非线性不确定系统的自适应模糊跟踪控制
- 格式:pdf
- 大小:261.44 KB
- 文档页数:7
模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。
本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。
一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。
模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。
在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。
模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。
推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。
模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。
此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。
然而,模糊控制也存在一些局限性。
首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。
其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。
二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。
神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。
在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。
通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。
神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。
与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。
它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。
此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。
非匹配不确定非线性系统自适应模糊控制随着科学技术的进步,许多实际工程控制系统日趋复杂,往往呈现出严重的不确定性、非线性性、多变量性、强耦合性等特征,因此研究复杂不确定非线性系统的控制问题不仅具有重要的理论意义,而且具有广泛的应用价值。
自适应模糊控制是解决此类复杂系统控制设计问题的重要方法之一。
本文以模糊控制、自适应控制和非线性鲁棒控制为理论框架,用模糊逻辑系统对不确定非线性系统进行模糊建模,针对典型的不确定非线性系统,提出了一系列自适应模糊控制方法和策略,并应用数学方法给出了模糊闭环系统的稳定性、收敛性和鲁棒性的理论证明。
主要研究工作如下:1.针对三类状态可测的非匹配单输入单输出不确定非线性系统,分别提出自适应模糊状态反馈控制设计方法。
三类非线性系统分别包含未知的非线性函数、非光滑非线性输入(饱和输入、死区输入、滞回等)、未建模动态和随机扰动。
设计中,模糊逻辑系统分别用来辨识系统未知非线性函数或组合函数,基于反步递推设计方法、自适应鲁棒控制理论、随机小增益技术、障碍函数技术和自适应模糊控制技术,给出三种自适应模糊控制器设计方案,并基于李雅普诺夫稳定理论和随机稳定理论证明闭环系统的稳定性和收敛性。
仿真研究进一步验证所提方法的有效性。
2.针对三类状态不可测的非匹配单输入单输出不确定非线性系统,分别提出自适应模糊输出反馈控制设计方法。
三类非线性系统的状态均不可测,且系统包含未知的非线性函数、饱和输入、死区输入和未建模动态。
设计中,模糊逻辑系统用来辨识系统的未知非线性函数,分别设计模糊滤波观测器和模糊状态观测器估计系统的不可测状态,基于所设计的滤波观测器和状态观测器,并结合反步递推设计方法、自适应鲁棒控制理论、小增益技术、自适应模糊控制技术和动态面控制技术,给出三种自适应模糊输出反馈鲁棒控制器设计方案,并基于李雅普诺夫稳定理论证明闭环系统的稳定性和收敛性。
仿真研究进一步验证所提方法的有效性。
3.针对两类状态不可测的非匹配不确定非线性互联大系统,分别提出自适应模糊输出反馈分散控制设计方法。
几类不确定非线性系统的智能控制问题研究在实际中,大多数系统都是非线性系统,而且通常受到不确定性,时滞以及随机扰动等因素的影响。
自适应控制因其具有辨识对象和在线修改参数的能力,能够有效抑制不确定性的影响,另一方面模糊逻辑系统以及神经网络能以任意精度逼近未知连续函数,因此是处理不确定性特别有效的方法。
近年来,通过将反步递推设计方法与模糊逻辑系统理论或神经网络相结合的反步递推自适应智能控制得到了充分发展,而且取得了很多重要的研究成果,然而仍然存在着很多问题需要进一步研究。
本文将深入研究几类不确定非线性系统的智能控制问题,如具有严格反馈形式的不确定非线性系统,随机非线性系统,以及非线性互联大系统等,并且研究在系统存在时滞情况下的处理方法。
主要研究内容如下:1.针对一类具有严格反馈形式的单输入单输出不确定非线性系统,研究基于滤波器的自适应模糊跟踪控制问题。
首先设计滤波器估计不可测状态,在此基础上结合反步递推设计方法和模糊逻辑系统理论,逐步设计出虚拟控制信号和实际的控制律。
基于Lyapunov函数理论,证明了闭环系统所有信号半全局最终一致有界而且跟踪误差收敛到零的一个小邻域内。
最后通过仿真算例,验证了该方法的有效性。
2.针对一类带有未知时滞且具有严格反馈形式的单输入单输出不确定非线性系统,给出了自适应模糊输出反馈控制方法。
首先设计滤波器估计不可测状态,通过结合反步递推设计方法和动态面控制技术,避免了对虚拟控制器中自变量重复求导,从而降低了计算量,简化了所要设计的控制器。
基于Lyapunov-Krasovskii泛函,证明了闭环系统的所有信号半全局最终一致有界,而且跟踪误差收敛到零的一个小邻域内。
最后通过仿真算例验证了所提方法的有效性。
3.针对一类带有未知时滞且具有严格反馈形式的单输入单输出随机非线性系统,研究了基于观测器的自适应神经网络控制方法。
首先设计状态观测器估计不可测状态,结合反步递推设计方法和动态面控制技术,给出基于观测器的输出反馈控制方法。
时变时滞随机非线性系统的自适应神经网络跟踪控制余昭旭;杜红彬【摘要】This paper focuses on the adaptive neural control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delay. Based on the Razumikhin function approach, a novel adaptive neural controller is de- veloped by using the backstepping technique. The proposed adaptive controller guarantees that all the error variables are 4-moment semi-globally uniformly ultimately bounded in a compact set while the tracking error remains in a neighborhood of the origin. The effectiveness of the proposed design is validated by simulation results.%针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2011(028)012【总页数】5页(P1808-1812)【关键词】自适应跟踪控制;神经网络(NNs);Razumikhin引理;随机系统;时变时滞【作者】余昭旭;杜红彬【作者单位】华东理工大学自动化系,上海200237;华东理工大学自动化系,上海200237【正文语种】中文【中图分类】TP2731 引言(Introduction)随机干扰广泛地存在于各类实际系统中,因此随机非线性系统的稳定性分析及控制器设计受到越来越多的关注[1~6].特别地,对于严格反馈型随机非线性系统,采用backstepping方法提出了许多控制策略[3~6].然而这些控制策略往往要求系统函数已知或满足匹配条件.如果不能获得系统函数的这些先验知识,那么这些方法显然不适用.由于神经网络和模糊系统对未知非线性函数具有良好的逼近性能,采用自适应神经网络控制和自适应模糊控制能较好地避免前面的限制.然而对具有未知系统函数的随机系统的神经网络控制问题和模糊控制问题的研究结果还比较少[6~10]. 时滞现象大量存在于如计算机网络、核反应器等实际系统中,并且往往会导致系统的不稳定,因此时滞系统一直是研究的热点问题[11].Lyapunov-Krasovskii方法和Lyapunov-Razumikhin方法也广泛地应用于时滞随机非线性系统的稳定性分析和控制器设计.文献[12,13]已将Lyapunov-Razumikhin方法应用到时滞不确定随机非线性系统的稳定性分析.对时滞随机非线性系统的镇定与跟踪问题,大多采用Lyapunov-Krasovskii方法[9,14~16]. 相比Lyapunov-Razumikhin方法,Lyapunov-Krasovskii函数则不易构造,且Lyapunov-Krasovskii函数的复杂性使得稳定性分析与控制器设计也更为复杂.此外Lyapunov-Krasovskii对时滞常常不仅要求有界,而且须满足(t)<ς<1(ς为常数),而Lyapunov-Razumikhin方法仅要求时滞有界.因此针对时变时滞随机非线性系统的跟踪控制问题,采用Lyapunov-Razumikhin方法提出一种新的自适应神经网络控制器设计方法具有重要意义.本文利用Razumikhin引理和backstepping方法,针对一类具有时变时滞的不确定随机非线性严格反馈系统,提出一种新的自适应神经网络跟踪控制策略.所提出的控制器可保证跟踪误差四阶矩半全局一致最终有界.同时由于神经网络参数化[10]的应用,使得自适应控制器中所估计的参数大量减少.2 问题描述及准备(Problem formulation and preliminary results)2.1 预备知识(Preliminary results)考虑以下随机非线性系统:其中:x∈Rn为状态,ω为定义完备概率空间(Ω,F,P)上的r维的标准布朗运动,其中:Ω为采样空间,F为σ域以及P为概率测度;f和h为合适维数的向量值函数或矩阵值函数.针对C2函数V(t,x)定义如下算子L:其中tr(A)为A的迹.Razumikhin引理:考虑时滞随机泛函微分方程(retarded stochastic functional differential equation,RSFDE):dx=f(t,xτ)dt+h(t,xτ)dω,令p > 1,如果存在函数V(t,x)∈ C1,2([−τ,∞]× Rn)和常数ci>0(i=1,2),q>1,满足以下不等式:对所有的t≥0,满足那么RSFDE的具有初值ξ的解x(t,ξ)概率意义下一致最终有界,并且满足其中:|ξ(s)|p,γ=µ1∧.由文献[17]中定理4.1.4取κ =0,ψ(t)=e−t,µ = µ1和ζ(t)= µ2可容易得到以上Razumikhin引理,证明略.本文中考虑p=4.引理1 对于ε>0和任意实数η∈R,存在不等式[18]其中k为常数且满足k=e−(k+1),即k=0.2785.引理2 考虑不等式其中λ为正常数,如果初始条件(0)≥0成立,则对所有t≥0有(t)≥0.本文中,高斯径向基函数(RBF)神经网络用来逼近任意的连续函数g(·):Rn→R,也即=TΦ(Z),其中输入向量Z∈ΩNN⊂Rn,权向量=(w1,···,wl)T ∈ Rl以及核向量Φ(Z)=(s1(Z),s2(Z),···,sl(Z))T;激励函数si(Z)采用高斯函数,即其中:µi=(µi1,···,µin)T为接受域的中心,νi为高斯函数的宽度.通过选择足够多的节点,神经网络在紧集ΩNN⊂Rn上可以逼近任意的连续函数,即“理想”的权向量W∗是为了分析而设想的量,定义为W∗:=arg|g(Z)−Z)|}.假设1 ∀Z∈ΩNN,存在“理想”的常数权向量W∗,使得‖W∗‖∞ ≤ wmax和|δ|≤ δmax,其中上界wmax,δmax > 0.由式(7)容易得到其中:β(Z)==max{δmax,wmax}.2.2 问题描述(Problem formulation)考虑由以下方程描述的时滞随机非线性系统:其中:xi∈R(i=1,···,n)为系统的状态,定义i=[x1···xi]T,x=n;u∈R为控制输入;y∈R为系统的输出;Borel可测函数τ(t):R+→ [0,τ]表示未知的时变时滞;ω与系统(1)定义相同;f(·),g(·),q(·):Rn→ R和h(·):Rn→ Rr皆为未知的非线性光滑函数.本文的主要目的是设计一种自适应状态反馈控制率u(x,θ),=Φ(x,),使得对于某紧集内的初始条件x(0),(0),闭环系统的所有误差变量皆四阶矩半全局一致最终有界,且跟踪误差可以稳定在原点附近的邻域内.假设2 未知非线性函数g(x)的符号已知,且存在正常数bm和bM,满足0<bm≤|g(x)|≤bM<∞,∀x∈Rn.不失一般性,可进一步假设0<bm≤g(x)≤bM<∞.假设3 存在未知k∞类函数Q(·)满足以下不等式:|q(x(t− τ(t)))|≤ Q(‖x(t− τ(t))‖).假设 4 未知非线性函数h(x,x(t−τ(t)))满足以下不等式:‖h(x,x(t− τ(t)))‖2 ≤H1(‖x‖)+H2(‖x(t− τ(t))‖),其中:H1(·)为未知非负光滑函数,H2(·)为未知k∞类函数.(t)皆为连续且有界的.进一步,假定存在常数d,假设 5 参考信号yd(t)及其微分(t),···,使得‖[yd···]T‖ ≤ d.3 控制器设计及稳定性分析(Controller design and stability analysis)这一节,针对系统(9),利用backstepping方法及Razumikhin引理设计一种新的自适应神经网络跟踪控制器.首先,需引入以下误差变量:其中:为待定的虚拟控制函数,.对于1≤i≤n−1,选取Lyapunov函数选取虚拟控制函数为其中:Lαi−1=,ki为待定设计常数.则容易得到以下关系式:其中:p1=k1−3/4>0,pi=ki−1>0(2≤i≤n−1).将式(11)可改写为如下形式:系数di,j为常数.另外,α0(yd)=yd.基于以上的介绍,容易得到下面引理3.引理3 存在正常数ρ,υ,使得其中:Z=[z1···zn:=−θ/bm,表示未知常数θ/bm的估计.下面继续控制器的设计.当i=n时,由Itˆo公式可得其中Lαn−1:=.定义Lyapunov函数由式(2)可得由假设3可得由于Q(·)为k∞类函数,利用引理3及Razumikhin引理可得由引理1,||Fn,其中Fn=Q(2ρq‖Z(t)‖)+Q(2υ),可通过以下不等式进行处理: 由假设4,可得以下不等式:其中:Gn=H2(2ρq‖Z‖)+H2(2υ),ϑ1和ϑ2为任意的正常数.定义一个新的函数在紧集ΩZ中可通过RBF神经网络逼近:其中:Zn=[x[n]]∈ ΩZ,W∗TS(Zn)表示的“理想”神经网络近似,而δ(Zn)表示逼近误差.利用神经网络参数化式(8),可得其中: β(·)==max{δmax,wmax}.构造实际控制器及参数调整算法如下:其中kn,σ与λ为待定的正设计参数.利用不等式θ≥,在控制器(20)(21)的作用下,由式(14)~(19)可得其中pn:=knbm−>0.式(22)可改写为其中: µ :=min{4p1,4p2,···,4pn−1,4pn,λ},ν :=θ2+k(θσ + ε)+由式(23)及Razumikhin引理可知,闭环系统的解四阶矩半全局一致最终有界,且对于足够小的ς>0,存在时间T:=,其中:E|Z(s)|4,γ=µ∧,c1 ≤min{},使得∀t≥T,有E|(y(t)−yd)4|≤ (1+ς)基于以上分析,主要结论可由以下定理描述:定理1 对于满足假设(2)~假设(5)的时变时滞不确定随机非线性系统(9),在控制器(20)和参数自适应率(21)作用下,闭环系统的所有误差信号四阶矩半全局一致最终有界,且跟踪误差稳定在以下集合Ω所定义的区域内:注 1 定义如下紧集:初始值集合Ω0、有界紧集ΩZ、稳态紧集Ωs和神经网络逼近的有效集合ΩNN.在控制器设计过程中为了∀t≥0神经网络逼近皆有效,需保证ΩZ⊆ΩNN.为了阐述方便,由式(23)及Razumikhin引理,可将有界紧集ΩZ和稳态紧集Ωs定义如下:这些集合之间的关系如图1所示.在控制器设计的初始阶段首先定义ΩNN,并且ΩNN与控制器的参数和初始集合Ω0均无关.由式(24)(25)可知:i)初始集合Ω0通过‖ξ‖0影响ΩZ,但与Ωs和ΩNN无关;ii)可通过调整参数ki,λ,σ,ε,ϑ1和ϑ2,使得ΩZ和Ωs足够小.图1 各紧集之间的关系Fig.1 The relationship among compact sets由集合ΩZ和Ωs的界可知,对于给定足够大的ΩNN,存在合适的‖ξ‖0,γ和ν使得ΩZ ⊆ ΩNN和Ωs ⊆ ΩNN. 而由γ和ν的定义可知,γ和ν的值依赖于控制参数ki,λ,σ,ε,ϑ1和ϑ2的选择.因此对于给定足够大的ΩNN和‖ξ‖0=ξmax>0,存在合适的控制参数使得ΩZ⊆ΩNN.定义xi(0),zi(0)和(0)的初始值集合Ω0使得‖ξ‖0<ξmax.这时对于属于Ω0的所有xi(0),zi(0)和(0),∀t>0均有ΩZ⊆ΩNN.4 仿真研究(Simulation example)考虑以下时变时滞不确定随机非线性系统:其中:τ(t)=1+sint,初始条件为x1(0)=0.2和x2(0)=0.1,参考输入信号yd=0.5(sint+sin 0.5t).仿真过程中,采用RBF神经网络来逼近未知函数,W∗TS(Z2)包含729个节点,中心分布在[−5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[− 5,5]×[0,5],宽度为1;其他仿真参数给出如下:k1=4.74,k2=15,λ=5,σ=1.采用定理1中的控制器(20)和参数自适应率(21),其中z1=x1−yd,z2=x2− α1,β = β(Z2).仿真结果由图2~4给出,图2表明所提出的自适应跟踪控制器具有良好的跟踪性能,输出响应y能比较快地跟踪参考输入yd;控制输入如图3所示;图4描述了自适应参数曲线.图2 输出响应y(t)和参考输入yd(t)Fig 2 Output responsey(t)and reference inputyd(t)图3 控制输入u(t)Fig 3 Control inputu(t)图4 自适应参数Fig 4 Adaptive parameter5 结论(Conclusion)本文针对一类具有未知时变时滞的不确定随机非线性严格反馈系统,利用Razumikhin引理和backstepping方法,提出了一种新的神经网络自适应控制器,可以保证跟踪误差四阶矩半全局一致最终有界.所给出的控制器结构简单,易于实现.将该方法推广到更一般的严格反馈型随机非线性系统是下一步工作的方向.参考文献(References):【相关文献】[1]FLORCHINGER P.Lyapunov-like techniques for stochastic stability[J].SIAM Journal on Control and Optimization,1995,33(4):1151–1169.[2]FLORCHINGER P.Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method[J].SIAM Journal on Control and Optimization,1997,35(2):500–511.[3]PAN Z G,BASAR T.Adaptive controller design for tracking and disturbance attenuation in parameter-feedback nonlinear systems[J].IEEE Transactions on AutomaticControl,1998,43(8):1066–1083.[4]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 1:a backsteppingdesign[J].Systems&Control Letters,1997,32(3):143–150.[5]DENG H,KRISTIC M.Stochastic nonlinear stabilization:part 2:inverseoptimality[J].Systems&Control Letters,1997,32(3):151–159.[6]WANG Y C,ZHANG H G,WANG Y Z.Fuzzy adaptive control of stochastic nonlinearsystems with unknown virtual control gainfunction[J].Acta AutomaticaSinica,2006,32(2):170–178.[7]PSILLAKIS H E,ALEXANDRIDIS.NN-based adaptive tracking control of uncertain nonlinear systems disturbed by unknown covariance noise[J].IEEE Transactions on Neural Networks,2007,18(6):1830–1835.[8]YU J J, ZHANG K J, FEI S M. Direct fuzzy tracking control of a class of nonaffine stochastic nonlinear systems with unknown dead-zone input[C] //Proceedings of the 17th World Congress, the International Federation of Automatic Control. Elseviet: International Federation of Accountants, 2008, 12236 – 12241.[9]谢立,何星,熊刚,等,随机非线性时滞大系统的输出反馈分散镇定[J].控制理论与应用,2003,20(6):825–830.(XIE Li,HE Xing,XIONG Gang,et al.Decentralized output feedback stabilization for large scale stochastic nonlinear system with time delays[J].Control Theory&Applications,2003,20(6):825–830.)[10]GE S S,HUANG C C,LEE T,et al.Stable Adaptive Neural Network Control[M].USA:Kluwer Academic,2002.[11]RICHARD J P.Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39(10):1667–1694.[12]MAO X R.Razumikhin-type theorems on exponential stability of stochastic functional differential equataions[J].Stochastic Process and Their Application,1996,65(2):233–250. [13]JANKOVIC S,RANDJELOVIC J,JOVANOVIC M.Razumikhintype exponential stability criteria of neutral stochastic functional differential equations[J].Journal of Mathematical Analysis and Applications,2009,355(2):811–820.[14]CHEN W S,JIAO L C,liJ,et al.Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays[J].IEEE Transations on System,Man and Cybernetics,Part B:Cybernetics,2010,40(3):939–950.[15]LIU S J,GE S S,ZHANG J F.Robust output-feedback stabilization for a class of uncertain stochastic nonlinear systems with timevarying delays[C]//Proceedings of 2007 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE,2007:2766–2771.[16]余昭旭,杜红彬.基于NN的不确定随机非线性时滞系统自适应有界镇定[J].控制理论与应用,2010,27(7):855–860.(YU Zhaoxu,DU Hongbin.Neural-network-based bounded adaptive stabilization for uncertain stochastic nonlinear systems with timedelay[J].Control Theory&Applications,2010,27(7):855–860.)[17]胡适耕,黄乘明,吴付科.随机微分方程[M].科学出版社,2008:153–156.(HU Shigeng,HUANG Chengming,WU Fuke.Stochastic Differential Equations[M].Beijing:Science Press,2008:153–156.)[18]PLOLYCARPOU M M.Stable adaptive neural control scheme for nonlinearsystems[J].IEEE Transactions on Automatic Control,1996,41(3):447–451.。
非线性系统控制的自适应模糊控制算法研究在现代控制领域中,非线性系统控制一直是一个重要的研究方向。
由于非线性系统的复杂性和不确定性,传统的控制方法通常无法满足系统的性能要求。
因此,自适应模糊控制算法(Adaptive Fuzzy Control,AFC)应运而生。
本文将重点探讨非线性系统控制的自适应模糊控制算法以及相关研究进展。
首先,我们需要了解什么是非线性系统控制。
非线性系统是指系统的输入和输出之间存在着非线性关系的系统。
与线性系统不同,非线性系统的特点在于其输出与输入之间的关系不可简单表示为一个线性函数。
这使得非线性系统在分析和控制上具有更大的困难。
因此,非线性系统控制是一个极具挑战性的研究领域。
为了解决非线性系统控制的难题,自适应模糊控制算法应运而生。
自适应模糊控制算法结合了自适应控制和模糊控制的优点,通过模糊逻辑推理和参数自适应机制来实现非线性系统的控制。
其中,模糊逻辑推理能够模拟人类的思维方式,在不确定性和模糊性较强的情况下,为系统提供合理的控制策略。
而参数自适应机制能够根据系统的变化和不确定性,自动调整控制器的参数以达到更好的控制效果。
近年来,许多学者们对自适应模糊控制算法进行了深入的研究和探讨。
其中包括模糊推理机构、参数自适应机制、控制策略优化等方面的改进和创新。
例如,研究人员们通过改进模糊推理机构,提出了一种“基于改进模糊规则库的自适应模糊控制算法”。
该算法通过考虑模糊规则库中的因素权重和匹配度,优化了系统的控制性能。
同时,研究人员们还通过改进参数自适应机制,提出了一种“基于改进自适应机制的自适应模糊控制算法”。
该算法通过引入自适应学习率和自适应规模因子,提高了系统的适应能力和稳定性。
除了算法的改进和优化,研究人员们还开展了一些具体应用方面的研究。
例如,在机械工程领域,研究人员们利用自适应模糊控制算法,设计并实现了一种基于自适应模糊控制算法的机器人运动控制系统。
该系统能够根据外部环境和目标要求,自动调整机器人的运动轨迹和速度,实现精确的运动控制。