数据结构二叉树
- 格式:doc
- 大小:1.03 MB
- 文档页数:4
数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。
二叉树作为一种常见的数据结构,广泛应用于各个领域。
本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。
一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。
1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。
二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。
在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。
2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。
2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
后序遍历常用于计算二叉树的表达式或释放二叉树的内存。
三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。
链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。
3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。
二叉搜索树常用于实现查找、插入和删除等操作。
(2)堆:堆是一种特殊的二叉树,它满足堆序性质。
堆常用于实现优先队列,如操作系统中的进程调度。
(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。
四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。
在实践中,我进一步理解了二叉树的定义、性质和应用。
二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。
数据结构树的种类树是一种基本的数据结构,用于表示具有层次结构的数据。
它由一组节点组成,其中的每个节点都可以有零个或多个子节点。
树可以有不同的种类,每种种类具有不同的特点和应用场景。
以下是一些常见的树的种类:1. 二叉树(Binary Tree):二叉树是一种每个节点最多只有两个子节点的树结构。
它可以是空树,或者由一个根节点、左子树和右子树组成。
二叉树具有简单的结构,常用于二分和排序。
2. 二叉树(Binary Search Tree):二叉树是一种具有以下特点的二叉树:左子树中的所有节点都比根节点小,右子树中的所有节点都比根节点大。
二叉树支持快速的查找、插入和删除操作,并在树中保持有序性。
3. 平衡二叉树(Balanced Binary Tree):平衡二叉树是一种二叉树,但它在插入和删除节点时会自动调整树的结构以保持树的平衡性。
平衡二叉树的常见实现包括 AVL 树和红黑树,它们可以提供在最坏情况下仍保持对数时间复杂度的查找、插入和删除操作。
4. B树(B-Tree):B树是一种自平衡的树结构,它具有以下特点:每个节点可以有多个子节点,每个节点中的键值有序排列,并且每个节点中的键值数量有一个上限和下限。
B树通常用于大规模数据的存储和数据库系统。
5. Trie树(Trie Tree):Trie树,也称为字典树或前缀树,是一种专门用于处理字符串集合的树结构。
Trie树的每个节点都代表一个字符串前缀,通过将字符逐级插入树中,可以高效地完成字符串的和查找操作。
6. 线段树(Segment Tree):线段树是一种用于处理区间查询问题的树结构。
它将要处理的区间划分为一系列离散的线段,并为每个线段创建一个节点。
线段树可以高效地回答关于区间的统计性质,如区间最小值、区间最大值、区间和等。
7. 堆(Heap):堆是一种完全二叉树,它具有以下特点:对于每个节点,它的值都大于等于(或小于等于)它的子节点的值。
堆被广泛应用于优先队列、排序算法(如堆排序)以及图算法中。
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。
二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。
本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。
二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。
三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。
通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。
例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。
2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。
常见的查找方式有深度优先搜索和广度优先搜索。
深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。
四、实验结果通过实验,我们可以观察到二叉树的特性和性能。
在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。
而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。
在遍历二叉树时,不同的遍历方式会得到不同的结果。
前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。
在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。
深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。
二叉树公式一、引言二叉树是计算机科学中常见的数据结构之一,它由一个根节点和最多两个子节点组成。
在二叉树中,每个节点最多有两个子节点,左子节点和右子节点。
二叉树在算法和程序设计中具有广泛的应用,因为它能够高效地表示和处理各种数据关系。
本文将介绍二叉树的基本概念和公式。
二、二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多有两个子节点。
二叉树可以为空,当二叉树不为空时,它满足以下几个条件:1. 每个节点最多有两个子节点,分别称为左子节点和右子节点。
2. 左子节点和右子节点可以为空。
3. 二叉树中不存在重复的节点。
三、二叉树的性质1. 二叉树的最大深度等于根节点到最远叶子节点的路径长度。
2. 二叉树的最小深度等于根节点到最近叶子节点的路径长度。
3. 二叉树的节点个数等于根节点加上左子树和右子树的节点个数之和。
4. 二叉树的高度等于根节点到叶子节点的最长路径长度。
四、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树中的所有节点。
常见的遍历方式有三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历:先访问根节点,然后递归地遍历左子树和右子树。
2. 中序遍历:先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
3. 后序遍历:先递归地遍历左子树和右子树,最后访问根节点。
五、二叉树的平衡性在二叉树中,平衡性是指左子树和右子树的高度差不超过1。
平衡二叉树是一种特殊的二叉树,它的左子树和右子树的高度差不超过1,并且左子树和右子树也都是平衡二叉树。
平衡二叉树的插入和删除操作时间复杂度都是O(logn),因此在某些应用场景中,平衡二叉树比普通二叉树更加高效。
六、二叉树的应用1. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它的每个节点的值都大于其左子树的所有节点的值,小于其右子树的所有节点的值。
二叉搜索树可以高效地支持插入、删除和查找操作。
2. 堆:堆是一种特殊的二叉树,它满足堆序性质。
在最小堆中,每个节点的值都小于或等于其子节点的值;在最大堆中,每个节点的值都大于或等于其子节点的值。
数据结构求二叉树中叶子结点的个数及二叉树的高度二叉树是一种常用的数据结构,它由若干个节点组成,每个节点最多只有两个子节点:左子节点和右子节点。
二叉树常用来表示树状结构,如文件系统、家族关系等等。
本文将介绍如何求二叉树中叶子节点的个数以及二叉树的高度。
一、求二叉树中叶子节点的个数叶子节点是指没有子节点的节点。
要求二叉树中叶子节点的个数,可以使用递归的方法进行计算。
具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。
2.判断当前节点是否为叶子节点,如果是,则返回13.否则,递归计算当前节点的左子树中叶子节点的个数和右子树中叶子节点的个数,并将它们相加。
下面是一个示例代码:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef get_leaf_nodes_count(root):if root is None:return 0if root.left is None and root.right is None:return 1return get_leaf_nodes_count(root.left) +get_leaf_nodes_count(root.right)```二叉树的高度也可以使用递归的方式进行计算。
根据二叉树的定义,二叉树的高度等于左子树的高度和右子树的高度的较大值,再加1、具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。
2.计算当前节点的左子树的高度和右子树的高度,取较大值。
3.将较大值加1,即得到当前二叉树的高度。
下面是一个示例代码:```pythondef get_tree_height(root):if root is None:return 0left_height = get_tree_height(root.left)right_height = get_tree_height(root.right)return max(left_height, right_height) + 1```综上所述,本文介绍了如何求二叉树中叶子节点的个数和二叉树的高度。
二叉树用途二叉树是一种常用的数据结构,由节点和连接节点的边组成,其中每个节点最多有两个子节点,被称为左子节点和右子节点。
二叉树具有以下特点:1. 有层次结构:节点按照层次排列,每层从左到右。
2. 可以拥有零个、一个或两个子节点。
3. 二叉树的子树也是二叉树。
4. 深度为d的二叉树最多含有2^d-1个节点,其中d为二叉树的深度。
二叉树的用途非常广泛,下面将详细讨论几个主要的应用场景。
1. 搜索、排序和查找:二叉树可以用于快速搜索、排序和查找数据。
二叉搜索树是一种常用的二叉树类型,其中每个节点的值大于左子树的所有节点的值,小于右子树的所有节点的值。
通过二分查找算法,在二叉搜索树中可以快速定位目标值。
2. 堆:二叉堆是一种用于实现优先队列的数据结构。
它具有以下特点:任意节点的关键字值都小于(或大于)或等于其子节点的关键字值,根节点的关键字值最小(或最大);并且堆是一颗完全二叉树。
二叉堆的插入和删除操作的时间复杂度为O(log n),适用于一些需要高效的优先级操作的场景,例如任务调度。
3. 表达式树:二叉树可以用于存储和计算数学表达式。
表达式树是一种二叉树,其叶节点是操作数,内部节点是操作符。
通过遍历表达式树,我们可以通过递归的方式计算整个表达式的值。
4. 文件系统:二叉树可以用于组织和管理文件系统中的文件和文件夹。
每个节点代表一个文件或文件夹,左子节点代表文件夹下的子文件夹,右子节点代表同一层级下的其他文件或文件夹。
通过遍历二叉树,可以实现文件的查找、创建、删除等操作。
5. 数据压缩:哈夫曼树是一种常用的数据压缩算法,通过构建二叉树来实现。
在哈夫曼树中,出现频率较高的字符对应的节点位于树的较低层,而出现频率较低的字符对应的节点位于树的较高层。
通过对字符进行编码,并使用相对较短的编码表示高频字符,可以实现对数据的高效压缩和解压缩。
6. 平衡树:平衡树是一种特殊类型的二叉树,其左子树和右子树的高度差不超过1。
数据结构:⼆叉树、平衡⼆叉树、红⿊树详解⼀、⼆叉树(binary tree)指每个节点最多含有两个⼦树的树结构。
时间复杂度为O(log N),在退化成链表的情况下时间复杂度为O(N)。
特点:1.所有节点最多拥有两个⼦节点;2.节点的左⼦树只包含⼩于当前根节点的数,节点的右⼦树只包含⼤于当前根节点的数。
缺点:只会以我们第⼀次添加的节点为根节点,如果后⾯添加的节点值都⼤于或⼩于根节点的值,在这种情况下会退化成链表。
⼆、平衡⼆叉树(Balanced Binary Tree)⼜称为AVL树,具有⼆叉树的全部特性,解决⼆叉树退化成链表情况的问题,每个节点的左⼦树和右⼦树的⾼度之差不会超过1,AVL树是严格的平衡⼆叉树,追求完全平衡,⽐较严格。
缺点:由于要求每个节点的左⼦树和右⼦树⾼度之差不超过1,这个要求⾮常严格,追求完全平衡,这就导致了在频繁插⼊和删除的场景中,可能就会导致AVL树失去平衡,AVL树就需要频繁的通过左旋右旋使其重新达到平衡,这时就会时得其性能⼤打折扣。
三、红⿊树和AVL树相⽐,红⿊树放弃追求完全平衡,⽽是追求⼤致平衡,保证每次插⼊节点最多只需要三次旋转就能达到平衡,维持平衡的耗时较少,实现起来也更为简单,它的旋转次数较少,对于频繁插⼊和删除操作的场景,相⽐AVL树,红⿊树更具优势。
特征:1.红⿊树是也是平衡⼆叉树实现的⼀种⽅式2.节点只能是⿊⾊或者红⾊,root根节点⼀定是⿊⾊3.新增时默认新增的节点是红⾊,不允许两个红⾊节点相连4.红⾊节点的两个⼦节点⼀定是⿊⾊红⿊树变换规则三种规则:1.改变节点颜⾊2.左旋转3.右旋转变⾊的情况:当前节点的⽗亲节点是红⾊,并且它的祖⽗节点的另外⼀个⼦节点(叔叔节点)也是红⾊:以当前节点为指针进⾏操作1.将⽗亲节点变为⿊⾊2.将叔叔节点变为⿊⾊3.将祖⽗节点变为红⾊4.再把指针定义到祖⽗节点进⾏旋转操作左旋转:当⽗亲节点为红⾊情况,叔叔节点为⿊⾊情况,且当前节点是右⼦树,左旋转以⽗节点作为左旋。
同问
include<stdio.h>是什么意思
首先明白一点:函数的使用都要进行定义和声明的!
.h是头文件,头文件是包含函数声明和定义的文件;你平时写C语言时,用到的printf()和scanf()都是系统定义好的,而这些函数的定义就包含在stdio.h 这个文件中!
#include是编译预处理指令,就是在编译前将stdio.h这个文件里的函数都添加到你写的cpp文件中,然后参与编译,生成.obj文件。
如果没有这个指令,你用到的printf()和scanf()编辑器就会报错:
error C2065: 'printf' : undeclared identifier
说明,以后你们会学到C++ 和Windows编程 ,也会遇到#include 的!加油!
数据结构之二叉树实例:三种遍历方式和表达式的求值
1. 二叉树知识点
满二叉树
完全二叉树
程序源码:
#include <stdio.h> #include <stdlib.h>
#include <conio.h>
//二叉树的结构体定义
typedef struct treenode
{
char data; //这里采用字符作为节点的数据域
struct treenode *lchild,*rchild;
}BinaryTree;
//生成二叉树
BinaryTree * makeBinaryTree()
{
BinaryTree *t=NULL;
t=(BinaryTree *)malloc(sizeof(BinaryTree));
if(t==NULL) exit(0);
char c = getche(); //getche输入后立即从控制台取字符,不以回车为结束(带回显) if(c=='#') return NULL; //关键,如果输入的是#,那么就返回null
t->data=c; //例如一个节点没有了子节点,那么输入时加上两个#,就可以了 t->lchild=makeBinaryTree();
t->rchild=makeBinaryTree();
return t;
}
//先序遍历
void preorder(BinaryTree *t)
{
if(t==NULL) return ;
printf("%c",t->data);
preorder(t->lchild);
preorder(t->rchild);
}
//中序遍历
void inorder(BinaryTree *t)
{
if(t==NULL) return ;
inorder(t->lchild);
printf("%c",t->data);
inorder(t->rchild);
}
//后序遍历
void postorder(BinaryTree *t)
{
if(t==NULL) return ;
postorder(t->lchild);
postorder(t->rchild);
printf("%c",t->data);
}
int main()
{
BinaryTree *t=makeBinaryTree(); printf("\nPreorder:\n");
preorder(t);
printf("\nInorder:\n");
inorder(t);
printf("\nPostorder:\n");
postorder(t);
return 0;
}测试结果:简单的例子
复杂的:按上面的图来输入。