热点难点微专题十二数列中的存在性问题
- 格式:ppt
- 大小:634.50 KB
- 文档页数:41
2019高考数学复习方法总结:浅谈求解数列通项问题中存在的问题对于很多同学而言,每次拿到数列通项公式,求解问题时往往都是一个头两个大,数列通项公式的求解问题时中学数列中一类常见和重要的题型,也是高考热点,解法层出不穷但也有章可循,很多的数列题型并不是像一些同学那样第一眼拿到题目就无目的方向去套公式求解,认为这样做就可以轻易得出答案的,所以一旦几次尝试之后假如还是没有得出答案,就会导致很多同学因此而产生对求通项公式的畏难和消极心情。
通过对这一段时间对同学们在数列方面提问的问题的总结,大致可以得出以下的这些问题:数列通项公式的求解,面对常规数列的时候,同学们都会根据基本公式求出数列的通项公式。
而当数列形式稍加变形不是根据正常形式给出时,同学们往往变得手足无措。
究其根本,部分同学是对于基本学问点驾驭不牢靠所致。
但也有一部分同学是被自己的思维方法所困住了,只是生搬硬套课本上面的学问点,而没有细致去思索更深层次的问题,所以造成了很多同学表示看不懂数列是什么形式的现象,然而面对这一类数列题型并不是通过公式就可以将通项公式给出的,这个时候就须要我们把题目抽丝剥茧,一步一步的解开题目设置的重重陷阱,而不是一味的想着根据原来的套路去套答案,那样子只会把自己越套越糊涂。
所以面对这个问题同学们不妨转化为通过求出相干数列的方式间接求解数列,采纳曲线救国的方式去求解数列的通项公式。
苏霍姆林斯基说过:"懂得还不等于己知,理解还不等于学问,为了取得更坚固的学问.还必需思索。
"因此最重要的是同学们对于问题的思索,是在自己对于问题求解的过程中的探究过程的思索,假如只是盲目的刷题而没有对于自己的学问点积累状况的总结和反思,那就只是会做了这道题而已,下一次遇到一个经过变形的类似的题目是仍旧还是会困扰着你,反映出来的状况就是很多同学拿着同一个题目的变式来请教老师,而当老师点拨之后总是会发觉其实那道题只不过换了一张脸(形式)而已。
例说数列存在性问题的求解策略
开放型探索性问题是近几年高考中出现的能力考查
题型之一.而数列中探究常数的存在性,更是频频出现在当今高考试题之中.原因是:一方面此类问题常以高中代数的主体内容.函数、方程、不等式、数列为载体,在知识的交汇处,考查学生综合运用知识的能力;另一方面,求解此类问题必须以科学的思维方法作指导,抓住特殊与一般,优算与精确,有限与无限等关系加以转化,才能获得探索的结果,因而对学生的综合素质与能力提出了较高的要求.下面举例说明求解此类问题的一些策略.
1从特殊入手,再作一般证明
由于常数具有不变性,因此通过数列中的特殊项或项数,即可估算出常数的值,而对于一般性,只需加以验证,就可以获得问题的解决.
例1是否存在这样的等差数列{a?n},使它的首项为1,公差不为零,且其前n项和与其后2n项的和的比值对于任意n∈N?*恒等于常数?若存在求出数列{a?n}的通项公式及常数的值,若不存在,说明理由.
“本文中所涉及到的图表、注解、公式等内容请以PDF
格式阅读原文”
本文为全文原貌未安装PDF浏览器用户请先下载安装原版全文。
数列中的存在性问题数列中的存在性问题一般转化为求不定方程正整数解的问题,往往涉及数论、函数、例题:已知a n=2n,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等差数列?并说明理由.变式1已知a n=2n,是否存在三个互不相等正整数p,q,r,且p,q,r成等差数列,使得a p-1,a q-1,a r-1成等比数列?并说明理由.变式2已知a n=n+2,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等比数列?并说明理由.串讲1已知数列是各项均不为0的等差数列,S n 为其前n 项和,且满足a n 2=S 2n -1,令b n =1a n ·a n +1,数列{b n }的前n 项和{b n }为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n(1<m<n),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由.串讲2已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n+1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.(2018·无锡期末)已知数列{a n }满足⎝⎛⎭⎫1-1a 1⎝⎛⎭⎫1-1a 2…⎝⎛⎭⎫1-1a n =1a n,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,求正整数p ,q 的值;(3)是否存在k ∈N *,使得a k a k +1+16为数列{a n }中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.(2018·扬州期末)已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a n 2+a n ,数列{b n }满足b 1=12,2b n +1=b n +b na n.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =b n +2S n,求和c 1+c 2+…+c n ;(3)是否存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,请说明理由.答案:(1)a n =n ,b n =n 2n ;(2)12-1(n +1)2n +1;(3)存在,p =1,q =3,r =4.或p =2m +1-m -1,q =2m +1-m ,r =2m +1.解析:(1)2S n =a n 2+a n ①,2S n +1=a n +12+a n +1②,②-①得2a n +1=a n +12-a n 2+a n +1-a n ,即(a n +1+a n )(a n +1-a n -1)=0.1分因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1,所以{a n }是等差数列,其中公差为1,2分在2S n =a n 2+a n 中,令n =1,得a 1=1,所以a n =n ,由2b n +1=b n +b n a n 得b n +1n +1=12·b nn,所以数列⎩⎨⎧⎭⎬⎫b n n是等比数列,其中首项为12,公比为12,所以b n n =⎝⎛⎭⎫12n ,即b n =n2n .(注:也可累乘求{b n }的通项.)3分(2)c n =b n +2S n =n +2(n 2+n )2n +1,裂项得c n =1n ·2n -1(n +1)2n +1,所以c 1+c 2+…+c n =12-1(n +1)2n +1.3分(3)假设存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列,则b p +b r =2b q ,即p2p+r 2r =2q 2q , 因为b n +1-b n =n +12n +1-n 2n =1-n 2n +1,所以数列{b n }从第二项起单调递减,当p =1时,12+r2r=2q2q , 若q =2,则r 2r =12,此时无解;7分若q =3,则r 2r =14,因为{b n }从第二项起递减,故r =4,所以p =1,q =3,r =4符合要求,若q ≥4,则b 1b q ≥b 1b 4≥2,即b 1≥2b q ,不符合要求,此时无解;9分 当p ≥2时,一定有q -p =1,否则若q -p ≥2,则b p b q ≥b p b p +2=4p p +2=41+2p ≥2,即b p ≥2b q ,矛盾,11分所以q -p =1,此时r 2r =12p ,令r -p =m +1,则r =2m +1,所以p =2m +1-m -1,q =2m+1-m ,13分综上得,存在p =1,q =3,r =4或p =2m +1-m -1,q =2m +1-m ,r =2m +1满足要求.14分例题答案:略.解法1假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2p ,得2q +1-p =1+2r -p,因为p ,q ,r 是正整数,且p<q<r ,所以q +1-p ,r -p 都是正整数,所以2q +1-p ,2r -p 都是偶数,所以2r -p +1是奇数,所以2q +1-p=1+2r -p不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.解法2假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2q,得2=2p -q+2r -q=12q -p+2r -q,所以2-2r -q=12q -p,因为p ,q ,r 是正整数,且p<q<r ,所以2q -p,2r -q都是正整数,所以12q -p 是真分数,所以2-2r -q=12q -p 不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.解法3假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2q得2=2p -q+2r -q=12q -p +2r -q ,所以2-2r -q=12q -p ,因为p ,q ,r 是正整数,且p<q<r ,所以r -q≥1,q -p>0,所以2-2r -q≤0,12q -p>0.所以2-2r -q=12q -p 不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.变式联想变式1答案:不存在.解析:∵p,q ,r 成等差数列,∴p +r =2q.假设a p -1,a q -1,a r -1成等比数列,则(a p -1)(a r -1)=(a q -1)2,即(2p -1)(2r -1)=(2q -1)2,化简得2p +2r =2×2q.(*)又因为p ,q ,r 成等差数列,因为p≠r,所以2p+2r>22p×2r=2×2q,这与(*)式矛盾,故假设不成立.所以a p -1,a q -1,a r -1不是等比数列.变式2答案:不存在. 解析:假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等比数列,所以(q +2)2=(p+2)(r +2).所以(q 2-pr)+(2q -p -r)2=0.因为p ,q ,r 都是正整数.所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,消去q 化简可得p =r ,这与p<q<r 矛盾.所以不存在正整数p ,q ,r(p<q<r),使得a p ,a q ,a r 成等比数列.说明:在处理多元方程整数解时,主要考虑因素是等式两边的“范围”是否一致,比如:正数与负数,有理数与无理数,整数与分数,奇数与偶数,等得到矛盾,进而判断方程无解;也根据等式一侧范围来限定另一侧范围,进而得到整数方程的解.串讲激活串讲1答案:(1)a n =2n -1;T n =n2n +1; (2)m =2,n =12.解析:(1)因为{a n }是等差数列,由a n 2=S 2n -1=(a 1+a 2n -1)(2n -1)2=(2n -1)a n .又因为a n ≠0,所以a n =2n -1.由b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以T n =12(1-13+13-15+…+12n -1-12n +1)=n2n +1. (2)由(1)知,T n =n 2n +1.所以T 1=13,T m =m 2m +1,T n =n 2n +1.若T 1,T m ,T n 成等比数列,则(m 2m +1)2= 13(n 2n +1),即m 24m 2+4m +1=n 6n +3. 解法1:由m 24m 2+4m +1=n 6n +3,可得3n=-2m 2+4m +1m 2,所以-2m 2+4m +1>0,从而1-62<m<1+62,又m∈N *,且m >1,所以m =2.此时n =12.故当且仅当m =2,n =12,数列{T n }中的T 1,T m ,T n 成等比数列.解法2:因为n 6n +3=16+3n<16,故m 24m 2+4m +1<16,即2m 2-4m -1<0,从而1-62<m <1+62,(以下同解法一).串讲2答案:(1)B n =12n 2+32n ;(2)不存在.解析:(1)因为A n =n 2,所以当n =1时,a 1=1,当n≥2时,a n =n 2-(n -1)2=2n -1,又a 1符合a n ,所以a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n·2+12·n·(n-1)·1=12n 2+32n.(2)由a n +1-a n =2(b n +1-b n )得a n +1-a n =2n +1,所以,当n≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2,当n =1时,上式也成立,所以A n =2n +2-4-2n ,又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n2n-1,假设存在两个互不相等的整数s ,t(1<s<t),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t2t -1成等差数列,即2s 2s -1=121-1+t 2t-1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h(s)=2s-2s -1(s≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0,所以h (s )递增,若s ≥3,则h (s )≥h (3)=1>0,不满足2s<2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t-3t -1=0(t ≥3),当t =3时,显然不符合要求;当t ≥4时,令φ(t )=2t-3t -1(t ≥3,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列.新题在线答案:(1)a n =n +1;(2)p =5,q =9;(3)3或14.解析:(1)因为(1-1a 1)(1-1a 2)…(1-1a n )=1a n ,n ∈N *,所以当n =1时,1-1a 1=1a 1,a 1=2,当n ≥2时,由(1-1a 1)(1-1a 2)…(1-1a n )=1a n 和(11-a 1)(1-1a 2)…(1-1a n -1)=1a n -1,两式相除可得,1-1a n =a n -1a n ,即a n -a n -1=1(n ≥2).所以,数列{a n }是首项为2,公差为1的等差数列.于是,a n =n +1.(2)因为a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,所以⎩⎪⎨⎪⎧a p +S q =60,a p S q =182,于是⎩⎪⎨⎪⎧a p =6,S q =54或⎩⎪⎨⎪⎧a p =54,S q =6.当⎩⎪⎨⎪⎧a p =6,S q =54时,⎩⎪⎨⎪⎧p +1=6,(q +3)q2=54,解得⎩⎪⎨⎪⎧p =5,q =9,当⎩⎪⎨⎪⎧a p =54,S q =6时,⎩⎪⎨⎪⎧p +1=54,(q +3)q 2=6,无正整数解,所以p =5,q =9.(3)假设存在满足条件的正整数k ,使得a k a k +1+16=a m (m ∈N *),则(k +1)(k +2)+16=m +1,平方并化简得,(2m +2)2-(2k +3)2=63,则(2m+2k +5)(2m -2k -1)=63,所以⎩⎪⎨⎪⎧2m +2k +5=63,2m -2k -1=1或⎩⎪⎨⎪⎧2m +2k +5=21,2m -2k -1=3 或⎩⎪⎨⎪⎧2m +2k +5=9,2m -2k -1=7,解得m =15,k =14或m =5,k =3,m =3,k =-1(舍去),综上所述,k =3或14.。
数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典型例题】 例1.223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且,3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。
分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。
解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。
1.设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足2222234577a a a a ,S +=+= (1)求数列{}n a 的通项公式及前n 项和n S ;(2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项.2.已知数列{}n a 是各项均不为0的等差数列,n S 为其前n 项和,且满足221n n a S -=, 令11n n n b a a +=⋅,数列{}n b 的前n 项和为n T . (1)求数列{}n a 的通项公式及数列{}n b 的前n 项和为n T ;(2)是否存在正整数,m n (1)m n <<, 使得1,,m n T T T 成等比数列?若存在,求出所有的 ,m n 的值;若不存在,请说明理由.3.设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,.(1)求数列{}n a 的通项公式及 前n 项和;(2)设数列{}n b 的通项公式为n n n a b a t =+, 问:是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在, 请说明理由.4.数列{x n }和{y n }中,191105n n n x x y +=-, 11355n n n y x y +=-+(n ∈N +),且x 1=3,y 1=1. 是否存在实数t 使数列{x n +ty n }为等比数列?如果存在,试求出t 的值;如果不存在,请说明理由.5.数列{}n a ,)(32,1211*+∈+-==N n n n a a a n n 是否 存在常数λ、μ,使得数列{}n n a n μλ++2是等比数 列,若存在,求出λ、μ的值,若不存在,说明理由。
6.已知数列{n a }中,111,22n n a n a a +=-,点() 在直线y =x 上,其中n =1,2,3….(1)令11n n n b a a ,+=--求证数列{}n b 是等比数列;(2)求数列{}的通项;n a (3)设分别为数列、n n T S {}、n a {}n b 的前n 项和, 是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列? 若存在,试求出λ.若不存在,则说明理由.7.已知数列{a n }前n 项的和为S n ,前n 项的积为n T , 且满足(1)2n n n T -=. (1)求1a ;(2)求证:数列{a n }是等比数列;(3)是否存在常数a ,使得()()()212n n n S a S a S a ++-=--对n N +∈都成 立?若存在,求出a ,若不存在,说明理由.8.设数列{}{}n n b a ,满足3,4,6332211======b a b a b a , 且数列{}()++∈-N n a a n n 1是等差数列, 数列{}()+∈-N n b n 2是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在+∈N k ,使⎪⎭⎫ ⎝⎛∈-21,0k k b a , 若存在,求出k ,若不存在,说明理由.。
高中数学中数列教学的难点与对策数列作为高中数学的重要内容,其教学难点与对策一直是教师关注的焦点。
数列作为一类特殊的函数,其性质和规律需要学生深入理解和掌握。
然而,在实际教学中,数列教学存在一些难点,如概念抽象、解题方法多样、学生理解困难等。
本文将从高中数学数列教学的难点出发,探讨相应的对策,以期提高教学效果。
一、数列教学的难点1.概念抽象数列作为一种特殊的数据序列,其概念较为抽象。
学生需要理解数列的通项公式、前n项和等基本概念,同时还需要掌握数列的分类和性质。
这些概念对于初学者来说较为困难,需要教师通过生动的教学方式帮助学生理解。
2.解题方法多样数列问题往往需要通过灵活运用数列的概念、性质和解题技巧来解决。
解题方法多样,包括分组求和法、倒序相加法、错位相减法等。
学生需要掌握这些解题方法,并在实际应用中灵活运用。
然而,由于学生的基础知识不扎实、解题经验不足等原因,往往难以灵活运用解题方法。
3.学生理解困难数列作为一种特殊的数据序列,其性质和规律需要学生深入理解和掌握。
然而,由于学生的数学基础不扎实、思维能力有限等原因,往往难以理解数列的性质和规律。
同时,数列问题往往涉及多个知识点,学生难以全面掌握,导致解题困难。
二、对策针对以上难点,教师可以从以下几个方面入手,提高数列教学效果。
1.强化基础知识教学教师在教学中应该注重基础知识的教学,帮助学生建立扎实的基础知识体系。
对于数列概念、性质和解题方法等基础知识,教师应该通过生动的教学方式帮助学生理解掌握。
同时,教师应该注重培养学生的数学思维能力和解决问题的能力,使学生能够灵活运用所学知识解决实际问题。
2.注重解题方法的训练教师在教学中应该注重解题方法的训练,使学生能够灵活运用解题方法解决数列问题。
教师应该通过例题讲解、习题训练等方式,使学生掌握数列问题的解题技巧和方法。
同时,教师应该鼓励学生多做题、多思考、多交流,通过实践不断提高解题能力。
3.注重学生思维能力的培养教师在教学中应该注重学生思维能力的培养,使学生能够深入理解数列的性质和规律。
“数列中的存在性问题”进阶教学作者:周军来源:《江苏教育·中学教学版》2021年第05期【摘要】“数列中的存在性问题”常在高考试题中出现,解决此类问题的关键在于“转化与化归”思想。
为此,可以基于学习进阶理论设计合理“阶梯”,幫助学生迁移学习经验,发展数学学科核心素养。
【关键词】学习进阶;转化与化归;专题复习【中图分类号】G633.6 【文献标志码】A 【文章编号】1005-6009(2021)37-0044-04【作者简介】周军,江苏省宜兴市丁蜀高级中学(江苏宜兴,214221)教师,高级教师。
数列作为高中数学的核心内容之一,在各地高考卷中都有精彩亮相,其中“数列中的存在性问题”因其独特的设问方式、推理逻辑、思维视角,成为命题人偏爱考查的内容。
然而,学生处理此类问题时往往显得捉襟见肘,其症结在于学生不善于将“数列中的存在性问题”转化为“方程解的存在性问题”,更进一步,即使对于已转化得到的不定方程也缺乏有效的求解策略。
这说明学生不善于利用“转化与化归”的数学思想,因而有必要对此做教学上的探讨。
应用“学习进阶”理论进行专题复习教学设计,能促进知识点的整合和联系,有利于学生建立系统化、层次化、结构化的认知体系,形成高阶思维。
笔者依据学习进阶理论,探讨“数列中的存在性问题”的教学。
一、学习进阶的内涵和意义学习进阶是“对学习者在一个较大时间跨度内学习和研究某一主题时,所遵循的连贯的、逐渐深入的思维路径的描述”[1]。
学生对核心概念的学习并非一蹴而就,需要经过多个不同的中间水平才能到达终点。
这些中间水平称为“阶”,是学生认知发展的“脚踏点”。
一个个“阶”将学习的起点和终点连接起来,形成一条逐步精致、持续深化的思维通路。
学习是一个基于原有经验螺旋演进式的动态过程,进阶是聚焦认知发展的一个研究视角。
对于课程与教学论而言,学习进阶的意义在于延续了“应为学生设定怎样的学习路径”这一核心问题的探索。
[2]二、基于学习进阶的专题复习教学“数列中的存在性问题”常常融合数论、函数、方程、不等式等知识,蕴含着丰富的数学思想,着力考查学生的分析、转化、综合的能力。
数列知识点归纳总结难点数列作为数学中的重要概念和工具,常常在各个学科和实际问题中出现。
在学习数列的过程中,我们需要理解和掌握一系列的知识点,其中包括数列的定义、分类、通项公式、递推关系、求和公式等等。
同时,也存在一些难点和容易混淆的概念。
本文将对数列的知识点进行归纳总结,并针对其难点进行深入讲解。
一、数列的定义和分类数列是由一系列按照一定规律排列的数字组成的有序集合。
数列中的每个数字称为数列的项,通常用$a_1,a_2,a_3,...$表示。
数列可以分为等差数列、等比数列、递推数列、Fibonacci数列等等。
等差数列是指数列中相邻两项之间的差值恒定,等比数列是指数列中相邻两项之间的比值恒定,递推数列是指数列中的每一项都依赖于它前面的一项或多项。
二、数列的通项公式和递推关系数列的通项公式是指可以通过项号$n$来表示数列中第$n$项的公式。
通项公式在数列的研究和分析中起到了至关重要的作用,它能帮助我们快速计算和推导数列中的各个项。
对于等差数列,通项公式为$a_n=a_1+(n-1)d$,其中$a_1$表示首项,$d$表示公差;对于等比数列,通项公式为$a_n=a_1\cdot r^{(n-1)}$,其中$a_1$表示首项,$r$表示公比。
递推关系是指数列中的每一项都通过前面一项或多项进行计算得到的关系式。
通过递推关系,我们可以递推出数列中的每一项,从而不需要知道特定项号的具体值。
递推关系的建立需要根据数列的特点和规律进行分析和推导,通常可以通过观察数列前几项的变化规律来确定。
三、数列的求和公式和性质数列的求和是指对数列中的若干项进行求和运算。
求和公式是用来计算数列前$n$项和的公式。
对于等差数列,求和公式为$S_n=\frac{n}{2}(a_1+a_n)$,其中$S_n$表示前$n$项和;对于等比数列,求和公式为$S_n=\frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前$n$项和。