2018年保定市中考数学预测试题及答案
- 格式:doc
- 大小:320.50 KB
- 文档页数:10
河北省保定市2018年中考一模数学试卷一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16各2分.) 1.4的平方根是【 】A.-2B.2C.±2D.162.下列算式中,结果等于a 6的是【 】A. a 2•a 3B.a 2+ a 2+ a 2C. a 4+ a 2D. a 2• a 2• a 2 3.将9250000用科学计数法表示为【 】A.0.925×107B.9.25×107C.9.25×106D.92.5×105 4.下列图形中,既是轴対称图形又是中心对称图形的是【 】5.下列列图形中,能肯定∠2<∠1的是【 】6.如图是用八块相同的小正方体搭建的几何体,它的左视图是【 】7.下列各因式分解正确的是【 】A.(x-1)2=x 2+2x+1B.x 2+2x-1=(x-1)2C.x 3-9x=x(x+3)(x-3)D.-x 2+(-2)2=(x-2)(x+2) 8,反比例函数y=kx的图象如图所示,点A 是该函数图象上一点,AB 垂直于X 轴 垂足是点B,如果 S △AOB=1,则k 的值为【 】 A. 1 B. -1 C,2 D.-29.直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为【 】A.30°B.20°C.40°D.50°10.如图,从边长为m 的大正方形中剪掉一个边长为n 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是【 】A (m-n)2=m 2-2mn+n 2 B.m 2-n 2=(m+n)(m-n)C.(m-n)2= m 2-n 2 D.m(m-n)= m 2-mn11.如图,△A ’B ’C ’是△ABC 在以点O 为位似中心经过位似变换得到的,若 △ABC 的面积与△A ’B ’C ’的面积比是6:9,则OA:OA ’为【 】 A.4:3 B.3:4 C.9:16 D.16;912.如图,在□ABD 中,AB=8,BC=5,以点A 为圆心,以任意长为半径作弧, 分别交AD 、AB 于点P 、Q ,再分别别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M,连接AM 并延长交CD 于点E,则则CE 的长为【 】 A.3 B .5 C.2 D.6.513.已知m ≠0,函数y=-mx 2十n 与y=mnx在同一直角坐标系中的大致图像可能【 】14.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调査发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为【 】 A.11元B.12元C.13元D.14元15.如图,矩形ABCD 中,AB=8,BC=6,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE=CG,BF=DH,则四边形EFCH 周长的最小值为【 】 A,10C.2016.二次函数y=ax 2+bx+c(a ≠0)的部分图象如图,图象过点(-2,0),对称轴为直线x=1, 下列结论:①abc<0;②2a-b=0③b 2-4ac>0:;④无论m 为何值时,总有am 2+bm ≤a+b: ⑤9a+c>3b 。
2018年河北省保定市高阳县中考数学一模试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.1. 若()×,则括号内的数为()A. 2B. ﹣2C.D. ﹣【答案】B【解析】解:∵,∴()内的数为-2.故选B.2. 将数字21 600用科学记数法表示应为()A. 0.216×105B. 21.6×103C. 2.16×103D. 2.16×104【答案】D【解析】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将数字21 600用科学记数法表示应为2.16×104,故选:D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 如图图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称图形和轴对称图形的概念,注意判断即可.详解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.点睛:此题主要考查了中心对称图形和轴对称图形,掌握中心对称图形与轴对称图形的概念是解题关键.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.4. 下列计算正确的是()A. =8B. (x+3)2=x2+9C. (ab3)2=ab6D. (π﹣3.14)0=1【答案】D【解析】分析:根据立方根的概念,完全平方公式,积的乘方,零次幂的性质,计算后判断即可.详解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6≠ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选:D.点睛:此题主要考查了立方根的概念,完全平方公式,积的乘方,零次幂的性质,熟记并利用性质计算是解题关键.5. 如图,将甲乙丙丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是()A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.6. 如图,在数轴上表示数﹣的点可能是()A. 点EB. 点FC. 点PD. 点Q【答案】B【解析】解:∵﹣3<﹣<﹣2,∴由数轴可知点F所表示的数大于﹣3而小于﹣2.故选B.点睛:本题主要考查了实数与数轴之间的对应关系,主要根据数在数轴上的位置判断数的大小,以及通过求无理数近似值从而比较数的大小进行判断.7. 一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是()A. 平均数B. 众数C. 中位数D. 方差【答案】D学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...新数据1、3、3、3、5的平均数为=3,中位数为3,众数为3,方差为×[(1﹣3)2+(3﹣3)2×3+(5﹣3)2]=1.6;∴添加一个数据3,方差发生变化.故选D.8. 计算:1252﹣50×125+252=()A. 100B. 150C. 10000D. 22500【答案】C故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.9. 我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A. (﹣5)+(﹣2)B. (﹣5)+2C. 5+(﹣2)D. 5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2).故选C.10. 将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A. 15°B. 28°C. 29°D. 34°【答案】B【解析】试题分析:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,从而可求得∠ACB 的度数.解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°﹣30°)÷2=28°.故选:B.考点:圆周角定理.11. 已知二元一次方程组,如果用加减法消去n,则下列方法可行的是()A. ①×4+②×5B. ①×5+②×4C. ①×5﹣②×4D. ①×4﹣②×5【答案】B【解析】解:方程组中如果用加减法消去n,则需要5×①+4×②.故选B.12. 如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm【答案】A【解析】试题分析:根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.考点:直角三角形13. 九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. =﹣B. =﹣20C. =+D. =+20【答案】C【解析】分析:设骑车同学的速度为x千米/时,则汽车的速度是2x千米/时,根据“过了20分后,其余同学乘汽车出发,结果他们同时到达”即可列方程.详解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选:C.点睛:此题主要考查了分式方程的应用,根据题目中的等量关系列方程是解题关键.14. 反比例函数y=的图象如图所示,则下列结论正确的是()A. 常数m<1B. y随x的增大而增大C. 若A(﹣1,h),B(2,k)在图象上,则h<kD. 若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上【答案】D【解析】解:∵双曲线的两支分别位于第二、第四象限,∴m<0,∴选项A不正确;∵在每一象限内y随x的增大而增大,∴选项B不正确;∵h==﹣m>0,k=,∴h>k,∴选项C不正确;∵反比例函数y=的图象成中心对称,∴若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上,∴选项D正确.故选D.15. 已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中线段DF的长与DB相等,将菱形BDEF 绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论.甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数不变;那么,你认为()A. 甲、乙都对B. 乙对甲不对C. 甲对乙不对D. 甲、乙都不对【答案】A【解析】解:连接DF、AF、CD,如图,∵四边形BDEF为菱形,∴BD=BF,而DF=BD,∴△BDF为等边三角形,∴∠DBF=60°.∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∴∠ABF=∠CBD,∴△ABF 绕点B顺时针旋转60°可得到△CBD,∴AF=CD,∠FBA=∠DBC,∴∠AFC=∠ABC=60°,即直线AF和直线CD所夹的锐角的度数为60°.故选A.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形和等边三角形的性质.16. 如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是()A. (4,4)B. (4,3)C. (4,6)D. (4,12)【答案】B【解析】解:根据题意和图象可得:BC=4,AC=7﹣4=3.∵∠ACB=90°,点D为AB的中点,∴当x=4时,,∴y=,即点Q的坐标是(4,3).故选B.点睛:本题考查了动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解答问题.二、填空题(本大题有3个小题,共10分.)17. 若|a﹣1|=2,则a=_____.【答案】3或﹣1【解析】分析:根据绝对值的意义,绝对值是数轴上点表示的数到原点的距离,由此分类求解即可.详解:∵|a﹣1|=2,∴a﹣1=2或a﹣1=﹣2,∴a=3或﹣1.故答案为:3或﹣1.点睛:此题主要考查了绝对值的意义,利用绝对值的意义分类讨论即可求解.18. 如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=_____.【答案】105°【解析】试题分析:根据AC=AD可得:∠CDA=∠A=50°,则∠ACD=80°,根据中垂线的性质以及外角的性质可得:∠B=∠BCD=25°,则∠ACB=80+25=105°.考点:等腰三角形的性质19. 如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第2次将点A1向右平移6个单位长度到达点A2,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是_____;按照这种规律移动下去,第2017次移动到点A2017时,A2017在数轴上对应的实数是_____.【答案】(1). 10 (2). ﹣3026【解析】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;第6次从点A5向右移动18个单位长度至点A6,则A6表示的数为7﹣15=10;…;发现序号是奇数的点在负半轴上,A1:﹣2,A3:﹣5=﹣2+(﹣3)×1A5:﹣8=﹣2+(﹣3)×2,A2n+1:﹣2+(﹣3)×n则点A2017表示:﹣2﹣3×=﹣3026.故答案为:10,﹣3026.点睛:本题考查了数轴,解答此题的关键是先求出前五次这个点移动后在数轴上表示的数,再根据此数值找出规律即可解答.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20. 请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:+问:小明在第_____步开始出错,小红在第_____步开始出错(写出序号即可);请你给出正确解答过程.【答案】(1). ②(2). ②【解析】试题分析:根据分式的加减,可得答案.试题解析:(1)②,②,原式=21. 如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.(1)求∠ACD度数;(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)【答案】(1)25°;(2)2.1.【解析】试题分析:(1)延长AC交ON于点E,如图,利用互余计算出∠OCE=65°,再利用对顶角相等得到∠ACB=∠OCE=65°,再根据∠ACD=90°-∠ACB即可解决问题;(2)接着在Rt△ABC中利用∠ACB的余弦可计算出BC,然后根据矩形的性质即可得到AD的长.试题解析:(1)延长AC交ON于点E,如图,∵AC⊥ON,∴∠OEC=90°,在Rt△OEC中,∵∠O=25°,∴∠OCE=65°,∴∠ACB=∠OCE=65°,∴∠ACD=90°﹣∠ACB=25°(2)∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,在Rt△ABC中,∵cos∠ACB=,∴BC=AC•cos65°=5×0.42=2.1,∴AD=BC=2.1.22. 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表(1)写出运动员甲测试成绩的众数为_____;运动员乙测试成绩的中位数为_____;运动员丙测试成绩的平均数为_____;(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【答案】(1). 7(2). 7(3). 6【解析】分析:(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分);(2)易知 =7(分),=7(分),=6.3(分),根据题意,由方差的值选择,不难判断;(3)画出树状图,即可解决问题;详解:(1)甲运动员测试成绩的众数和中位数都是7分.运动员丙测试成绩的平均数为:=6(分)故答案是:7;7;6;(2)∵甲、乙、丙三人的众数为7;7;6甲、乙、丙三人的中位数为7;7;6甲、乙、丙三人的平均数为7;7;6.3∴甲、乙较丙优秀一些,∵S甲2>S乙2∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是p=.点睛:本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键23. 某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师和学生各有多少人?(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1030元,则提早前往的教师最多只能多少人?【答案】(1)参加活动的教师有10人,学生有50人;(2)①y=4x+1020;②提早前往的教师最多只能2人.【解析】试题分析:(1)设参加活动的教师有a人,学生有b人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据不等关系:购买一、二等座票全部费用不多于1032元,列出方程求解即可.试题解析:(1)设参加活动的教师有a人,学生有b人,依题意有:,解得:.故参加活动的教师有10人,学生有50人;(2)①依题意有:y=26x+22(10﹣x)+16×50=4x+1020.故y关于x的函数关系式是y=4x+1020;②依题意有:4x+1020≤1032,解得x≤3.故提早前往的教师最多只能3人.故答案为:10,50.考点:一次函数的应用;一元一次不等式的应用.24. 如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C 并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.【答案】(1)见解析;(2)①75°;②见解析【解析】试题分析:(1)根据三角形外角性质,即可得到∠BCD=∠ADC﹣∠CBA=15°;(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根据等腰三角形的性质,即可得到∠CC'B=∠C'CB=75°;②先根据AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,进而得到∠ACE=∠CEB﹣∠A=15°,据此可得∠BC'D'=∠BCD=∠ACE,运用ASA即可判定△C'BD'≌△CAE.试题解析:解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°.∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE.在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).点睛:本题主要考查了旋转的性质,全等三角形判定与性质以及等腰三角形的性质的综合应用,解题时注意:两角及其夹边分别对应相等的两个三角形全等.25. 如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B (1,1),C(2,1).(1)直接写出点D的坐标;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.【答案】(1)D点的坐标为(2,2);(2)y=﹣x2+3x﹣1;(3)当顶点E在正方形ABCD内或边上时,2≤MN≤2;(4)l经过正方形ABCD的两个顶点,所有符合条件的c的值为﹣1,1,﹣2.【解析】试题分析:(1)根据正方形的性质,可得D点的坐标;(2)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.试题解析:解:(1)由正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为2,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为2,D点的坐标为(2,2);(2)把B(1,1)、C(2,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x2+3x﹣1;(3)由此时顶点E的坐标为(2,2),得:抛物线解析式为y=﹣(x﹣2)2+2把y=0代入得:﹣(x﹣2)2+2=0解得:x1=2﹣,x2=2+,即N(2+,0),M(2﹣,0),所以MN=2+﹣(2﹣)=2.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)2+1把y=0代入得:﹣(x﹣1)2+1=0解得:x1=0,x2=2,即N(2,0),M(0,0),所以MN=2﹣0=2.点E在线段AD上时,MN最大,点E在线段BC上时,MN最小;当顶点E在正方形ABCD内或边上时,2≤MN≤2;(4)当l经过点B,C时,二次函数的解析式为y=﹣x2+3x﹣1,c=﹣1;当l经过点A、D时,E点不在正方形ABCD内或边上,故排除;当l经过点B、D时,,解得:,即c=﹣2;当l经过点A、C时,,解得,即c=1;综上所述:l经过正方形ABCD的两个顶点,所有符合条件的c的值为﹣1,1,﹣2.点睛:本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正方形的性质求顶点坐标是解题的关键;利用顶点横坐标纵坐标越大,与x轴交点的线段越长得出顶点为D时MN最长,顶点为B时MN最短是解题的关键.26. 平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE=_____°,CD=_____;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.【答案】(1). 90 (2).【解析】试题分析:(1)①根据直径的性质,由DE∥AB得即可解决问题.②求出BD、AE即可解决问题.(2)只要证明△ACE∽△BCD即可.(3)求出AB、AE,利用△ACE∽△BCD即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC相切,②如图6中,当α=90°+∠ACB时,半圆与BC 相切,分别求出BD即可.试题解析:(1)解:①如图1中,当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴=.∵BC=n,∴CD=.故答案为:90°,n.②如图2中,当α=180°时,BD=BC+CD=n,AE=AC+CE=m,∴=.故答案为:.(2)如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴.(3)如图4中,当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB==6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE===3,由(2)可知△ACE∽△BCD,∴,∴=,∴BD=.故答案为:.(4)∵m=6,n=,∴CE=3,CD=2,AB==2,①如图5中,当α=90°时,半圆与AC相切.在Rt△DBC中,BD===2.②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE==,由(2)可知=,∴BD=.故答案为:2或.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.。
2018年保定中考数学冲刺试卷【精选word版】由于格式问题,部分试题会存在乱码的现象,请考生点击全屏查看!一、选择题(每小题3分,共30分)1.下列各数中最小的数是()A.B.﹣C.0 D.12.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.3.某小组5名同学一周内参加家务劳动的时间如表所示,关于劳动时间这组数据,下列说法正确的是()劳动时间(小时) 1 2 3 4人数 1 1 2 1A.众数是2,平均数是2.6 B.中位数是3,平均数是2C.众数和中位数都是3 D.众数是2,中位数是34.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且AC⊥BC,若∠1=40°,则∠2的度数为()A.140°B.130°C.120°D.110°5.下列说法正确的是()A.为检测某市正在销售的酸奶质量,应采用抽样调查的方式B.两名同学连续六次的数学测试平均分相同,那么方差较大的同学的数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是D.“打开电视,正在播放动画片”是必然事件6.不等式组的解集在数轴上可表示为()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,点P在A C的延长线上,PD是⊙O的切线,延长BC交PD于点E.则下列说法不正确的是()8.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为()A.B.C.D.9.已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5 B.10 C.36 D.7210.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A.5 B.12 C.10070 D.10080二、填空题(每小题3分,共15分)11.已知点A(x1,y1)、B(x2,y2)都在二次函数y=﹣2(x﹣2)2+1的图象上,且x1<x2<2,则y1、y2的大小关系是______.12.不等式组的正整数解的乘积为.13.若关于x的方程3x2﹣kx+k=0有两个相等的实数根,则常数k的值为______.14.已知△ABC,按如下步骤作图:①以A为圆心,AC长为半径画弧;②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.若AC=5,BC=CD=8,则AB的长为______.15.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为.16.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在点A′处,当△A′BC 是等腰三角形时,AP的长为______.三、解答题(本大题共8个小题,满分75分)17.先化简,再求值:÷(a﹣),其中a=,b=.18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的动点,BC∥OP,BC=OP.(1)求证:四边形AOCP是平行四边形;(2)若AB=4,填空:①当AP=______时,四边形AOCP是菱形;②当AP=______时,四边形OBCP是正方形.19.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.20.如图是某工厂货物传送带的平面示意图,为提高传送过程的安全性,工厂计划改造传动带与地面的夹角,使其AB的坡角由原来的43°改为30°.已知原传送带AB长为5米.求新旧货物传送带着地点B、C之间相距多远?(结果保留整数,参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,≈1.41,≈1.73)21.如图,已知双曲线y=经过点B(3,1),点A是双曲线第三象限上的动点,过B 作BC⊥y轴,垂足为C,连接AC.(1)求k的值;(2)若△ABC的面积为6,求直线AB的解析式;(3)在(2)的条件下,写出反比例函数值大于一次函数值时x的取值范围.22.如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC(1)求证:AP是⊙O的切线;(2)求PD的长.23.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥AC交AC于E,则线段BD与CE有何数量关系?拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD的长.24.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.。
2018年河北省保定市中考数学二模试卷副标题一、选择题(本大题共16小题,共42.0分)1.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A. 千里江山图B. 京津冀协同发展C. 内蒙古自治区成立七十周年D. 河北雄安新区建立纪念2.函数y=1中,x的取值范围是()x+2A. x≠0B. x>−2C. x<−2D. x≠−23.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A. 120 元B. 100 元C. 80 元D. 60 元4.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A. 10πB. 15πC. 20πD. 30π5.估计32−16÷2的运算结果在哪两个整数之间()A. 0和1B. 1和2C. 2和3D. 3和46.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A. 4B. 5C. 10D. 117.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A. B.C. D.8.在a2□4a□4的空格□中,任意填上“+”或“−”,在所有得到的代数式中,能构成完全平方式的概率是()A. 1B. 12C. 13D. 149.如果不等式组x<2x>a恰有3个整数解,则a的取值范围是()A. a≤−1B. a<−1C. −2≤a<−1D. −2<a≤−110.关于x的一元二次方程(a−1)x2+x+a2−1=0的一个根是0,则a的值为()A. 1B. −1C. 1或−1D. 1211.下列所给函数中,y随x的增大而减小的是()A. y=−x−1B. y=2x2(x≥0)C. y=−2xD. y=x+112.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A. y−x=18−yx=y−18 B.x−y=y+18y−x=18 C.y−x=18+yx+y=18 D.18−y=y−xy=18−x13.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A. 相切B. 相交C. 相离D. 无法确定14.如图,在矩形ABCD中,AB=2,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A. 22−1−π3B. 22−1−π2C. 22−2−π2D. 22−1−π415.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2−4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是()A. 2个B. 3个C. 4个D. 5个16.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3 (x)上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60∘,B1C1//B2C2//B3C3…,则正方形A2017B2017C2017D2017的边长是()A. (12)2016 B. (12)2017 C. (33)2016 D. (33)2017二、填空题(本大题共3小题,共10.0分)17.一个七边形的外角和是______.18.定义一种新运算:x∗y=x+yy ,如2∗l=2+11=3,则(4∗2)∗(−1)=______.19.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为______尺,根据题意列方程为______.三、解答题(本大题共7小题,共68.0分)20.如图所示,直线y=−2x+b与反比例函数y=kx交于点A、B,与x轴交于点C.(1)若A(−3,m)、B(1,n).直接写出不等式−2x+b>kx的解.(2)求sin∠OCB的值.(3)若CB−CA=5,求直线AB的解析式.21.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90∘,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b−a∵S四边形ADCB =S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB =S△ADB+S△DCB=12c2+12a(b−a)∴12b2+12ab=12c2+12a(b−a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90∘.求证:a2+b2=c2.x2−x+2与y轴交于点A,顶点为点B,22.在平面直角坐标系xOy中,抛物线y=12点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.23.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是______,女生收看“两会”新闻次数的中位数是______;(2)对于某个群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体多某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量,根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.24.有这样一个问题:探究函数y=x的图象与性质.小怀根据学习函数的经验,对函x+1的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:数y=xx+1(1)函数y=x的自变量x的取值范围是______;x+1(2)列出y与x的几组对应值.请直接写出m的值,m=______;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数y=x的一条性质.x+125.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30∘,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD 和EF的长度各是多少.(结果保留根号)26.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45∘,c=22时,a=______,b=______.如图2,当∠ABE=30∘,c=4时,a=______,b=______.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3,求AF的长.答案和解析【答案】 1. C 2. D 3. C 4. B 5. D 6. B 7. A 8. B 9. C 10. B11. A 12. D 13. B 14. B15. B 16. C17. 360∘ 18. −219. (x +1);x 2+52=(x +1)2,20. 解:(1)如图:由图象得:不等式−2x +b >kx 的解是x <−3或0<x <1; (2)设直线AB 和y 轴的交点为F . 当y =0时,x =b2,即OC =−b2 当x =0时,y =b ,即OF =−b∴tan ∠OCB =OFOC=2 ∴sin ∠OCB =5=2 55.(3)过A 作AD ⊥x 轴,过B 作BE ⊥x 轴 则AC = 52AD = 52y ABC =52BE =− 52y B∴AC −BC =52(y A +y B )=− 5(x A +x B )+ 5b =−5,又−2x +b =kx 所以−2x 2+bx −k =0∴x A +x B =b∴− 5×b+ 5b =−5 ∴b =−2 5∴y =−2x −2 5.21. 证明:连结BD ,过点B 作DE 边上的高BF ,则BF =b −a , ∵S 五边形ACBED =S △ACB +S △ABE +S △ADE =12ab +12b 2+12ab ,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b−a),∴12ab+12b2+12ab=12ab+12c2+12a(b−a),∴a2+b2=c2.22. 解:(1)∵抛物线y=12x2−x+2与y轴交于点A, ∴点A的坐标为(0,2).∵y=12x2−x+2=12(x−1)2+32,∴抛物线的对称轴为直线x=1,顶点B的坐标为(1,32).又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为y=kx+b.∵直线BC经过点B(1,32)和点C(2,2),∴k+b=3 22k+b=2解得k=12 b=1.∴直线BC的解析式为:y=12x+1;(2)∵抛物线y=12x2−x+2中,当x=4时,y=6,∴点D的坐标为(4,6).∵直线y=12x+1中,当x=0时,y=1.当x=4时,y=3,∴如图,点E的坐标为(0,1),点F的坐标为(4,3).设点A平移后的对应点为点A′,点D平移后的对应点为点D′.当图象G向下平移至点A′与点E重合时,点在直线BC上方,此时t=1.当图象G向下平移至点D′与点F重合时,点A′在直线BC下方,此时t=3.结合图象可知,符合题意的t的取值范围是1<t≤3.23. 20;324. x≠−1;325. 解:如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H,由题意知,AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30∘,在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm;∵EG=AB−BE+AG=300−50+100=350(cm),∴在Rt△EFG中,EF=EG tan∠EGF=350tan30∘=350×33=35033(cm),所以支撑角钢CD的长为75cm,EF的长为35033cm.26. 25;25;213;27【解析】1. 解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.根据中心对称图形的概念求解.本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.2. 解:根据题意得:x+2≠0,解得x≠−2.故选:D.由分式有意义的条件得出不等式,解不等式即可.本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.3. 解:设这件商品的进价为x元,根据题意得:200×0.5−x=20,解得:x=80.答:这件商品的进价为80元.故选:C.设这件商品的进价为x元,根据利润=销售价格−进价,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.4. 解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选:B.根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.5. 解:25<32<36,∴5<32<6.原式=−4÷2=−2.∴3<32−16÷2<4.故选:D.先估算出32的大致范围,然后再计算出16÷2的大小,从而可得到问题的答案.本题主要考查的是二次根式的混合运算,无算无理数的大小,利用夹逼法估算出32的大小是解题的关键.6. 解:(4+x+5+10+11)÷5=7,解得:x=5,根据众数的定义可得这组数据的众数是5.故选:B.首先根据平均数算出x的值,再根据众数的定义:一组数据中出现次数最多的数据叫做众数,可得答案.此题主要考查了平均数与众数,关键是根据平均数的求法算出x的值.7. 解:设身高GE=ℎ,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90∘,∴△OEG∽△OFC,∴OEOF =GECF,∴yy+a−x =ℎl,∴y=ℎℎ−l x+aℎl−ℎ,∵a、h、l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选:A.等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.本题综合考查了中心投影的特点和规律.注意离点光源的远近决定影长的大小.8. 解:能够凑成完全平方公式,则4a前可是“−”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(−,−)、(+,+)、(+,−)、(−,+)四种情况,能构成完全平方公式的有2种,所以概率是12.故选:B.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式. 用到的知识点为:概率=所求情况数与总情况数之比;a 2±2ab +b 2能构成完全平方式. 9. 解:如图,由图象可知:不等式组 x <2x >a恰有3个整数解,需要满足条件:−2≤a <−1. 故选:C .首先根据不等式组得出不等式组的解集为a <x <2,再由恰好有3个整数解可得a 的取值范围.此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10. 解:根据题意得:a 2−1=0且a −1≠0, 解得:a =−1. 故选:B .根据方程的解的定义,把x =0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解.本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0. 11. 解:A 、此函数为一次函数,y 随x 的增大而减小,正确; B 、此函数为二次函数,当x <0时,y 随x 的增大而减小,错误; C 、此函数为反比例函数,在每个象限,y 随x 的增大而减小,错误; D 、此函数为正比例函数,y 随x 的增大而增大,错误. 故选:A .根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y 随x 的增大而减小的选项.本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.12. 解:设现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,由题意得 18−y =y −x y =18−x.故选:D .由弟弟的年龄是x 岁,哥哥的年龄是y 岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18−y =y −x ,列出方程组即可.此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.13. 解:过点A 作AM ⊥BC 于点M ,交DE 于点N , ∴AM ×BC =AC ×AB , ∴AM =3×45=125,∵D 、E 分别是AC 、AB 的中点, ∴DE //BC ,DE =12BC =2.5, ∴AN =MN =12AM ,∴MN =1.2,∵以DE 为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选:B.首先过点A作AM⊥BC,根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.14. 解:∵AE=AD=2,而AB=2,∴cos∠BAE=ABAE =22,∴∠BAE=45∘,∴BE=AB=2,∠DAE=45∘,∴图中阴影部分的面积=S矩形ABCD−S△ABE−S扇形EAD=2×2−12×2×2−45⋅π⋅22360=22−1−π2.故选:B.先利用三角函数求出∠BAE=45∘,则BE=AB=2,∠DAE=45∘,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD−S△ABE−S扇形EAD进行计算即可.本题考查了扇形面积的计算:阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15. 解:①根据图示知,二次函数与x轴有两个交点,所以△=b2−4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;③又对称轴x=−b2a=1,∴b2a<0,∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0);当x=−1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.16. 解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60∘,B1C1//B2C2//B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30∘,∴D1E1=C1D1sin30∘=12,则B2C2=B2E2cos30∘=33=(33)1,同理可得:B3C3=13=(33)2,故正方形A n B n C n D n的边长是:(33)n−1,则正方形A2017B2017C2017D2017的边长为:(33)2016,故选:C.利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.17. 解:一个七边形的外角和是360∘,故答案为:360∘.根据多边形的外角和等于360度即可求解.本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360∘是解题的关键.18. 解:根据题中的新定义得:原式=4+22∗(−1)=3∗(−1)=3−1−1=−2,故答案为:−2原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19. 解:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为x2+52=(x+1)2,故答案为:(x+1),x2+52=(x+1)2,设水深x尺,则芦苇长为(x+1)尺,利用勾股定理列出方程求解即可.本题考查主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20. (1)不等式的解即为函数y=−2x+b的图象在函数y=kx上方的x的取值范围.可由图象直接得到.(2)用b表示出OC和OF的长度,求出∠OCF的正切值,进而求出sin∠OCB.(3)求直线AB的解析式关键是求出b的值.这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.21. 首先连结BD,过点B作DE边上的高BF,则BF=b−a,表示出S五边形ACBED,两者相等,整理即可得证.此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.22. (1)欲求直线BC的解析式,需要求得点B、C的坐标,由抛物线解析式求得点A、B的坐标,然后根据点的对称性得到点C的坐标;然后由待定系数法来求直线方程;(2)根据抛物线解析式y =12x 2−x +2易求D (4,6),由直线y =12x +1易求点(0,1),点F (4,3).设点A 平移后的对应点为点A ′,点D 平移后的对应点为点D ′.当图象G 向下平移至点A ′与点E 重合时,点在直线BC 上方,此时t =1.当图象G 向下平移至点D ′与点F 重合时,点A ′在直线BC 下方,此时t =3.结合图象可知,符合题意的t 的取值范围是1<t ≤3.本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.解题时,利用了“数形结合”的数学思想,使抽象的问题变得直观化了. 23. 解:(1)该班级女生人数是2+5+6+5+2=20, 女生收看“两会”新闻次数的中位数是3; 故答案为:20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为1320所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x 人 则x−(1+3+6)x,解得:x =25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为1×2+2×5+3×6+4×5+5×220=3,女生收看“两会”新闻次数的方差为:2×(3−1)2+5×(3−2)2+6×(3−3)2+5(3−4)2+2(3−5)220=1310,∵2>1310,∴男生比女生的波动幅度大.(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.24. 解:(1)∵x +1≠0, ∴x ≠−1.故答案为:x ≠−1. (2)当y =xx +1=34时,x =3. 故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数y =xx +1在x <−1和x >−1上均单调递增.(1)根据分母非零即可得出x +1≠0,解之即可得出自变量x 的取值范围;(2)将y=34代入函数解析式中求出x值即可;(3)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可.本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.25. 延长BA交FD延长线于点G、作AH⊥DG,根据题意得出AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30∘,先求得AG=2AH=100cm、CG=150cm,继而由CD=12CG可得答案;由EG=AB−BE+AG=350根据EF=EG tan∠EGF可得答案.本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形,难度适中.26. 解:(1)∵AF⊥BE,∠ABE=45∘,∴AP=BP=22AB=2,∵AF,BE是△ABC的中线,∴EF//AB,EF=12AB=2,∴∠PFE=∠PEF=45∘,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF=12+22=5,∴AC=BC=25,∴a=b=25,如图2,连接EF,同理可得:EF=12×4=2,∵EF//AB,∴△PEF~△ABP,∴PFAP =PEPB=EFAB=12,在Rt△ABP中,AB=4,∠ABP=30∘,∴AP=2,PB=23,∴PF=1,PE=3,在Rt△APE和Rt△BPF中,AE=7,BF=13,∴a=213,b=27,故答案为:2,2,213,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=c sinα,PB=c cosα,由(1)同理可得,PF=12PA=c sinα2,PE=12PB=c cosα2,AE2=AP2+PE2=c2sin2α+c2cos2α4,BF2=PB2+PF2=c2sin2α4+c2cos2α,∴(b2)2=c2sin2α+c2cos2α4,(a2)2=c2sin2α4+c2cos2α,∴a24+b24=c2sin2α4+c2cos2α+c2sin2α+c2cos2α4,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF 的交点为P,∵点E、G分别是AD,CD的中点,∴EG//AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC=25,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=12AD,BF=12BC,∴AE=BF=CF=12AD=5,∵AE//BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,∠EAH=∠FCH∠AHE=∠FHCAE=CF,∴△AEH≌△CFH,∴EH=FH,∴EP,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5(5)2−EF2=16,∴AF=4.或连接F与AB的中点M,证MF垂直BP,构造出“中垂三角形”,因为AB=3,BC=1/2AD=根号5,根据上一问的结论,直接可求AF.(1)由等腰直角三角形的性质得到AP=BP=22AB=2,根据三角形中位线的性质,得到EF//AB,EF=12AB=2,再由勾股定理得到结果;(2)连接EF,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD//BC,AD=BC=25,∠EAH=∠FCH根据E,F分别是AD,BC的中点,得到AE=BF=CF=12AD=3,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.或构造出“中垂三角形”,利用(2)结论计算即可.本题考查了相似三角形的判定和性质,勾股定理,锐角三角函数,注意类比思想在本题中的应用.。
2018年河北省保定市定兴县中考数学二模试卷一、选择题(本大题共16小题,1-10小题每小题3分,11-16小题每小题3分,共42分)1.(3分)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.2.(3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1073.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)正方形ABCD中,点P是对角线AC上的任意一点(不包括端点),以P为圆心的圆与AB相切,则AD与⊙P的位置关系是()A.相离B.相切C.相交D.不确定5.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.7.(3分)如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对8.(3分)化简:(a+)(1﹣)的结果等于()A.a﹣2 B.a+2 C. D.9.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=1510.(3分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误11.(2分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm12.(2分)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>213.(2分)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣114.(2分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm15.(2分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG16.(2分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc <0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤二、填空题(共10分)17.(3分)计算:2sin30°+(﹣1)﹣2﹣|2﹣|=.18.(3分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.19.(4分)如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;…;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,…,则线段D1D2的长为,D n的长为(n为正整数).线段D n﹣1三、解答题(本大题共7小题,共68分)20.(8分)在﹣2.5、(﹣1)2、2、﹣|﹣0.5|,﹣(﹣3)中,最小的数是a,绝对值最小的数是b.(1)求(﹣b+a)的值;(2)求满足关于x的不等式bx<b﹣a的负整数解.21.(9分)为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:收集数据甲、乙两班的样本数据分别为:甲班:6 7 9 4 6 7 6 9 6 10乙班:7 8 9 7 5 7 8 5 9 5整理和描述数据规定了四个层次:9分以上(含9分)为“优秀”,8﹣9分(含8分)为“良好”,6﹣8分(含6分)为“一般”,6分以下(不含6分)为“不合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“不合格”层次所占的百分比;(2)图2中,“优秀”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是;乙班的平均数是,中位数是7;(2)从平均数和中位数看,班整体成绩更好.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“不合格”层次的共有多少人?22.(9分)连接多边形任意两个不相邻顶点的线段称为多边形的对角线.(1)对角线条数分别为、、、.(2)n边形可以有20条对角线吗?如果可以,求边数n的值;如果不可以,请说明理由.(3)若一个n边形的内角和为1800°,求它对角线的条数.23.(9分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.24.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m (m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.25.(11分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.26.(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?2018年河北省保定市定兴县中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,1-10小题每小题3分,11-16小题每小题3分,共42分)1.(3分)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.2.(3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×107【解答】解:0.00 000 069=6.9×10﹣7,故选:B.3.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.4.(3分)正方形ABCD中,点P是对角线AC上的任意一点(不包括端点),以P为圆心的圆与AB相切,则AD与⊙P的位置关系是()A.相离B.相切C.相交D.不确定【解答】解:∵点P到AD的距离等于点P到AB的距离,以P为圆心的圆与AB相切,∴AD与⊙P的位置关系是相切.故选:B.5.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.6.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选:C.7.(3分)如图,将∠BAC沿DE向∠BAC内折叠,使A D与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对【解答】解:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选:B.8.(3分)化简:(a+)(1﹣)的结果等于()A.a﹣2 B.a+2 C. D.【解答】解:•=•=a+2.故选:B.9.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【解答】解:∵x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:C.10.(3分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.11.(2分)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm【解答】解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,∴a=2.故选:A.12.(2分)正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选:B.13.(2分)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选:D.14.(2分)如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选:B.15.(2分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.则下列结论错误的是()A.∠AGD=112.5°B.四边形AEFG是菱形C.tan∠AED=2 D.BE=2OG【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片AB CD,使AD落在BD上,点A恰好与BD上的点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴A正确;根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴B正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴C错误;∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2O G2,∴BE=2OG.∴D正确.故选:C.16.(2分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤【解答】解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,故a﹣b+c>0,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故选:B.二、填空题(共10分)17.(3分)计算:2sin30°+(﹣1)﹣2﹣|2﹣|=.【解答】解:原式=2×+1﹣2+=,故答案为:18.(3分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.【解答】解:设大、小和尚各有x,y人,则可以列方程组:.故答案为:.19.(4分)如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;…;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,…,则线段D1D2的长为,D n的长为(n为正整数).线段D n﹣1【解答】解:∵△ABC是一个边长为2的等边三角形,AD0⊥BC,∴BD0=1,∠B=60°,∵D0D1⊥AB,∴∠D1D0B=30°,∴D1D0=BD0cos∠D1D0B=,同理∠D0D1D2=30°,D1D2=D1D0cos∠D0D1D2=()2=,D n的长为()n.依此类推,线段D n﹣1故答案为:;()n三、解答题(本大题共7小题,共68分)20.(8分)在﹣2.5、(﹣1)2、2、﹣|﹣0.5|,﹣(﹣3)中,最小的数是a,绝对值最小的数是b.(1)求(﹣b+a)的值;(2)求满足关于x的不等式bx<b﹣a的负整数解.【解答】解:(1)由题意得:a=﹣2.5 b=﹣0.5,∴﹣b+a=﹣(﹣0.5)+(﹣2.5)=0.5+(﹣2.5)=﹣2;(2)﹣0.5x<﹣0.5﹣(﹣2.5),﹣0.5x<2,x>﹣4,所以负整数解为:﹣3,﹣2,﹣1.21.(9分)为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:收集数据甲、乙两班的样本数据分别为:甲班:6 7 9 4 6 7 6 9 6 10乙班:7 8 9 7 5 7 8 5 9 5整理和描述数据规定了四个层次:9分以上(含9分)为“优秀”,8﹣9分(含8分)为“良好”,6﹣8分(含6分)为“一般”,6分以下(不含6分)为“不合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“不合格”层次所占的百分比;(2)图2中,“优秀”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是 6.5;乙班的平均数是7,中位数是7;(2)从平均数和中位数看,乙班整体成绩更好.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“不合格”层次的共有多少人?【解答】解:整理和描述数据(1)抽取的10人中,甲班不合格的人数为1,×100%=10%,(2)抽取的10人中,乙班优秀的人数为2,×360°=72°;分析数据(1)甲班的平均数是7,中位数是=6.5,乙班的平均数是=7,中位数是7;(2)从平均数和中位数看,乙班整体成绩更好.故答案为:(1)6.5、7;(2)乙;解决问题甲班不合格的人数约为:50×10%=5(人)乙班不合格的人数约为:40×=12(人)则5+12=17(人)答:甲、乙两班“不合格”层次的共有17人.22.(9分)连接多边形任意两个不相邻顶点的线段称为多边形的对角线.(1)对角线条数分别为2、5、9、.(2)n边形可以有20条对角线吗?如果可以,求边数n的值;如果不可以,请说明理由.(3)若一个n边形的内角和为1800°,求它对角线的条数.【解答】解:(1)设n边形的对角线条数为a n,则a4==2,a5==5,a6==9,…,a n=.故答案为:2;5;9;.(2)假设可以,根据题意得:=20,解得:n=8或n=﹣5(舍去),∴n边形可以有20条对角线,此时边数n为八.(3)∵一个n边形的内角和为1800°,∴180°×(n﹣2)=1800°,解得:n=12,∴==54.答:这个多边形有54条对角线.23.(9分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为2;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.【解答】解:(1)∵在菱形ABCD中,AC=2,BD=2,∴∠AOB=90°,OA=AC=1,BO=BD=,在Rt△AOB中,由勾股定理得:AB==2;故答案为:2;(2)①∵由(1)知,菱形ABCD的边长是2,AC=2,∴△ABC和△ACD是等边三角形,∴∠BAC=∠BAE+∠CAE=60°,∵∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),②△AEF是等边三角形,理由是:∵△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.24.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m (m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.【解答】解:(1)∵过点A(5,3),∴3=×5+m,解得m=,∴直线为y=x+,当x=1时,∴∴P(1,1);(2)设直线BP的解析式为y=ax+b根据题意,得∴直线BP的解析式为y=﹣x+,∵p(1,1),A(5,3),B(﹣3,3),∴=()2=;(3)当k<0时,反比例函数在第二象限,函数图象经过B点时,k的值最小,此时k=﹣9;当k>0时,反比例函数在第一象限,k的值最大,联立得:,消去y得:﹣x+=,整理得:x2﹣3x+2k=0,∵反比例函数与线段BD有公共点,∴△=32﹣4×1×2k≥0,解得:k≤,故当k<0时,最小值为﹣9;当k>0时,最大值为;25.(11分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.【解答】解:(1)∵BP为⊙O的切线,∴OP⊥BP,∵CD⊥BP,∴∠OPB=∠DCB=90°,∴OP∥ED;(2)在Rt△OBP中,∠OPB=90°,∠ABP=30°,∴∠POB=60°,∴∠AOP=120°.在Rt△OBP中,OP=OB,即r=(6﹣r),解得:r=2,S扇形AOP=.∵CD⊥PB,∠ABP=30°,∴∠EDB=60°,∵DE=BD,∴△EDB是等边三角形,∴BD=BE.又∵CD⊥PB,∴CD=CE.∴DE与PB互相垂直平分,∴四边形PDBE是菱形.(3)EF的长度不随r的变化而变化,且EF=3,∵AO=r、AB=6,∴BO=AB﹣AO=6﹣r,∵BP为⊙O的切线,∴∠BPO=90°,∵直线CD垂直平分PB,∴∠DCB=∠OPB=90°,且BC=PC,∵∠DBC=∠OBP,∴△DBC∽△OBP,∴===,则CD=OP=r、BD=OB=(6﹣r)=3﹣,∵DB=DE=3﹣,∴CE=DE﹣CD=3﹣r,∵OF⊥EF,∴∠OFC=∠FCP=∠CPO=90°,∴四边形OFCP为矩形,∴CF=OP=r,则EF=CF+CE=r+3﹣r=3,即EF的长度为定值,EF=3.26.(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?【解答】解:(1)由表可知,y是关于x的一次函数,设y=kx+b,将x=110、y=50,x=115、y=45代入,得:,解得:,∴y=﹣x+160;(2)由已知可得:50×110=50a+3×100+200,解得:a=100,设每天的毛利润为W,则W=(x﹣100)y﹣2×100﹣200=(x﹣100)(﹣x+160)﹣2×100﹣200=﹣x2+260x﹣16400=﹣(x﹣130)2+500,∴当x=130时,W取得最大值,最大值为500,答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大利润为500元;(3)设需t天能还清借款,则500t≥50000+0.0002×50000t解得:t≥102,∵t为整数,∴t的最小值为103,答:该店最少需要103天才能还清集资款.。
2018年河北省保定市中考数学二模试卷(含解析)一、选做题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念2.(3分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2C.x<﹣2D.x≠﹣23.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元4.(3分)如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π5.(3分)估计﹣÷2的运算结果在哪两个整数之间()A.0和1B.1和2C.2和3D.3和46.(3分)一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A.4B.5C.10D.117.(3分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.8.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1B.C.D.9.(3分)如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣110.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.11.(2分)下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1B.y=2x2(x≥0)C.D.y=x+112.(2分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.13.(2分)如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定14.(2分)如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A.B.C.D.15.(2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C.4个D.5个16.(2分)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.()2016B.()2017C.()2016D.()2017二、填空题(本大题有3个小题,共10分.17〜18小题各3分;19小题有2个空,每空2分)17.(3分)一个七边形的外角和是.18.(3分)定义一种新运算:x*y=,如2*l==3,则(4*2)*(﹣1)=.19.(4分)我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.21.(9分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.22.(9分)在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A 关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.23.(9分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体多某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量,根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.24.(10分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)列出y与x的几组对应值.请直接写出m的值,m=;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质.25.(11分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)26.(12分)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.2018年河北省保定市中考数学二模试卷参考答案与试题解析一、选做题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念【分析】根据中心对称图形的概念求解.【解答】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.2.(3分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2C.x<﹣2D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.3.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元【分析】设这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的进价为x元,根据题意得:200×0.5﹣x=20,解得:x=80.答:这件商品的进价为80元.故选:C.4.(3分)如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选:B.5.(3分)估计﹣÷2的运算结果在哪两个整数之间()A.0和1B.1和2C.2和3D.3和4【分析】先估算出的大致范围,然后再计算出÷2的大小,从而可得到问题的答案.【解答】解:25<32<36,∴5<<6.原式=﹣4÷2=﹣2.∴3<﹣÷2<4.故选:D.6.(3分)一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A.4B.5C.10D.11【分析】首先根据平均数算出x的值,再根据众数的定义:一组数据中出现次数最多的数据叫做众数,可得答案.【解答】解:(4+x+5+10+11)÷5=7,解得:x=5,根据众数的定义可得这组数据的众数是5.故选:B.7.(3分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.【分析】等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.【解答】解:设身高GE=h,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴=,∴=,∴y=x+,∵a、h、l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选:A.8.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1B.C.D.【分析】此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.9.(3分)如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣1【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选:C.10.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.【分析】根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.11.(2分)下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1B.y=2x2(x≥0)C.D.y=x+1【分析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.【解答】解:A、此函数为一次函数,y随x的增大而减小,正确;B、此函数为二次函数,当x<0时,y随x的增大而减小,错误;C、此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D、此函数为正比例函数,y随x的增大而增大,错误.故选:A.12.(2分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【分析】由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.13.(2分)如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定【分析】首先过点A作AM⊥BC,根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2,∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选:B.14.(2分)如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A.B.C.D.【分析】先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【解答】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠DAE=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故选:B.15.(2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C.4个D.5个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:①根据图示知,二次函数与x轴有两个交点,所以△=b2﹣4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;③又对称轴x=﹣=1,∴<0,∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选:B.16.(2分)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.()2016B.()2017C.()2016D.()2017【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n∁n D n的边长是:()n﹣1,则正方形A2017B2017C2017D2017的边长为:()2016,故选:C.二、填空题(本大题有3个小题,共10分.17〜18小题各3分;19小题有2个空,每空2分)17.(3分)一个七边形的外角和是360°.【分析】根据多边形的外角和等于360度即可求解.【解答】解:一个七边形的外角和是360°,故答案为:360°.18.(3分)定义一种新运算:x*y=,如2*l==3,则(4*2)*(﹣1)=﹣2.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=*(﹣1)=3*(﹣1)==﹣2,故答案为:﹣219.(4分)我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为x2+52=(x+1)2,.【分析】设水深x尺,则芦苇长为(x+1)尺,利用勾股定理列出方程求解即可.【解答】解:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为x2+52=(x+1)2,故答案为:(x+1),x2+52=(x+1)2,三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.【分析】(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围.可由图象直接得到.(2)用b表示出OC和OF的长度,求出∠OCF的正切值,进而求出sin∠OCB.(3)求直线AB的解析式关键是求出b的值.【解答】解:(1)如图:由图象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)设直线AB和y轴的交点为F.当y=0时,x=,即OC=﹣当x=0时,y=b,即OF=﹣b∴tan∠OCB==2∴sin∠OCB==.(3)过A作AD⊥x轴,过B作BE⊥x轴则AC=AD=BC=∴AC﹣BC=(y A+y B)=(x A+x B)=﹣5,又﹣2x+b=所以﹣2x2+bx﹣k=0∴∴×b=﹣5∴b=∴y=﹣2x﹣2.21.(9分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.22.(9分)在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A 关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【分析】(1)欲求直线BC的解析式,需要求得点B、C的坐标,由抛物线解析式求得点A、B的坐标,然后根据点的对称性得到点C的坐标;然后由待定系数法来求直线方程;(2)根据抛物线解析式y=﹣x+2易求D(4,6),由直线y=x+1易求点(0,1),点F(4,3).设点A平移后的对应点为点A′,点D平移后的对应点为点D′.当图象G向下平移至点A′与点E重合时,点D'在直线BC上方,此时t=1.当图象G向下平移至点D′与点F重合时,点A′在直线BC 下方,此时t=3.结合图象可知,符合题意的t的取值范围是1<t≤3.【解答】解:(1)∵抛物线与y轴交于点A∴点A的坐标为(0,2).∵,∴抛物线的对称轴为直线x=1,顶点B的坐标为(1,).又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为y=kx+b.∵直线BC经过点B(1,)和点C(2,2),∴解得∴直线BC的解析式为:y=x+1;(2)∵抛物线y=﹣x+2中,当x=4时,y=6,∴点D的坐标为(4,6).∵直线y=x+1中,当x=0时,y=1.当x=4时,y=3,∴如图,点E的坐标为(0,1),点F的坐标为(4,3).设点A平移后的对应点为点A′,点D平移后的对应点为点D′.当图象G向下平移至点A′与点E重合时,点D'在直线BC上方,此时t=1.当图象G向下平移至点D′与点F重合时,点A′在直线BC下方,此时t=3.结合图象可知,符合题意的t的取值范围是1<t≤3.23.(9分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是20,女生收看“两会”新闻次数的中位数是3;(2)对于某个群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体多某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量,根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差【解答】解:(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3;故答案为:20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25.答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为=3,女生收看“两会”新闻次数的方差为:=,∵2>,∴男生比女生的波动幅度大.24.(10分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠﹣1;(2)列出y与x的几组对应值.请直接写出m的值,m=3;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质.【分析】(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(3)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可.【解答】解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.25.(11分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【分析】延长BA交FD延长线于点G、作AH⊥DG,根据题意得出AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°,先求得AG=2AH=100cm、CG=150cm,继而由CD=CG可得答案;由EG =AB﹣BE+AG=350根据EF=EG tan∠EGF可得答案.【解答】解:如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H,由题意知,AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°,在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=CG=75cm;∵EG=AB﹣BE+AG=300﹣50+100=350(cm),∴在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×=(cm),所以支撑角钢CD的长为75cm,EF的长为cm.26.(12分)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=2,b=2.如图2,当∠ABE=30°,c=4时,a=2,b=2.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF∥AB,EF=AB=,再由勾股定理得到结果;(2)连接EF,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD 的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,AD=BC=2,∠EAH =∠FCH根据E,F分别是AD,BC的中点,得到AE=BF=CF=AD=,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.或构造出“中垂三角形”,利用(2)结论计算即可.【解答】解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=c sinα,PB=c cosα,由(1)同理可得,PF=P A=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EP,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.或连接F与AB的中点M,证MF垂直BP,构造出“中垂三角形”,因为AB=3,BC=1/2AD=根号5,根据上一问的结论,直接可求AF.。
2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2018年保定市中考数学预测试题及答案(试卷满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.数a 的相反数是( )A .|a|B .C .﹣aD .2.下列运算正确的是( ) C A .a•a 3=a 3B .(ab )3=a 3bC .(a 3)2=a 6D .a 8÷a 4=a 23.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是( )A .4B .5C .6D .74.在下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.如图,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB =6,AC =4,则四边形AEDF 的周长是( )A .10B .20C .30D .406.一元二次方程2x 2-3x +1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根7. 如右图,⊙O 的半径OD⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E , 连接EC.若AB =8,CD =2,则sin ∠ECB 为( ) A. 35 B. 31313 C. 23 D. 213138.对于二次函数y=(x+1)2﹣3,下列说法正确的是( )D A .图象开口方向向下B .图象与y 轴的交点坐标是(0,﹣3)C .图象的顶点坐标为(1,﹣3)D .抛物线在x >﹣1的部分是上升的9.不等式组的解集在数轴上可表示为( )BA .B .C .D .10. 如图,一次函数y=x+3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论: ①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC=BD .其中正确的结论是( )C A .①② B .①②③ C .①②③④ D .②③④二、填空题(本题共6题,每小题4分,共24分)11.PM 2.5造成的损失巨大,治理的花费更大.我国每年因为空气污染造成的经济损失高达约5659亿元.将5659亿元用科学计数法表示为 亿元.12.已知6,3,m n a a ==则2m n a += .13.直线l 1∥l 2,一块含45°角的直角三角板如右图放置,∠1=85°,则∠2= .14.若式子x -2在实数范围内有意义,则x 的取值范围是 . 15.如右图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=15°,AB=4cm ,则⊙O 半径为 cm .16.观察下列等式:1×2=31×(1×2×3﹣0×1×2) 2×3=31×(2×3×4﹣1×2×3)3×4=31×(3×4×5﹣2×3×4)…计算:3×[1×2+2×3+3×4+…+n(n+1)]= ___ ____ _ 三、解答题(一)(本题共3题,每小题6分,共18分)17.(1)﹣0﹣4cos45°+(﹣3)218.解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2), x -12<x 3,并写出不等式组的整数解.19.如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:,,结果保留整数.)四、解答题(二)(本大题3小题,每小题8分,共24分)20.若中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a= %;C 级对应的圆心角为 度. (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名?21.一次函数y =kx +b 的图象与两坐标轴分别交于A (2,0),B (0,-1)两点.(1)求k 、b ;(2)P 为该一次函数图象上一点,过P 作PQ ⊥x 轴,垂足为Q .若S △PAQ =4,求点P 的坐标. 22.(1)问题发现如图1,△ABC 和△ADE 均为等边三角形,点D 在边BC 上,连接CE .请填空: ①∠ACE 的度数为 ;②线段AC 、CD 、CE 之间的数量关系为 . (2)拓展探究如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC=∠DAE=90°,点D 在边BC 上,连接CE .请 判断∠ACE 的度数及线段AC 、CD 、CE 之间的数量关系,并说明理由. (3)解决问题如图3,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC 与BD 交于点E ,请直接写出线段AC 的长度.五、解答题(三)(本大题2小题,每小题12分,共24分)23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 与边AB 、BC 分别交于点D 、E .过E 的直线与⊙O 相切,与AC 的延长线交于点G ,与AB 交于点F . (1)求证:△BDE 为等腰三角形; (2)求证:GF⊥AB;(3)若⊙O 半径为3,DF =1,求CG 的长.B24.如图,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平 行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式, 并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).参考答案:一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.C2.C3.B4.B5.A6.B7.B8.D9.B 10.C二、填空题(本题共6题,每小题4分,共24分)11. 5.659×103 12. 54 13.40° 14. x≥2 15. 4 16. n(n+1)(n+2)三、解答题(一)(本题共3题,每小题6分,共18分)17.解:(1)﹣0﹣4cos45°+(﹣3)2===8;18.解:解不等式①,得x≥-1,解不等式②,得x<3;∴不等式的解集是-1≤x<3不等式组的整数解是-1,0,1,2.19. 解:如图,过点A作AE⊥MN于E,过点C作CF⊥MN于F,则EF=AB﹣CD=1.7﹣1.5=0.2(m),在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.设AE=ME=xm,则MF=(x+0.2)m,FC=(28﹣x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF•tan∠MCF,∴x+0.2=(28﹣x),解得x≈9.7,∴MN=ME+EN=9.7+1.7≈11米.答:旗杆MN的高度约为11米.四、解答题(二)(本大题3小题,每小题8分,共24分)20.解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;扇形统计图中C 级对应的圆心角为×360°=72°;故答案为:50,24,72; (2)补全条形统计图如图.(3)∵2000×=160名∴若该校共有2000名学生,估计该校D 级学生有160名.21. 解:(1)由A (2,0)B (0,-1)得⎩⎨⎧0=2k +b ,-1=b .∴ ⎩⎪⎨⎪⎧k =12,b =-1.(2)由y =12x -1,可设P 1(x ,12x -1), ∴ AQ =x -2,P 1Q 1=12x -1. ∴ (x -2)(12x -1)=4×2. x 1=-2(舍),x 2=6. ∴ P 1(6,2). ∵ △P 2Q 2A ≌△P 1Q 1A , ∴ A Q 2=AQ 1=4. ∴ OQ =2. ∴ P 2(-2,-2).∴ P 1(6,2),P 2(-2,-2).22.解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF 是等腰直角三角形, 由(2)得: AC=BC+CD ,∴AC===.五、解答题(三)(本大题2小题,每小题12分,共24分) 23.(1)∵四边形ACED 是⊙O 的内接四边形,∴∠ACB+∠ADE=180°。