第四章 经典线性回归模型(高级计量经济学-清华大学 潘文清)
- 格式:ppt
- 大小:450.50 KB
- 文档页数:55
计量经济学中级教程(潘省初清华大学出版社)课后习题答案计量经济学中级教程习题参考答案第一章绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说)(2)建立计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YYn==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错R 2 =ESS/TSS 。
(5)错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(6)错。
因为∑=22)?(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。
第四章 非线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是非线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述非线性回归模型是无法用最小二乘法估计参数的。
可采用非线性方法进行估计。
估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。
计算机的出现大大方便了非线性回归模型的估计。
专用软件使这种计算变得非常容易。
但本章不是介绍这类模型的估计。
另外还有一类非线性回归模型。
其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。
称此类模型为可线性化的非线性模型。
下面介绍几种典型的可以线性化的非线性模型。
4.1 可线性化的模型⑴ 指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是非线性的。
对上式等号两侧同取自然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表示随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =tt u bx ae+, (b < 0)⑵ 对数函数模型y t = a + b Ln x t + u t (4.4)b >0和b <0两种情形的图形分别见图4.3和4.4。
x t 和y t 的关系是非线性的。
令x t * = Lnx t , 则y t = a + b x t * + u t (4.5)变量y t 和x t * 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶ 幂函数模型y t = a x t b t u e (4.6)b 取不同值的图形分别见图4.5和4.6。
计量经济学中级教程习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3 时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YYn==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 经典线性回归模型2.1 判断题(说明对错;如果错误,则予以更正) (1)对 (2)对 (3)错只要线性回归模型满足假设条件(1)~(4),OLS 估计量就是BLUE 。
(4)错R 2 =ESS/TSS 。
(5)错。
我们可以说的是,手头的数据不允许我们拒绝原假设。
(6)错。
因为∑=22)ˆ(tx Var σβ,只有当∑2t x 保持恒定时,上述说法才正确。
2.2 应采用(1),因为由(2)和(3)的回归结果可知,除X 1外,其余解释变量的系数均不显著。
第4章内生性、工具变量与GMM估计•外生性与常见的内生性问题•矩估计(MM)与工具变量法(IV)•线性模型的两阶段最小二乘估计(2SLS)•线性模型的广义矩估计(GMM)§4.1 外生性与常见的内生性问题一、外生性假设与内生性问题二、常见的内生性一、外生性假设与内生性问题线性回归模型中一个重要的假设是“严格外生性”: E(ε|X )=0严格外生性(strictly strictly exogeneity exogeneity exogeneity))的含义是:各期的解释变量X t 独立于所有期的随机扰动项εt 。
在严格外生性与球型假设假设下,OLS 估计量是BLUE 。
这两大假设也称为Y t 或εt 是独立同分布的(iid )。
对模型 Y t =β0+β1X t1+…+βk X tk +εt或 Y t = X t ’β+ εt 或 Y = X β +ε1、外生性与、外生性与OLS OLS OLS估计量的统计性质估计量的统计性质tΣ§4.2 矩估计与工具变量法一、矩估计二、矩估计中的工具变量法二、矩估计中的工具变量(IV)法假设有如下模型:Y t=X t1’β1+X t2β2+εt其中:X2为单一变量,X1为包括截距项的k维行向量β2、β1为对应的参数变量与参数向量。
如果模型设定正确,则有如下总体矩条件 E(X t1εt )=0, E(X t2εt)=0(1/n)ΣX t1(Y t-X t1’b1-X t2b2)=0(1/n)ΣX t2(Y t-X t1’b1-X t2b2) =0(1/n)ΣX t1(Y t -X t1’b 1-X t2b 2) =0(1/n)ΣX t2(Y t -X t1’b 1-X t2b 2) =0正规方程组如果缺少矩条件,如E(X t2εt )≠0,则上述正规方程组最后一个方程不存在,则无法求解。
这时,工具变量法就是寻找一工具变量Z2,满足E(Z t2εt)=0,E(Z t2X t2)≠0。