函数f(x)的图象在x =1处的切线的斜率为( )A .-5B .-8C .-10D .-125.设P 点是曲线f(x)=x3-3x +23上的任意一点,若P 点处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πB.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π C.⎣⎡⎭⎫2π3,π D.⎝⎛⎭⎫π2,5π6 6.有一机器人运动的位移s(单位:m)与时间t(单位:s)之间的函数关系为s(t)=t2+3t,则该机器人在t =2时的瞬时速度为( )A.194 m/sB.174 m/sC.154 m/sD.134m/s图5-17.定义在区间[0,a]上的函数f(x)的图象如图5-1所示,记以A(0,f(0)),B(a ,f(a)),C(x ,f(x))为顶点的三角形面积为S(x),则函数S(x)的导函数S′(x)的图象大致是( )图5-28.函数f(x)=lnx -12x2的大致图象是( )图5-3图5-49.如图5-4是二次函数f(x)=x2-bx +a 的部分图象,则函数g(x)=2lnx +f(x)在点(b ,g(b))处切线的斜率的最小值是( )A .1 B. 3C .2D .2 210.已知直线y =ex 与函数f(x)=ex 的图象相切,则切点坐标为________.11.已知函数f(x)=kx3+3(k -1)x2-k2+1(k>0)的单调递减区间是(0,4),则k 的值是________.12.已知函数f′(x)、g′(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图5-5所示:①若f(1)=1,则f(-1)=________;②设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为________.(用“<”连接)图5-513.已知函数f(x)=ax +lnx(a ∈R),(1)若a =1,求曲线y =f(x)在x =12处切线的斜率;(2)求函数f(x)的单调增区间;(3)设g(x)=2x ,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a 的取值范围.14.已知a>0,函数f(x)=a x+lnx -1(其中e 为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值;(2)设g(x)=x2-2bx +4,当a =1时,若对任意x1∈(0,e),存在x2∈[1,3],使得f(x1)>g(x2),求实数b 的取值范围.15.已知函数f(x)=⎩⎪⎨⎪⎧-x3+ax2+bx (x<1),clnx (x≥1)的图象在点(-2,f(-2))处的切线方程为16x +y +20=0.(1)求实数a 、b 的值;(2)求函数f(x)在区间[-1,2]上的最大值;(3)曲线y =f(x)上存在两点M 、N ,使得△MON 是以坐标原点O 为直角顶点的直角三角形,且斜边MN 的中点在y 轴上,求实数c 的取值范围.。
2013年普通高等学校招生全国统一考试数学(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,文1)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩=( ).A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B【考点】本题主要考查集合的补集和交集运算。
【解析】∵={3,4,5},B={2,3,4},故B∩={3,4}.故选B.2.(2013湖北,文2)已知0<θ<π4,则双曲线C1:2222=1sin cosx yθθ-与C2:22221cos siny xθθ-=的( ).A.实轴长相等 B.虚轴长相等C.离心率相等 D.焦距相等【答案】D【考点】本题主要考查双曲线的标准方程及其几何意义,考查考生对双曲线方程的理解认知水平。
【解析】对于θ∈π0,4⎛⎫⎪⎝⎭,sin2θ+cos2θ=1,因而两条双曲线的焦距相等,故选D.3.(2013湖北,文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q) C.(⌝p)∧(⌝q) D.p∨q【答案】A【考点】本题主要考查逻辑联结词和复合命题。
【解析】至少有一位学员没有降落在指定范围,即p∧q的对立面,即⌝(p∧q)=(⌝p)∨(⌝q),故选A. 4.(2013湖北,文4)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且 y=2.347x-6.423;②y与x负相关且 y=-3.476x+5.648;③y与x正相关且 y=5.437x+8.493;④y与x正相关且 y=-4.326x-4.578.其中一定不正确...的结论的序号是( ).A.①② B.②③ C.③④ D.①④【答案】D【考点】本题主要考查两个变量的相关性,并能判断正相关和负相关。
2013年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年湖北,文1,5分】已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð( )(A ){2} (B ){3,4} (C ){1,4,5} (D ){2,3,4,5} 【答案】B 【解析】U B A =ð{2,3,4}{3,4,5}{3,4}=,故选B .(2)【2013年湖北,文2,5分】已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( ) (A )实轴长相等 (B )虚轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有222sin cos 1c θθ=+=,即焦距相等,故选D .(3)【2013年湖北,文3,5分】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) (A )()p ⌝∨()q ⌝ (B )p ∨()q ⌝ (C )()p ⌝∧()q ⌝ (D )p ∨q【答案】A【解析】因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝,故选A .(4)【2013年湖北,文4,5分】四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-;② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+;④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序 号是( )(A )①② (B )②③ (C )③④ (D )①④ 【答案】D【解析】在①中,y 与x 不是负相关;①一定不正确;同理④也一定不正确,故选D . (5)【2013年湖北,文5,5分】小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )(A ) (B ) (C ) (D )【答案】C【解析】可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B ,故选C .(6)【2013年湖北,文6,5分】将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )(A )π12 (B )π6 (C )π3 (D )5π6【答案】B【解析】因为sin ()y x x x +∈R 可化为2cos()6y x π=-(x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称,故选B .(7)【2013年湖北,文7,5分】已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )(A(B(C) (D)【答案】A【解析】2,1AB =(),5,5CD =(),则向量AB 在向量CD方向上的射影为cos AB CD ABCD θ⋅==2==,故选A . (8)【2013年湖北,文8,5分】x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )(A )奇函数 (B )偶函数 (C )增函数 (D )周期函数 【答案】D【解析】函数()[]f x x x =-表示实数x 的小数部分,有(1)1[1][]()f x x x x x f x +=+-+=-=,所以函数()[]f x x x =-是以1为周期的周期函数,故选D .(9)【2013年湖北,文9,5分】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )(A )31200元 (B )36000元 (C )36800元 (D )38400元 【答案】C【解析】根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有2170,03660900x y y x x y x y +≤⎧⎪-≤⎪⎨>>⎪⎪+=⎩, 画出可行域,求出三个顶点的坐标分别为4(7)1A ,,2(5)1B ,,6(15C ,),目标函数 (租金)为16002400k x y =+,如图所示.将点B 的坐标代入其中,即得租金的最小值为:1600524001236k =⨯+⨯=(元),故选C . (10)【2013年湖北,文10,5分】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )(A )(,0)-∞ (B )1(0,)2(C )(0,1) (D )(0,)+∞【答案】B【解析】'()ln 12f x x ax =+-,由()(ln )f x x x ax =-由两个极值点,得'()0f x =有两个不等的实数解,即ln 21x ax =-有两个实数解,从而直线21y ax =-与曲线ln y x =有两个交点. 过点01(,-)作ln y x =的切线,设切点为00x y (,),则切线的斜率01k x =,切线方程为011y x x =-. 切点在切线上,则00010x y x =-=,又切点在曲线ln y x =上,则00ln 01x x =⇒=,即切点为10(,).切线方程为1y x =-. 再由直线21y ax =-与曲线ln y x =有两个交点,知直线21y ax =-位于两直线0y =和1y x =-之间,如图所示,其斜率2a 满足:021a <<,解得102a<<,故选B .二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分.(11)【2013年湖北,文11,5分】i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 【答案】23i -+【解析】复数123i z =-在复平面内的对应点123Z -(,),它关于原点的对称点2Z 为2,3-(),所对应的复数为223i z =-+.(12)【2013年湖北,文12,5分】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为 ;(2)命中环数的标准差为 .【答案】(1)7;(2)2【解析】(1)()178795491074710+++++++++=;(2)2s ==. (13)【2013年湖北,文13,5分】阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i = . 【答案】4【解析】初始值2110m A B i ====,,,,第一次执行程序,得121i A B ===,,,因为A B <不成立,则第二次执行程序,得2224122i A B ==⨯==⨯=,,,还是A B <不成立,第三次执行程序, 得3428236i A B ==⨯==⨯=,,,仍是A B <不成立,第四次执行程序,得48216i A ==⨯=,,424B =⨯=,有A B <成立,输出4i =.(14)【2013年湖北,文14,5分】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设 圆O 上 到直线l 的距离等于1的点的个数为k ,则k =_________. 【答案】4【解析】这圆的圆心在原点,半径为5,圆心到直线l 1=,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(15)【2013年湖北,文15,5分】在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = .【答案】3 【解析】因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m . 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间[2,4]-分为[]2m -,和[m ,4],且两区间的长度比为5:1,所以3m =.(16)【2013年湖北,文16,5分】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3【解析】如图示天池盆的半轴截面,那么盆中积水的体积为()22961061031963V ππ=⨯++⨯=⨯(立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为323196()3196⨯=寸(寸)(寸). (17)【2013年湖北,文17,5分】在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(1)图中格点四边形DEFG 对应的,,S N L 分别是 ;(2)已知格点多边形的面积可表示为S aN bL c=++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答). 【答案】(1)3, 1, 6;(2)79【解析】(1)S=S △DFG +S △DEF =1+2=3 ,N=1,L =6.(2)根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 41b c += ①由(1)有63a b c ++= ② 再由格点DEF ∆中,S=2,N=0,L=6,得62b c += ③联立①②③,解得1,1, 1.2b c a ==-=所以当71N =,18L =时,171181792S =+⨯-=.三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程.(18)【2013年湖北,文18,12分】在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sin B C 的值. 解:(1)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).因为0πA <<,所以π3A =.(2)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(19)【2013年湖北,文19,13分】已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(1)求数列{}n a 的通项公式;(2)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 解:(1)设数列{}n a 的公比为q ,则10a ≠,0q ≠.由题意得243223418S S S S a a a -=-⎧⎨++=-⎩,即23211121(1)18a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩, 解得132a q =⎧⎨=-⎩,故数列{}n a 的通项公式为13(2)n n a -=-.(2)由(1)有3[1(2)]1(2)1(2)nn n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤-当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .(20)【2013年湖北,文20,13分】如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算.已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.解:(1)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2.又121A A d =, 122B B d =,123C C d =,且123d d d <<.因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点,即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (2)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥.而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高,因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中.又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(21)【2013年湖北,文21,13分】设0a >,0b >,已知函数()1ax bf x x +=+. (1)当a b ≠时,讨论函数()f x 的单调性;(2)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x的取值范围.解:(1)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(2)(i )(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[)]2b a b ab f f ab f a a b +=⋅==+,即2(1)()[b f f f a =.① 所以(1),()bf f f a 成等比数列.因2a b +≥(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()(b f f xf a ≤≤.② 当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤即x 的取值范围为,b a ⎡⎢⎣;当a b <时,1ba>,从而b a >由()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x 的取值范围为b a ⎤⎥⎦. (22)【2013年湖北,文22,14分】如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(1)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.解:依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(1)解法一:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.解法二:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=+.(2)解法一:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=.由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-,||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x = 根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ②1(1)λλλ+=-.③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解 得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>所以当11λ<≤+l ,使得12S S λ=;当1λ> 轴不重合的直线l 使得12S S λ=.解法二:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1, C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=,依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<.从而111λλλ+<<-,解得1λ>所以当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。
2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题及参考答案(湖北文1)已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U BA =ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5} 【湖北文1解答】B U BA =ð}.4,3{}5,4,3{}4,3,2{= (湖北文2)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【湖北文2解答】D 在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有1cos sin 222=+=θθc ,即焦距相等. 甲(湖北文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q【湖北文3解答】A 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ .(湖北文4)四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③C .③④D . ①④【湖北文4解答】D 在○1中,y 与x 不是负相关;○1一定不正确;同理○4也一定不正确.(湖北文5)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【湖北文5解答】C 可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B. 故选C.(湖北文6)将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π6【湖北文6解答】B因为sin ()y x x x =+∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称. (湖北文7)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC. D. 【湖北文7解答】A =(2,1),=(5,5),则向量在向量方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==θ. (湖北文8)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数【湖北文8解答】D 函数()[]f x x x =-表示实数x 的小数部分,有)(][]1[1)1(x f x x x x x f =-=+-+=+ ,所以函数()[]f x x x =-是以1为周期的周期函数.(湖北文9)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元 【湖北文9解答】C 根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有⎪⎪⎩⎪⎪⎨⎧=+>>≤-≤+,9006036,0,0,7,21y x y x x y y x 画出可行域,求出三个顶点的坐标分别为A(7,14),B(5,12),C(15,6),目标函数(租金)为y x k 24001600+=,如图所示. 将点B 的坐标代入其中,即得租金的最小值为: 3680012240051600=⨯+⨯=k (元). (湖北文10)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞【湖北文10解答】B ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作x y ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为110-=x x y . 切点在切线上,则01000=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0).切线方程为1-=x y . 再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,如图所示,其斜率2a 满足:0<2a <1,解得0<a <21. 二、填空题:(湖北文11) i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .【湖北文11解答】23i -+ 复数123i z =-在复平面内的对应点Z 1(2,-3),它关于原点的对称点Z 2为(-2,3),所对应的复数为322+-=z i.(湖北文12) 某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 . 【湖北文12解答】(Ⅰ)7 ()747109459787101=+++++++++; (Ⅱ)2 []222222)74(2)75()77(3)78()79(2)710(101-+-+-+-+-+-=s =21040=. (湖北文13)阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = .【湖北文13解答】4 初始值m =2,A =1,B=1,i =0,第一次执行程序,得 i=1,A=2,B=1,因为A <B 不成立,则第二次执行程序,得i=2,A =2×2=4,B =1×2=2,还是A <B 不成立,第三次执行程序,得 i=3,A=4×2=8,B=2×3=6,仍是A<B 不成立,第四次执行程序,得i =4,A =8×2=16,B =×4=24,有A <B 成立,输出i=4.(湖北文14)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 【湖北文14解答】4 这圆的圆心在原点,半径为5,圆心到直线l 的距离为1sin cos 122=+θθ,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(湖北文15)在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = .【湖北文15解答】3 因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m. 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间 [2,4]-分为[-2,m]和[m ,4] ,且两区间的长度比为5:1,所以m =3.(湖北文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【湖北文16解答】3 如图示天池盆的半轴截面,那么盆中积水的体积为()ππ19631061069322⨯=⨯++⨯=V (立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为=⨯)(寸寸23196)(19633(寸).第13题图(湖北文17)在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).【湖北文17解答】(Ⅰ)3, 1, 6 S=S △DFG +S △DEF =1+2=3 ,N=1,L =6; (Ⅱ)79 根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 14=+c b , ○1由(Ⅰ)有36=++c b a , ○2再由格点△DEF 中,S=2,N=0,L=6,得26=+c b , ○3 联立○1○2○3,解得.1,1,21=-==a cb 所以当71N =,18L =时, S =791182171=-⨯+. (湖北文18)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值.【湖北文18解得】(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去).因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ===得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(湖北文19)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【湖北文19解答】(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . (湖北文20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222ABC A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.【湖北文20解得】(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.第20题图由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估. (湖北文21)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.【湖北文21解答】(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)())]b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b+(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式, 得b x a ≤≤x 的取值范围为,b a ⎡⎢⎣; 当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式, bx a ≤,即x 的取值范围为b a ⎤⎥⎦. (湖北文22)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 【湖北文22解答】依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.第22题图(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x = ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.从而111λλλ+<<-,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。
2013届湖北省黄冈市二轮复习交流卷文科数学重组试题一.选择题:本大题共50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 则集合M ∩N=( ) A .),0(+∞ B .[)+∞,1 C .),(+∞-∞ D .(]1,0 2.已知i 是虚数单位,复数ii i z -+++-=12221,则=z ( ) A.1 B. 2 C. 5 D. 223.若命题p:[]012,3,3-0200≤++∈∃x x x ,则对命题p 的否定是( A )A []012,3,3-0200>++∈∀x x xB ()()2000-,-33,,210x U x x ∀∈∞+∞++>C.()()2000-,-33,,210x U x x ∃∈∞+∞++≤ D.[]012,3,3-0200<++∈∃x x x4..已知E 、F 分别是正方体1111D C B A ABCD -棱BB 1、AD 的中点,则直线EF 和平面11D BDB 所成的角的正弦值是( )A.62 B. 63 C. 31D. 66 5.已知O 为坐标原点,点A 的坐标是()3,2,点()y x P ,在不等式组⎪⎩⎪⎨⎧≤+≤+≥+62623y x y x y x 所确定的区域内(包括边界)上运动,则OP OA ⋅的范围是( )A.[]10,4B. []9,6C. []10,6D. []10,9 6.右边的程序运行后,输出的结果( )A. 13,7B. 7,4C. 9,7D. 9,57..若F 1、F 2为双曲线C :42x -y 2=1的左、右焦点,点P 在双曲线C 上∠F 1P F 2=60°,则P到x 轴的距离为( ) A .55 B .515 C .5152 D .2015 A 1B 1C 1D 1A B C D FE8.函数f(x)=)(sin 2R x x x ∈-π的部分图象是( )A. B. C. D.9.如图,已知直角三角形ABC ∆的三边AC BA CB ,,的长度成等差数列,点E 为直角边AB 的中点,点D 在斜边AC 上,且AC AD λ=,若BD CE ⊥,则=λ( )A.177 B. 178 C. 179 D. 1710 10. 对于函数f (x )和g (x ),其定义域为[a , b ],若对任意的x ∈[a , b ]总 有 |1-()()g x f x |≤110, 则称f (x )可被g (x )置换,那么下列给出的函数中能置换f (x )=x x ∈[4,16]的是( ) A. g (x )=2x +6 x ∈[4,16] B. g (x )=x 2+9 x ∈[4,16] C. g (x )= 13(x +8) x ∈[4,16] D. g (x )=15(x +6) x ∈[4,16]二.填空题:本大题共7小题,每小题5分,共35分.请把答案填在答题卡相应位置上. 11.不等式|2x-1-log 3(x-1)|<|2x-1|+|log 3(x-1)|的解集是 .12.某校为了解学生的睡觉情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的睡眠时间为_______________h .CABED5.5 66.5 77.5时间∕h频率0.50.4 0.3 0.2 0.113.函数f(x)=A sin(ωx+ϕ)+k(A >0,ω>0,|ϕ|<2π)的图象如图所示,则f(x)的表达式是_____________.14.直线440kx y k --=(k R ∈)与抛物线2y x =交于A 、B 两点,若||4AB =,则弦AB 的中点到直线102x +=的距离等于______ 15若函数()2ln 12x f x x =-+在其定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围_____________.16. 某三棱柱侧棱和底面垂直,底面边长均为a ,侧棱长为2a ,其体积为43,若它的三视图中的俯视图如图所示,侧视图是一个矩形,则这个矩形的面积是____________17.如图所示,一个粒子在第一象限及坐标轴上运动,在第一秒内它从原点运动到点(0,1),然后它接着按图所示在x 轴、y 轴的平行方向来回运动, 即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→… 且每秒移动一个单位长度,则可得:(1)粒子运动到(4,4)点时经过了 秒; (2)第2009秒时,粒子所处的位置为 .三.解答题: 本大题共5小题, 共65分. 解答应写出文字说明, 证明过程或演算步骤. 18.(本题12分)某科研所研究人员都具有本科和研究生两类学历,年龄段和学历如下表,从该科研所任选一名研究人员,是本科生的概率是32,是35岁以下的研究生概率是61. ⑴求出表格中的x 和的值;⑵设“从此科研所研究人员中选出两人,本科一名,研究生一名,50岁以上本科生和35以下的研究生不全选中” 的事件为A ,求事件A 概率()A P本科(单位:名) 研究生(单位:名)35岁以下 3 y35—50岁32yx12341 2 3 OF OEC ABDP19如图.在四棱锥P 一ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD, PD = DC = 2,E 是PC 的中点.(1)证明:PA //平面EDB ; (2)证明:平面PAC ⊥平面PDB ; (3)求三梭锥D 一ECB 的体积。
专题限时集训(一)B[第1讲 集合与常用逻辑用语](时间:30分钟)1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁UM )∩N =( )A .{-1}B .{3}C .{0,1}D .{-1,3}2.已知全集U =R ,集合M ={x|x +a≥0},N ={x|log2(x -1)<1},若M∩(∁UN)={x|x =1,或x≥3},那么( )A .a =-1B .a ≤1C .a =1D .a ≥13.设a ∈R ,则“a -1a2-a +1<0”是“|a|<1”成立的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.下列有关命题的说法正确的是( )A .命题“若x2=1,则x =1”的否命题为“若x2=1,则x≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x0∈R ,使得x20+x0-1<0”的否定是:“∀x ∈R ,使得x2+x -1>0”D .命题“若x =y ,则sinx =siny ”的逆否命题为真命题5.已知集合A ={x|x2-x -6<0},B ={-3,-2,-1,1,2,3},则A∩B 中元素的个数为( )A .2B .3C .4D .56.已知命题p :∀x ∈R ,2x2+2x +12<0;命题q :∃x0∈R ,sinx0-cosx0= 2.则下列命题判断正确的是( )A .p 是真命题B .q 是假命题C .綈p 是假命题D .綈q 是假命题图1-17.如图1-1,有四个半径都为1的圆,其圆心分别为O1(0,0),O2(2,0),O3(0,2),O4(2,2).记集合M ={⊙Oi|i =1,2,3,4},若A ,B 为M 的非空子集,且A 中的任何一个圆与B 中的任何一个圆均无公共点,则称(A ,B)为一个“有序集合对”(当A≠B 时,(A ,B)和(B ,A)为不同的有序集合对),那么M 中“有序集合对”(A ,B)的个数是( )A .2B .4C .6D .88.命题p :m >7,命题q :f(x)=x2+mx +9(m ∈R)有零点,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设O 为△ABC 所在平面内一点.若实数x ,y ,z 满足xOA →+yOB →+zOC →=0(x2+y2+z2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.已知x ,y ∈R ,集合A ={(x ,y)|x2+y2=1},B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x a -y b =1,a>0,b>0,当A∩B 只有一个元素时,a ,b 的关系式是________.11.已知向量a ,b 均为非零向量,p :a·b>0,q :a 与b 的夹角为锐角,则p 是q 成立的________条件.(填写“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要条件”)12.若命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是假命题,则实数a 的取值范围是________.。
2013年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,文1)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B ∩=( ).A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5}2.(2013湖北,文2)已知0<θ<π4,则双曲线C1:2222=1sin cosx yθθ-与C2:22221cos siny xθθ-=的( ).A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等3.(2013湖北,文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q) C.(⌝p)∧(⌝q) D.p∨q4.(2013湖北,文4)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y=2.347x-6.423;②y与x负相关且y=-3.476x+5.648;③y与x正相关且y=5.437x+8.493;④y与x正相关且y=-4.326x-4.578.其中一定不正确...的结论的序号是( ).A.①② B.②③ C.③④ D.①④5.(2013湖北,文5)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( ).6.(2013湖北,文6)将函数yx+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( ).A.π12 B.π6 C.π3 D.5π67.(2013湖北,文7)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB在CD方向上的投影为( ).A.2 B.2 C.2-D.2-8.(2013湖北,文8)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为( ).A.奇函数 B.偶函数 C.增函数 D.周期函数9.(2013湖北,文9)某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为( ).A.31 200元 B.36 000元 C.36 800元 D.38 400元10.(2013湖北,文10)已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( ).A .(-∞,0)B .10,2⎛⎫ ⎪⎝⎭ C .(0,1) D .(0,+∞)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.(2013湖北,文11)i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=__________.12.(2013湖北,文12)某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为__________; (2)命中环数的标准差为__________.13.(2013湖北,文13)阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i =__________.14.(2013湖北,文14)已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1π02θ⎛⎫<<⎪⎝⎭.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =__________. 15.(2013湖北,文15)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =__________. 16.(2013湖北,文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.(2013湖北,文17)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是__________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =__________(用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(2013湖北,文18)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S=,b =5,求sin B sin C 的值.19.(2013湖北,文19)(本小题满分13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n}的通项公式;(2)是否存在正整数n,使得S n≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.20.(2013湖北,文20)(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N 且与直线AA2平行的平面截多面体A1B1C1A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=13(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.21.(2013湖北,文21)(本小题满分13分)设a >0,b >0,已知函数f (x )=1ax bx ++. (1)当a ≠b 时,讨论函数f (x )的单调性;(2)当x >0时,称f (x )为a ,b 关于x 的加权平均数.①判断f (1),f ,b f a ⎛⎫⎪⎝⎭是否成等比数列,并证明b f f a ⎛⎫≤ ⎪⎝⎭; ②a ,b 的几何平均数记为G .称2aba b+为a ,b 的调和平均数,记为H .若H ≤f (x )≤G ,求x 的取值范围.22.(2013湖北,文22)(本小题满分14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记mnλ=,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.2013年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:B 解析:∵={3,4,5},B ={2,3,4},故B ∩={3,4}.故选B.2. 答案:D解析:对于θ∈π0,4⎛⎫ ⎪⎝⎭,sin 2θ+cos 2θ=1,因而两条双曲线的焦距相等,故选D. 3. 答案:A解析:至少有一位学员没有降落在指定范围,即p ∧q 的对立面,即⌝(p ∧q )=(⌝p )∨(⌝q ),故选A. 4. 答案:D解析:正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故不正确的为①④,故选D.5.答案:C解析:根据题意,刚开始距离随时间匀速减小,中间有一段时间距离不再变化,最后随时间变化距离变化增大,故选C. 6. 答案:B解析:y cos x +sin x =2πsin 3x ⎛⎫+⎪⎝⎭的图象向左平移m 个单位长度后得y =2πsin 3x m ⎛⎫++ ⎪⎝⎭的图象.又平移后的图象关于y 轴对称,即y =2πsin 3x m ⎛⎫++ ⎪⎝⎭为偶函数,根据诱导公式m 的最小正值为π6,故选B. 7. 答案:A解析:因为AB =(2,1),CD =(5,5),所以向量AB 在CD 方向上的投影为|AB |cos 〈AB ,CD 〉=AB CD AB CD AB AB CDCD⋅⋅⋅===故选A. 8.答案:D 解析:由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.1-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D. 9. 答案:C解析:设需A ,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满足3660900,7,,,x y y x x y +≥⎧⎪-≤⎨⎪∈∈⎩N N 设租金为z ,则z =1 600x +2 400y ,画出可行域如图,根据线性规划中截距问题,可求得最优解为x =5,y =12,此时z 最小等于36 800,故选C.10. 答案:B解析:f ′(x )=ln x -ax +1x a x ⎛⎫-⎪⎝⎭=ln x -2ax +1,函数f (x )有两个极值点,即ln x -2ax +1=0有两个不同的根(在正实数集上),即函数g (x )=ln 1x x +与函数y =2a在(0,+∞)上有两个不同交点.因为g ′(x )=2ln xx -,所以g (x )在(0,1)上递增,在(1,+∞)上递减,所以g (x )max =g (1)=1,如图.若g (x )与y =2a 有两个不同交点,须0<2a <1.即0<a <12,故选B.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.答案:-2+3i解析:z 1在复平面上的对应点为(2,-3),关于原点的对称点为(-2,3),故z 2=-2+3i. 12.答案:(1)7 (2)2 解析:平均数为78795491074710+++++++++=,标准差为=2.13.(2013湖北,文13)阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i =__________. 答案:4解析:由程序框图,i =1后:A =1×2,B =1×1,A <B ?否;i =2后:A =2×2,B =1×2,A <B ?否;i =3后:A =4×2,B =2×3,A <B ?否;i =4后:A =8×2,B =6×4,A <B ?是,输出i =4. 14.解析:由题意圆心到该直线的距离为12,故圆上有4个点到该直线的距离为1. 15.答案:3解析:由题意[-2,4]的区间长度为6,而满足条件的x 取值范围的区间长度为5,故m 取3,x ∈[-2,3]. 16.答案:3解析:由题意盆内所盛水的上底面直径为28122+=20(寸),下底面半径为6寸,高为9寸,故体积为V =13·9·(π·102+π·62+π·10·6)=588π,而盆上口面积为π·142=196π,故平地降雨量为588π196π=3(寸). 17.答案:(1)3,1,6 (2)79 解析:由图形可得四边形DEFG 对应的S ,N ,L 分别是3,1,6.再取两相邻正方形可计算S ,N ,L 的值为2,0,6.加上已知S =1时N =0,L =4,代入S =aN +bL +c 可计算求出a =1,b =12,c =-1,故当N =71,L =18时,S =71+12×18-1=79. 三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.解:(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =12或cos A =-2(舍去). 因为0<A <π,所以π3A =. (2)由S =12bc sin A =12bc,24bc ==bc =20. 又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得sin B sin C =b a sin A ·c a sin A =2bc asin 2A =20352147⨯=.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩即23211121,118,a q a q a q a q q q ⎧--=⎨(++)=-⎩ 解得13,2.a q =⎧⎨=-⎩故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[12]12n ⋅-(-)-(-)=1-(-2)n.若存在n ,使得S n ≥2 013,则1-(-2)n≥2 013,即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 20.(1)证明:依题意,A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC , 所以A 1A 2∥B 1B 2∥C 1C 2.又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3. 因此四边形A 1A 2B 2B 1,A 1A 2C 2C 1均是梯形.由AA 2∥平面MEFN ,AA 2⊂平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME , 可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG . 又M ,N 分别为AB ,AC 的中点,则D ,E ,F ,G 分别为A 1B 1,A 2B 2,A 2C 2,A 1C 1的中点,即DE ,FG 分别为梯形A 1A 2B 2B 1,A 1A 2C 2C 1的中位线. 因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3), 而d 1<d 2<d 3,故DE <FG ,所以中截面DEFG 是梯形.(2)解:V 估<V .证明如下:由A 1A 2⊥平面ABC ,MN ⊂平面ABC ,可得A 1A 2⊥MN . 而EM ∥A 1A 2,所以EM ⊥MN , 同理可得FN ⊥MN .由MN 是△ABC 的中位线,可得MN =1122BC a =即为梯形DEFG 的高, 因此S 中=S 梯形DEFG =13121231(2)22228d d d d a ad d d ++⎛⎫+⋅=++ ⎪⎝⎭,即V 估=S 中·h =8ah(2d 1+d 2+d 3).又12S ah =,所以V =13(d 1+d 2+d 3)S =6ah (d 1+d 2+d 3).于是V -V 估=6ah (d 1+d 2+d 3)-8ah (2d 1+d 2+d 3)=24ah[(d 2-d 1)+(d 3-d 1)].由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V 估<V .21.解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=22111a x ax b a bx x (+)-(+)-=(+)(+).当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)①计算得f (1)=2a b+>0,20b ab f a a b ⎛⎫=> ⎪+⎝⎭,0f =>,故22(1)2b a b abf f ab fa ab ⎡⎤+⎛⎫=⋅==⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦,即2(1)b f f f a ⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,(*)所以f (1),f ,b f a ⎛⎫⎪⎝⎭成等比数列.因2a b+≥(1)f f ≥,由(*)得b f f a ⎛⎫≤ ⎪⎝⎭.②由①知b f H a ⎛⎫= ⎪⎝⎭,f G =.故由H ≤f (x )≤G ,得()b f f x f a ⎛⎫≤≤ ⎪⎝⎭.(**)当a =b时,()b f f x f a a ⎛⎫===⎪⎝⎭. 这时,x 的取值范围为(0,+∞); 当a >b 时,0<<1ba,从而b a <由f (x )在(0,+∞)上单调递增与(**)式,得bx a ≤≤ 即x的取值范围为b a ⎡⎢⎣;当a <b 时,>1ba,从而b a >由f (x )在(0,+∞)上单调递减与(**)式,bx a ≤≤,即x的取值范围为b a ⎤⎥⎦. 22.解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m +,C 2:2222=1x y a n+.其中a >m >n >0,mnλ=>1.(1)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,所以12||||S BD S AB =.在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12=S S λ,则11λλλ+=-, 化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.图1解法2:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ;S 1=12|BD |·|OM |=12a |BD |, S 2=12|AB |·|ON |=12a |AB |.所以12||1||1S BD m n S AB m n λλ++===--.若12=S S λ,则11λλλ+=-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.图2根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2, 所以12||||S BD S AB ==λ,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |, 于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知x C =-x B ,x D =-x A ,于是2||||2A Bx AD BC x ==从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-). 因为k ≠0,所以k 2>0. 于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭. 由λ>1,可解得1λ<t <1, 即11<11λλλλ+<(-), 由λ>1,解得λ>,所以当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2, 所以12||=||S BD S AB λ=.因为||||A B A Bx x BD AB x x λ+===-, 所以11A B x x λλ+=-. 由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得 22222=1A A x k x a m +,22222=1B B x k x a n+, 两式相减可得22222222=0A B A B x x k x x a mλ-(-)+, 依题意x A >x B >0,所以22A B x x >. 所以由上式解得22222222A B B A m x x k a x x λ(-)=(-). 因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A B x x λ<. 从而11<<1λλλ+-,解得λ> 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.。
2013届湖北省黄冈市二轮复习交流卷文科数学重组试题一.选择题:本大题共50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 则集合M ∩N =( ) A .),0(+∞ B .[)+∞,1 C .),(+∞-∞ D .(]1,0 2.已知i 是虚数单位,复数ii i z -+++-=12221,则=z ( ) A .1 B . 2 C . 5 D . 223.若命题p:[]012,3,3-0200≤++∈∃x x x ,则对命题p 的否定是( A )A []012,3,3-0200>++∈∀x x x B ()()2000-,-33,,210x U x x ∀∈∞+∞++>C .()()2000-,-33,,210x U x x ∃∈∞+∞++≤ D.[]012,3,3-020<++∈∃x x x 4..已知E 、F 分别是正方体1111D C B A ABCD -棱BB 1、AD 的中点,则直线EF 和平面11D BDB 所成的角的正弦值是( )A .62 B . 63 C . 31 D . 665.已知O 为坐标原点,点A 的坐标是()3,2,点()y x P ,在不等式组⎪⎩⎪⎨⎧≤+≤+≥+62623y x y x y x 所确定的区域内(包括边界)上运动,则⋅的范围是( )A .[]10,4B . []9,6C . []10,6D . []10,9 6.右边的程序运行后,输出的结果( )A. 13,7B. 7,4C. 9,7D. 9,57..若F 1、F 2为双曲线C :42x -y 2=1的左、右焦点,点P 在双曲线C 上∠F 1P F 2=60°,则P到x 轴的距离为( ) A .55 B .515 C .5152 D .2015 A 1B 1C 1D 1A B C D FE8.函数f(x)=)(sin 2R x x x ∈-π的部分图象是( )A. B. C. D.9.如图,已知直角三角形ABC ∆的三边AC BA CB ,,的长度成等差数列,点E 为直角边AB 的中点,点D 在斜边AC 上,且λ=,若BD CE ⊥,则=λ( )A .177 B . 178 C . 179 D . 1710 10. 对于函数f (x )和g (x ),其定义域为[a , b ],若对任意的x ∈[a , b ]总 有 |1-()()g x f x |≤110,则称f (x )可被g (x )置换,那么下列给出的函数中能置换f (xx ∈[4,16]的是( ) A. g (x )=2x +6 x ∈[4,16] B. g (x )=x 2+9 x ∈[4,16]C. g (x )= 13(x +8) x ∈[4,16]D. g (x )=15(x +6) x ∈[4,16]二.填空题:本大题共7小题,每小题5分,共35分.请把答案填在答题卡相应位置上.11.不等式|2x -1-log 3(x-1)|<|2x -1|+|log 3(x-1)|的解集是 .12.某校为了解学生的睡觉情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的睡眠时间为_______________h .13.函数f(x)=A sin(ωx+ϕ)+k(A >0,ω>0,|ϕ|<2π)的图象如图所示,则f(x)的表达式是_____________.CABED间∕h14.直线440kx y k --=(k R ∈)与抛物线2y x =交于A 、B 两点,若||4AB =,则弦AB 的中点到直线102x +=的距离等于______ 15若函数()2ln 12x f x x =-+在其定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围_____________.16. 某三棱柱侧棱和底面垂直,底面边长均为a ,侧棱长为2a,其体积为视图中的俯视图如图所示,侧视图是一个矩形,则这个矩形的面积是____________17.如图所示,一个粒子在第一象限及坐标轴上运动,在第一秒内它从原点运动到点(0,1),然后它接着按图所示在x 轴、y 轴的平行方向来回运动, 即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→… 且每秒移动一个单位长度,则可得:(1)粒子运动到(4,4)点时经过了 秒; (2)第2009秒时,粒子所处的位置为 .三.解答题: 本大题共5小题, 共65分. 解答应写出文字说明, 证明过程或演算步骤. 18.(本题12分)某科研所研究人员都具有本科和研究生两类学历,年龄段和学历如下表,从该科研所任选一名研究人员,是本科生的概率是32,是35岁以下的研究生概率是61. ⑴求出表格中的x 和的值;⑵设“从此科研所研究人员中选出两人,本科一名,研究生一名,50岁以上本科生和35以下的研究生不全选中” 的事件为A ,求事件A 概率()A Pyx12341 2 3 OBP19如图.在四棱锥P 一ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD, PD = DC = 2,E 是PC 的中点.(1)证明:PA //平面EDB ; (2)证明:平面PAC ⊥平面PDB ; (3)求三梭锥D 一ECB 的体积。
专题限时集训(六)A[第6讲 三角恒等变换与三角函数](时间:45分钟)1.sin15°+cos165°的值为( ) A.22 B .-22 C.62 D .-622.设0≤x<2π,且1-sin2x =sinx -cosx ,则( ) A .0≤x ≤π B.π4≤x ≤7π4 C.π4≤x ≤5π4 D.π2≤x ≤3π2 3.设cos(x +y)sinx -sin(x +y)cosx =1213,且y 是第四象限的角,则tan y 2的值是( ) A .±23 B .±32 C .-32 D .-234.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位5.若sin θ+cos θ=2,则tan ⎝⎛⎭⎫θ+π3的值是( ) A .-2- 3 B .2- 3C .2+ 3D .-2+ 36.设f(x)是定义域为R ,最小正周期为3π2的函数,若f(x)=⎩⎪⎨⎪⎧cosx -π2≤x<0,sinx (0≤x<π),则f -15π4等于( )A .0B .1 C.22 D .-227.已知函数f(x)=sinx +3cosx ,设a =f π7,b =f π6,c =f π3,则a ,b ,c 的大小关系是( ) A .a<b<c B .c<a<bC .b<a<cD .b<c<a8.已知函数f(x)=Asin(2x +φ)的部分图象如图6-1所示,则f(0)=( )图6-1A .-12B .-1C .-32D .- 3 9.设函数f(x)=cosx ,把f(x)的图象向右平移m 个单位后,图象恰好为y =f′(x)的图象,则m 可以为( ) A.π2 B.3π4 C .π D.3π210.已知sinx =13,sin(x +y)=1,则sin(2y +x)=________. 11.若将函数y =sin ωx +5π6(ω>0)的图象向右平移π3个单位长度后,与函数y =sin ωx +π4的图象重合,则ω的最小值为________.12.已知函数f(x)=cosxsinx(x ∈R),给出下列四个命题:①若f(x1)=-f(x2),则x1=-x2;②f(x)的最小正周期是2π;③f(x)在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f(x)的图象关于直线x =3π4对称. 其中真命题是________.(把你认为正确的答案都填上)13.已知三点:A(4,0),B(0,4),C(3cos α,3sin α).(1)若α∈(-π,0),且|AC →|=|BC →|,求角α的值;(2)若AC →²BC →=0,求2sin2α+sin2α1+tan α的值.14.已知函数f(x)=sinx +π6sinx -π6+cosx +a(a ∈R ,a 为常数). (1)求函数f(x)的最小正周期;(2)若函数f(x)在-π2,π2上的最大值与最小值之和为3,求实数a 的值.15.设x ∈R ,函数f(x)=cos (ωx +φ)ω>0,-π2<φ<0的最小正周期为π,且f π4=32. (1)求ω和φ的值;(2)在如图6-2所示的坐标系中作出函数f(x)在[0,π]上的图象;(3)若f(x)>22,求x的取值范围.图6-2。
专题限时集训(七)
[第7讲 解三角形]
(时间:45分钟)
1.在△ABC ,已知A =45°,AB =2,BC =2,则C =( )
A .30°
B .60°
C .120°
D .30°或150°
2.△ABC 的外接圆半径R 和△ABC 的面积的大小都等于1,则sinAs inBsinC 的值为( ) A.14 B.32 C.34 D.12
3.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a2-b2=3bc ,sinC =23sinB ,则A =( )
A .30°
B .60°
C .120°
D .150°
图7-1
4.如图7-1,要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )
A .10 2 m
B .20 m
C .20 3 m
D .40 m
5.在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且a =3,c =8,B =60°,则sinA 的值是( )
A.316
B.314
C.3316
D.3314
6.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且c =2a ,则cosB =( )
A.14
B.34
C.24
D.23
7.为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶D 处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是( )
A .20⎝⎛⎭⎫1+33 m
B .20⎝⎛⎭
⎫1+32 m
C .20(1+3) m
D .30 m
8.如图7-2,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )
图7-2
A.asin αsin βsin (β-α)
B.asin αsin βcos (α-β)
C.
asin αcos βsin (β-α) D.acos αsin βcos (α-β)
9.在△ABC 中,已知sinA ∶sinB ∶sinC =2∶3∶4,则cosC =________. 10.已知A 船在灯塔C 北偏东80°处,且A 船到灯塔C 的距离为2 km ,B 船在灯塔C 北偏西40°处,A ,B 两船间的距离为3 km ,则B 船到灯塔C 的距离为________km.
11.在△ABC 中,A =60°,BC =10,D 是AB 边上的一点,CD =2,△BCD 的面积为1,则AC 的长为________.
12.在△ABC 中,tanA =23,tanB =15
. (1)求角C 的大小;
(2)如果△ABC 的最大边长为13,求最小的边长.
13.已知f(x)=⎝⎛⎭⎫23cos x 2+2sin x 2cos x 2
. (1)求f ⎝⎛⎭⎫17π12的值;
(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若f(C)=3+1,且b2=ac ,求sinA 的值.
14.如图7-3所示,AB 是南北方向道路,P 为观光岛屿,Q 为停车场,PQ =5.2 km.某旅游团游览完岛屿后,乘游船回停车场Q.已知游船以13 km/h 的速度沿方位角θ的方向行驶,
且sin θ=513
.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q 与游客团会合,决定立即租用小船先到达道路M 处,然后乘出租汽车到点Q(设游客甲到达道路M 后能立即乘到出租车).假设游客甲乘小船行驶的方向是方位角α,出租汽车的速度为66 km/h.
(1)设sin α=45
,问小船的速度为多少时,游客甲才能和游船同时到达Q 地? (2)设小船速度为10 km/h ,请你替游客甲设计小船行驶的方位角α,当角α的余弦值是多少时,游客甲能按计划以最短的时间到达Q 地?
图7-3。