排列组合复习(201911整理)
- 格式:pptx
- 大小:125.94 KB
- 文档页数:10
高三数学排列知识点汇总【】:一轮复习是高考复习中内容最全面、最细致的一轮,也决定了同学们赖以迎接考试的知识基础是否牢靠。
因此,如果希望在高考中取得优异的成绩,一轮复习时需要有良好的方法和复习效果。
在此,查字典数学网小编为同学们整理了高考数学排列知识点,希望能对大家所有帮助。
高考数学排列知识点汇总如下:排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2019-07-0813:30公式P是指排列,从N个元素取R个进行排列。
排列组合专题复习及经典例题详解1.学目掌握排列、合的解策略2.重点(1)特殊元素先安排的策略:(2)合理分与准确分步的策略;(3)排列、合混合先后排的策略;(4)正反、等价化的策略;(5)相捆理的策略;(6)不相插空理的策略.3.点合运用解策略解决.4.学程 :(1)知梳理1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法⋯⋯在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法.2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法⋯⋯,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法.特提醒:分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性;分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏.3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列.4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示.5.排列数公式:P n m n(n1)( n2)...( n m1)(n n!( m n,n、 m N)m)!排列数具有的性: P n m1P n m mP n m 1特别提醒:规定 0!=16.组合:从 n 个不同的元素中,任取m(m≤n) 个不同元素,组成一组,叫做从同元素中取m个不同元素的一个组合.7.组合数:从 n 个不同元素中取m(m≤n) 个不同元素的所有组合的个数,叫做从n 个不n 个不同元素中取出m个不同元素的组合数,用符号C nm表示 .8.组合数公式:C n m Pnmn(n1)(n 2)...(n m 1)n!P m m m!m! (n m)!组合数的两个性质:① C n m C n n m;② C n m1 C n m C n m 1特别提醒:排列与组合的联系与区别.联系:都是从 n 个不同元素中取出m个元素 .区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系 .(2)典型例题考点一 : 排列问题例1. 六人按下列要求站一横排,分别有多少种不同的站法?( 1)甲不站两端;( 2)甲、乙必须相邻;( 3)甲、乙不相邻;(4)甲、乙之间间隔两人;( 5)甲、乙站在两端;( 6)甲不站左端,乙不站右端 .【解析】: (1) 方法一:要使甲不站在两端,可先让甲在中间 4 个位置上任选 1 个,有P41种站法,然后其余 5 人在另外 5 个位置上作全排列有P55种站法,根据分步乘法计数原理,共有站法: P41 P55480(种)方法二:由于甲不站两端,这两个位置只能从其余 5 个人中选 2 个人站,有P52种站法,然后中间 4 人有P44种站法,根据分步乘法计数原理,共有站法:P52 P44480(种)方法三:若对甲没有限制条件共有P66种站法,甲在两端共有2P55种站法,从总数中减去这两种情况的排列数,即共有站法:P 62P 5480(种)65(2)方法一:先把甲、乙作为一个“整体”,看作一个人,和其余 4 人进行全排列有P55种站法,再把甲、乙进行全排列,有2P5 P2240(种P2种站法,根据分步乘法计数原理,共有52)方法二:先把甲、乙以外的 4 个人作全排列,有P44种站法,再在5 个空档中选出一个供甲、乙放入,有 P1种方法,最后让甲、乙全排列,有2种方法,共有P 4 P1 P2240(种) 5P2 4 5 2(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的 4 个人站队,有 P44种站法;第二步再将甲、乙排在 4 人形成的 5 个空档(含两端)中,有P52种站法,故共有站法为P44 P52480(种)此外,也可用“间接法”, 6 个人全排列有P66种站法,由(2)知甲、乙相邻有52652.P5P2240652720 240 480( )种站法,所以不相邻的站法有 P P P种(4)方法一:先将甲、乙以外的4 个人作全排列,有P44种,然后将甲、乙按条件插入站队,有 3P22种,故共有 P44(3P22) 144(种)站法.方法二:先从甲、乙以外的 4 个人中任选 2 人排在甲、乙之间的两个位置上,有P42种,然后把甲、乙及中间 2 人看作一个“大”元素与余下 2 人作全排列有P33种方法,最后对甲、乙进行排列,有P22种方法,故共有 P42 P33 P22144(种)站法.(5)方法一:首先考虑特殊元素,甲、乙先站两端,有P22种,再让其他 4 人在中间位置作全排列,有 P44种,根据分步乘法计数原理,共有P22 P4448(种)站法.方法二:首先考虑两端两个特殊位置,甲、乙去站有P22种站法,然后考虑中间 4 个位置,由剩下的 4 人去站,有P44种站法,由分步乘法计数原理共有P22 P4448(种)站法.(6)方法一:甲在左端的站法有P55种,乙在右端的站法有 P55种,甲在左端而且乙在右端的站法有 P44种,故甲不站左端、乙不站右端共有P66-2P55+ P44=504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有P55种站法,②甲在中间 4 个位置之一,而乙又不在右端有 P41 P41 P44种,故共有 P55+ P41P41P44=504(种)站法 .考点二 : 组合问题例2. 男运动员 6 名,女运动员 4 名,其中男女队长各 1 人. 选派 5 人外出比赛 .在下列情形中各有多少种选派方法?( 1)男运动员 3 名,女运动员 2 名;( 2)至少有 1 名女运动员;( 3)队长中至少有 1 人参加;( 4)既要有队长,又要有女运动员 .【解析】:( 1)选法为C63C42120(种).(2)方法一:至少 1 名女运动员包括以下几种情况: 1 女 4 男, 2 女 3 男, 3 女 2 男, 4 女1男 .14233241246(种)由分类计数原理可得总选法数为C 4 C 6 C 4 C 6 C 4 C 6 C 4C6.方法二:因“至少 1 名女运动员”的反面为“全是男运动员”,故可用间接法求解.从 10 人中任选 5 人有C105种选法,其中全是男运动员的选法有 C 65种.所以“至少有 1 名女运动员”的选法C105 C 65246(种).(3)方法一:可分类求解:“只有男队长”的选法为C84;“只有女队长”的选法为C84;“男、女队长都入选”的选法为 C 83;所以共有2 C84+ C83=196(种)选法.方法二:间接法:从10 人中任选 5 人有C105种选法 . 其中不选队长的方法有 C 85种.所以“至少 1名队长”的选法为 C105- C85=196 种 .(4)当有女队长时,其他人任意选,共有 C 94种选法;不选女队长时,必选男队长,共有 C 84种选法,而且其中不含女运动员的选法有C54种,所以不选女队长时的选法共有C84 C 54种选法.所以既有队长又有女运动员的选法共有C94(C84 C 54 ) 191 种.考点三 : 综合问题例个不同的球, 4 个不同的盒子,把球全部放入盒内.(1)恰有 1 个盒不放球,共有几种放法?(2)恰有 1 个盒内有 2 个球,共有几种放法?(3)恰有 2 个盒不放球,共有几种放法?【解析】:( 1)为保证“恰有 1 个盒不放球”,先从 4 个盒子中任意取出去一个,问题转化为“4 个球, 3 个盒子,每个盒子都要放入球,共有几种放法?”即把 4 个球分成 2,1,1 的三组,然后再从 3 个盒子中选 1 个放 2 个球,其余2 个球放在另外 2 个盒子内,由分步乘法计数原理,共有C41C42 C 31 P22144种;(2)“恰有 1 个盒内有 2 个球”,即另外 3 个盒子放2 个球,每个盒子至多放 1 个球,也就是说另外 3 个盒子中恰有一个空盒,因此,“恰有 1 个盒内有 2 个球”与“恰有 1 个盒不放球”是同一件事,所以共有144 种放法 .(3)确定 2 个空盒有C42种方法; 4 个球放进 2 个盒子可分成( 3,1)、( 2, 2)两类:第一类有序不均匀分组有 C 43 C11 P22 8 种方法;第二类有序均匀分组有C42 C22P22 6 种方法.P2223 1 2C42C222故共有 C4(C4 C1 P2P22P2) 84 种.当堂测试1. 从 5 名男医生、 4 名女医生中选 3 名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()种种种种【解析】:分为 2 男 1 女,和 1 男 2 女两大类,共有 C 52C 41 C 51C 4270 种.解题策略:合理分类与准确分步的策略.年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()种种种种【解析】:合理分类,通过分析分为(1)小张和小赵恰有 1 人入选,先从两人中选 1 人,然后把这个人在前两项工作中安排一个,最后剩余的三人进行全排列有 C 21C 21 P3324 种选法.( 2)小张和小赵都入选,首先安排这两个人做前两项工作有P22 2 种方法,然后在剩余的 3 人中选 2 人做后两项工作,有P36种方法.故共有C 1 C1 P 3P 2 P3 36种选法.322323解题策略:①. 特殊元素优先安排的策略.② . 合理分类与准确分步的策略.③. 排列、组合混合问题先选后排的策略.3.从 0, 1, 2, 3, 4,5 这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()【解析】:分为两大类:(1)含有 0,分步:①从另外两个偶数中选一个,有 C 21种方法,②. 从 3 个奇数中选两个,有 C32种方法;③ . 给 0安排一个位置,只能在个、十、百位上选,有 C31种方法;④.其他的3 个数字进行全排列,有P33种排法,根据乘法原理共有C 21 C32C 31 P33108 种方法.(2)不含0,分步:①偶数必然是 2 和 4 ;②奇数有C32种不同的选法,③然后把 4 个元素全排列,共P44种排法,不含 0的排法有 C 32 P4472 种.根据加法原理把两部分加一块得108+72=180 个4.甲组有 5 名男同学, 3 名女同学;乙组有 6 名男同学, 2 名女同学.若从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有()种种种种【解析】: 4 人中恰有 1 名女同学的情况分为两种,即这 1 名女同学或来自甲组,或来自乙组,则所有不同的选法共有C51 C31C 62C 52C61 C 21345 种选法.解题策略:合理分类与准确分步的策略.5. 甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中至少有 1 门不相同的选法共有()【解析】:法一:甲、乙所选的课程中至少有 1 门不相同的选法可以分为两类:⑴.甲、乙所选的课程中 2 门均不相同,甲先从 4 门中任选 2 门,乙选取剩下的 2 门,有C 42 C 22 6 种.⑵.甲、乙所选的课程中有且只有 1 门相同,分为 2 步:①从 4 门中先任选一门作为相同的课程,有 C 41 4 种选法,②甲从剩余的 3 门中任选 1 门,乙从最后剩余的 2 门中任选 1 门,有 C31C 21 6 种选法,由分步计数原理此时共有 C 41C 31 C 2124种.最后由分类计数原理,甲、乙所选的课程中至少有 1 门不相同的选法共有6+24=30 种.故选 C.法二:可以先让甲、乙任意选择两门,有 C 42C 4236 种方法,然后再把两个人全相同的情况去掉,两个人全相同,可以将甲与乙看成为同一个人,从 4 门中任选两门有C 42 6 种选法,所以至少有一门不相同的选法为 C 42 C 42 C 4230 种不同的选法.解题策略:正难则反,等价转化的策略.6.用 0 到 9 这 10 个数字,可以组成没有重复数字的三位偶数的个数为()【解析】:第一类个位是0,共P92种不同的排法;第二类个位不是0,共C41C81C81种不同的解法.故共有 P92+ C41C81C81=328(个).解题策略:合理分类与准确分步的策略 .7. 从 10 名大学毕业生中选 3 人担任村长助理,则甲、乙至少有 1 人入选,而丙没有入选的不同选法的总数为()【解析】:合理分类,甲、乙全被选中,有 C 22C 71种选法,甲、乙有一个被选中,有 C12C 72种不同的选法,共 C 22C 17+ C 21 C 72=49种不同的选法.解题策略:( 1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为()【解析】:将甲、乙、丙、丁四名学生分成三组,则共有 C 42种不同的分法,然后三组进行全排列共 P33种不同的方法;最后再把甲、乙分到同一个班的情况排除掉,共 P33种不同的排法.所以总的排法为 C42 P33- P33=30种.注意 : 这里有一个分组的问题,即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵. 相邻问题捆绑处理的策略⑶. 排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题,判断是排列还是组合问题,要按元素的性质分类,按事件发生的过程进行分步.深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑.对限制条件较复杂的排列组合问题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用不同的方法求解.看看结果是否相同,在对排列组合问题分类时,分类标准应统一,否则易出现遗漏和重复.。
排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n m n C - 11m m m n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
2019年高考数学概率知识点复习:排列、组合和概率易错易混考点排列、组合和概率69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混。
二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。
)72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;事件A发生k次的概率:。
其中k=0,1,2,3,,n,且073.求分布列的解答题你能把步骤写全吗?74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。
)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。
2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。
二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。
哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。
哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。
公式是C(n,m) = n! / [m!(n - m)!] 。
2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。
3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。
总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。