现代计算机系统以存储器为中心3.1存储系统原理3.2虚拟存
- 格式:ppt
- 大小:345.50 KB
- 文档页数:46
虚拟存储器的基本原理虚拟存储器是一种计算机系统的组成部分,它扩展了计算机的主存储器,使得计算机可以同时执行更多的程序,提高了计算机的性能和效率。
虚拟存储器的基本原理包括内存管理、地址转换、页面置换和磁盘交换等。
首先,虚拟存储器的内存管理是通过将主存划分成固定大小的块,称为页(Page),与此同时,将磁盘划分成与页大小相等的块,称为页框(Page Frame)。
当一个程序被加载到内存时,将会依次将程序的页放入内存的页框中。
这种将程序划分为页的方式称为分页管理。
虚拟存储器的核心概念是虚拟地址和物理地址的转换。
每个进程都有自己的虚拟地址空间,虚拟地址是由进程所见到的地址,而不是物理内存的地址。
虚拟地址由两部分组成,即页号和页内偏移。
页号表示进程中的某个页面,页内偏移表示页面中的具体位置。
虚拟地址被通过一种页表机制转换为物理地址。
页面置换是虚拟存储器中重要的一环。
由于程序的页可能无法一次加载到内存中,因此当一个程序在执行过程中需要访问一个尚未调入内存的页面时,就会发生缺页中断(Page Fault)。
操作系统会根据缺页中断处理程序来选择进行页面置换。
常用的页面置换算法有最佳置换算法(OPT)、先进先出置换算法(FIFO)、最近最久未使用置换算法(LRU)等。
磁盘交换是虚拟存储器中的重要机制。
当物理内存不足以容纳所有的进程或者进程所需的数据时,操作系统会将一部分进程或者数据从内存交换到磁盘上,以释放物理内存空间给其他进程使用。
这种将页面从内存交换到磁盘的过程称为页面换出(Page Out),相反的过程称为页面换入(Page In)。
通过磁盘交换,计算机可以在有限的物理内存下运行更多的任务。
虚拟存储器的使用带来了诸多优势。
首先,它能够扩展主存的容量,使得计算机可以执行更多的程序。
其次,虚拟存储器可以提高内存的利用率,避免内存浪费。
同时,它允许多个进程共享同一份代码,减少内存占用。
另外,虚拟存储器还可以实现对进程的保护和隔离,使得不同的进程在执行过程中不会相互干扰。
计算机基础知识什么是计算机存储系统原理计算机基础知识:“计算机存储系统原理”计算机存储系统是计算机的重要组成部分,负责存储和读取数据以及程序。
在计算机基础知识中,了解计算机存储系统的原理对我们理解计算机的工作原理至关重要。
本文将介绍计算机存储系统的原理,包括存储层次结构、存储器类型和工作原理。
一、存储层次结构计算机存储系统按照速度和容量的不同可以分为多个层次,包括寄存器、高速缓存、主存、辅助存储器等。
存储层次结构的设计遵循着局部性原理,即程序和数据的访问模式倾向于在时间和空间上的局部性。
这样设计可以提高计算机的运行效率和存储资源的利用率。
1. 寄存器寄存器是位于CPU内部的最快速的存储器,用于存放CPU需要快速访问的数据和指令。
寄存器的容量非常有限,但由于其接近于CPU,可以在一个时钟周期内完成存储和读取操作,因此被广泛用于高速缓存的构建。
2. 高速缓存高速缓存是位于CPU和主存之间的一级缓存存储器,用于存放主存中频繁访问的数据和指令。
高速缓存具有快速的访问速度和较大的容量,它根据局部性原理将主存中的数据块复制到自己的存储空间中,以便更快地响应CPU的访问请求。
3. 主存主存是计算机存储系统中最大的存储器,用于存放运行中的程序和数据。
主存的容量相对较大,但相对于CPU的访问速度较慢。
主存是计算机与外部设备交换数据的主要通道,CPU通过访问主存来读取和写入数据。
4. 辅助存储器辅助存储器是计算机存储系统中容量最大的存储器,主要用于长期存储大量的数据和程序。
辅助存储器的访问速度相对较慢,但容量非常大,如硬盘、光盘和闪存等。
辅助存储器的特点是数据可以永久保存,即使计算机断电也能保持数据的完整性。
二、存储器类型计算机存储器按照存储介质的不同可以分为多种类型,包括寄存器、随机存取存储器(RAM)、只读存储器(ROM)和闪存等。
1. 寄存器寄存器是CPU内部的存储器,用于暂时存放数据和指令。
寄存器的容量非常有限,但由于其速度快,被用于存放当前执行的指令和数据。
存储器的工作原理引言概述:存储器是计算机系统中至关重要的组成部份,它用于存储和检索数据。
了解存储器的工作原理对于理解计算机系统的运行机制至关重要。
本文将详细介绍存储器的工作原理,包括存储器的分类、存储单元的结构和存储器的操作原理。
一、存储器的分类1.1 主存储器主存储器是计算机系统中最重要的存储器之一。
它用于存储当前正在执行的程序和数据。
主存储器通常是由一系列存储单元组成的,每一个存储单元都有一个惟一的地址。
主存储器可以按字节、字、块等不同的粒度进行访问。
1.2 辅助存储器辅助存储器是主存储器之外的存储器,用于长期存储程序和数据。
辅助存储器的容量通常比主存储器大得多,但其访问速度较慢。
常见的辅助存储器包括硬盘驱动器、光盘和闪存等。
1.3 高速缓存高速缓存是位于主存储器和中央处理器(CPU)之间的存储器层次结构中的一层。
它用于存储最近被访问的数据和指令,以提高计算机系统的性能。
高速缓存的容量较小,但其访问速度非常快。
二、存储单元的结构2.1 存储单元的基本组成存储单元是存储器中的最小单元,用于存储一个二进制位(0或者1)。
它通常由一个触发器或者闪存电路组成。
触发器是一种能够存储和保持数据的电路,而闪存电路是一种非易失性存储器,能够在断电后保持数据。
2.2 存储单元的编址方式存储单元可以通过地址进行访问。
常见的编址方式包括直接编址、间接编址和相对编址。
直接编址是指通过存储单元的惟一地址直接访问数据。
间接编址是指通过一个地址指针来访问数据。
相对编址是指通过相对于当前指令地址的偏移量来访问数据。
2.3 存储单元的组织方式存储单元可以按照不同的组织方式进行罗列。
常见的组织方式包括线性组织、矩阵组织和多维组织。
线性组织是指存储单元按照线性序列进行罗列。
矩阵组织是指存储单元按矩阵形式进行罗列。
多维组织是指存储单元按多维数组进行罗列。
三、存储器的操作原理3.1 存储器的读取操作存储器的读取操作是指从存储单元中检索数据。
现代计算机的原理与发展随着科技的不断进步,计算机技术已经成为现代社会不可或缺的一部分。
现代计算机可以追溯到20世纪50年代,经过多年的发展,已经取得了巨大的成就。
本文将介绍现代计算机的基本原理和其发展历程。
一、计算机的基本原理1.1 二进制系统现代计算机采用的是二进制系统,在计算机中,所有的信息都用0和1表示。
二进制系统使计算机能够高效地存储和处理大量的数据。
1.2 中央处理器(CPU)中央处理器是计算机的核心部件,负责执行指令并控制其他硬件设备。
它由控制单元和算术逻辑单元组成,通过指令的解码和执行,完成计算机的各种操作。
1.3 存储器存储器用于存储计算机程序和数据。
根据存取速度和容量的不同,分为内存和外存。
内存主要用于暂时存储正在执行的程序和数据,而外存用于永久存储更大量的数据。
1.4 输入和输出设备输入设备用于向计算机输入数据和命令,常见的输入设备包括键盘、鼠标和扫描仪。
输出设备用于显示计算机处理结果,例如显示器和打印机。
二、现代计算机的发展历程2.1 第一代计算机第一代计算机出现在20世纪40年代末到50年代初,它们采用真空管作为主要的电子元件。
这些计算机庞大、体积庞大,功耗高,性能有限。
代表性的第一代计算机是英国的ENIAC和美国的UNIVAC。
2.2 第二代计算机第二代计算机出现在20世纪50年代末到60年代末,采用了晶体管代替真空管。
晶体管的体积更小、功耗更低,使得计算机速度更快、体积更小。
第二代计算机代表性的有IBM 700系列和DEC PDP。
2.3 第三代计算机第三代计算机出现在20世纪60年代末到70年代末,采用了集成电路技术。
集成电路使得数千个晶体管集成在一个芯片上,计算机的性能进一步提升。
此时出现了个人计算机,如IBM PC和苹果II。
2.4 第四代计算机第四代计算机出现在20世纪70年代末到90年代末,采用了大规模集成电路技术。
计算机的体积大幅缩小,价格逐渐下降。
此时的计算机已经具备了图形用户界面和网络功能,例如微软的Windows系统和互联网的兴起。
第6章计算机的存储系统现代计算机采用程序控制方式工作,因此,用来存放程序的存储系统是计算机的重要组成部分。
存储器包括内存储器和外存储器。
内存储器包括主存储器和高速缓冲存储器,外存储器即辅助存储器。
主存储器简称主存,它位于主机内部。
本章介绍计算机的存储系统,包括主存储器的基本组成、层次结构和工作原理,高速缓冲存储器的工作原理,以及各类外存储器。
6.1 存储器与存储系统概述6.1.1 存储器的作用现代计算机都是以存储器为中心的计算机,存储器处于全机的中心地位。
存储器的作用可归纳为:⑴存放程序和数据。
计算机执行的程序、程序运行所需要的数据都是存放在存储器中的。
⑵现代计算机可以配置的输入输出设备越来越多,数据传送速度不断加快,并且多数采用直接存储器存取(DMA)方式和输入输出通道技术,与存储器直接交换数据而不通过CPU。
⑶共享存储器的多处理器计算机的出现,使得可利用存储器来存放共享数据,并实现各处理器之间的通信,更加强了存储器作为整个计算机系统中心的作用。
6.1.2 存储器分类⒈按存取方式分类⑴随机存取存储器RAM(Random Access Memory)特点:存储器中任何一个存储单元都能由CPU或I/O设备随机存取,且存取时间与存取单元的物理位置无关。
用途:常用作主存或高速缓存。
⑵只读存储器ROM(Read-Only Memory)特点:存储器的内容只能读出而不能写入。
用途:常用来存放固定不变的系统程序。
作为固定存储,故又叫“固存”。
随着用户要求的提高,只读存储器产品从ROM→可编程只读存储器PROM→光可擦除可编程只读存储器EPROM→电可擦除可编程的只读存储器EEPROM,为用户方便地存入和改写内容提供了物质条件。
⑶顺序存取存储器SRAM特点:存储器中存储的信息(字或者记录块),完全按顺序进行存放或读出,在信息载体上没有惟一对应的地址号,访问指定信息所花费的时间和信息所在存储单元的物理位置密切相关。
一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。
3.指令和数据均用二进制数表示。
4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放。
通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。
6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。
二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。
2.存储器用来存放数据和程序。
3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。
5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。
计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。
由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。
把输入设备与输出设备简称为I/O设备。
现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。
CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。
主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。
另一类称为辅助存储器,简称辅存,又称外村。
算术逻辑单元简称算逻部件,用来完成算术逻辑运算。
控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。
ALU和CU是CPU的核心部件。
I/O设备也受CU控制,用来完成相应的输入输出操作。
计算机系统虚拟存储基础知识计算机系统中,虚拟存储是一项重要的技术,用于解决内存不足的问题。
本文将介绍计算机系统虚拟存储的基础知识,并探讨其原理、优点以及在实际应用中的具体应用。
一、虚拟存储的定义与原理虚拟存储是一种计算机系统中的存储管理技术,它允许程序使用比实际内存容量更大的存储空间。
在虚拟存储中,物理内存被划分成固定大小的块称为页,而程序则被划分成同样大小的块称为页框或页面。
通过将物理内存中的页面映射到磁盘上的虚拟存储空间,操作系统可以在程序运行时动态地将其加载到内存中。
虚拟存储的原理基于页表,它记录了页面在磁盘上的位置以及在内存中的映射关系。
当程序访问某个页面时,操作系统会首先查找页表,如果发现该页面已经在内存中,则直接访问;如果该页面不在内存中,则操作系统会将其从磁盘上加载到内存,并更新页表。
通过这种机制,虚拟存储可以将磁盘上的数据作为辅助存储器,扩展实际内存的容量。
二、虚拟存储的优点1. 提高系统的可用性:虚拟存储允许程序使用比实际内存容量更大的存储空间,减少了内存耗尽导致系统崩溃的风险。
2. 简化程序设计:由于虚拟存储为每个程序提供了一块连续的内存空间,程序员无需关注底层内存管理,可以更加专注于程序的逻辑设计。
3. 提高内存利用率:虚拟存储可以根据程序的需要,动态地将页面加载到内存中,减少了内存空间的浪费。
三、虚拟存储的具体应用1. 多任务操作系统:虚拟存储使得多个程序可以同时运行,每个程序都有自己的虚拟地址空间,相互之间不会干扰。
2. 虚拟化技术:虚拟存储是实现虚拟化技术的基础,通过为每个虚拟机提供独立的虚拟地址空间,可以实现多个虚拟机在同一台物理机上同时运行。
3. 内存管理:虚拟存储使得操作系统可以更加高效地管理内存,包括页面置换、内存回收等操作。
四、虚拟存储的实现方式虚拟存储可以通过多种方式来实现,其中最常见的是分页式虚拟存储和分段式虚拟存储。
1. 分页式虚拟存储:将物理内存和虚拟内存都划分成固定大小的块(页),通过页表将这些块进行映射。